]> cvs.zerfleddert.de Git - proxmark3-svn/blob - client/nonce2key/crapto1.c
Merge branch 'master' of https://github.com/iceman1001/proxmark3
[proxmark3-svn] / client / nonce2key / crapto1.c
1 /* crapto1.c
2
3 This program is free software; you can redistribute it and/or
4 modify it under the terms of the GNU General Public License
5 as published by the Free Software Foundation; either version 2
6 of the License, or (at your option) any later version.
7
8 This program is distributed in the hope that it will be useful,
9 but WITHOUT ANY WARRANTY; without even the implied warranty of
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 GNU General Public License for more details.
12
13 You should have received a copy of the GNU General Public License
14 along with this program; if not, write to the Free Software
15 Foundation, Inc., 51 Franklin Street, Fifth Floor,
16 Boston, MA 02110-1301, US$
17
18 Copyright (C) 2008-2014 bla <blapost@gmail.com>
19 */
20 #include "crapto1.h"
21 #include <stdlib.h>
22
23 #if !defined LOWMEM && defined __GNUC__
24 static uint8_t filterlut[1 << 20];
25 static void __attribute__((constructor)) fill_lut()
26 {
27 uint32_t i;
28 for(i = 0; i < 1 << 20; ++i)
29 filterlut[i] = filter(i);
30 }
31 #define filter(x) (filterlut[(x) & 0xfffff])
32 #endif
33
34 /** update_contribution
35 * helper, calculates the partial linear feedback contributions and puts in MSB
36 */
37 static inline void update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)
38 {
39 uint32_t p = *item >> 25;
40
41 p = p << 1 | parity(*item & mask1);
42 p = p << 1 | parity(*item & mask2);
43 *item = p << 24 | (*item & 0xffffff);
44 }
45
46 /** extend_table
47 * using a bit of the keystream extend the table of possible lfsr states
48 */
49 static inline void extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
50 {
51 in <<= 24;
52 for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
53 if(filter(*tbl) ^ filter(*tbl | 1)) {
54 *tbl |= filter(*tbl) ^ bit;
55 update_contribution(tbl, m1, m2);
56 *tbl ^= in;
57 } else if(filter(*tbl) == bit) {
58 *++*end = tbl[1];
59 tbl[1] = tbl[0] | 1;
60 update_contribution(tbl, m1, m2);
61 *tbl++ ^= in;
62 update_contribution(tbl, m1, m2);
63 *tbl ^= in;
64 } else
65 *tbl-- = *(*end)--;
66 }
67 /** extend_table_simple
68 * using a bit of the keystream extend the table of possible lfsr states
69 */
70 static inline void extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
71 {
72 for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1) {
73 if(filter(*tbl) ^ filter(*tbl | 1)) { // replace
74 *tbl |= filter(*tbl) ^ bit;
75 } else if(filter(*tbl) == bit) { // insert
76 *++*end = *++tbl;
77 *tbl = tbl[-1] | 1;
78 } else { // drop
79 *tbl-- = *(*end)--;
80 }
81 }
82 }
83 /** recover
84 * recursively narrow down the search space, 4 bits of keystream at a time
85 */
86 static struct Crypto1State*
87 recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
88 uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
89 struct Crypto1State *sl, uint32_t in, bucket_array_t bucket)
90 {
91 uint32_t *o, *e;
92 bucket_info_t bucket_info;
93
94 if(rem == -1) {
95 for(e = e_head; e <= e_tail; ++e) {
96 *e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);
97 for(o = o_head; o <= o_tail; ++o, ++sl) {
98 sl->even = *o;
99 sl->odd = *e ^ parity(*o & LF_POLY_ODD);
100 sl[1].odd = sl[1].even = 0;
101 }
102 }
103 return sl;
104 }
105
106 for(uint32_t i = 0; i < 4 && rem--; i++) {
107 oks >>= 1;
108 eks >>= 1;
109 in >>= 2;
110 extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);
111 if(o_head > o_tail)
112 return sl;
113
114 extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, in & 3);
115 if(e_head > e_tail)
116 return sl;
117 }
118
119 bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket);
120
121 for (int i = bucket_info.numbuckets - 1; i >= 0; i--) {
122 sl = recover(bucket_info.bucket_info[1][i].head, bucket_info.bucket_info[1][i].tail, oks,
123 bucket_info.bucket_info[0][i].head, bucket_info.bucket_info[0][i].tail, eks,
124 rem, sl, in, bucket);
125 }
126
127 return sl;
128 }
129 /** lfsr_recovery
130 * recover the state of the lfsr given 32 bits of the keystream
131 * additionally you can use the in parameter to specify the value
132 * that was fed into the lfsr at the time the keystream was generated
133 */
134 struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
135 {
136 struct Crypto1State *statelist;
137 uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;
138 uint32_t *even_head = 0, *even_tail = 0, eks = 0;
139 int i;
140
141 // split the keystream into an odd and even part
142 for(i = 31; i >= 0; i -= 2)
143 oks = oks << 1 | BEBIT(ks2, i);
144 for(i = 30; i >= 0; i -= 2)
145 eks = eks << 1 | BEBIT(ks2, i);
146
147 odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);
148 even_head = even_tail = malloc(sizeof(uint32_t) << 21);
149 statelist = malloc(sizeof(struct Crypto1State) << 18);
150 if(!odd_tail-- || !even_tail-- || !statelist) {
151 free(statelist);
152 statelist = 0;
153 goto out;
154 }
155
156 statelist->odd = statelist->even = 0;
157
158 // allocate memory for out of place bucket_sort
159 bucket_array_t bucket;
160
161 if ( !bucket_malloc(bucket) ) goto out;
162
163 // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
164 for(i = 1 << 20; i >= 0; --i) {
165 if(filter(i) == (oks & 1))
166 *++odd_tail = i;
167 if(filter(i) == (eks & 1))
168 *++even_tail = i;
169 }
170
171 // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
172 for(i = 0; i < 4; i++) {
173 extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);
174 extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
175 }
176
177 // the statelists now contain all states which could have generated the last 10 Bits of the keystream.
178 // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
179 // parameter into account.
180 in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00); // Byte swapping
181 recover(odd_head, odd_tail, oks, even_head, even_tail, eks, 11, statelist, in << 1, bucket);
182
183 out:
184 free(odd_head);
185 free(even_head);
186 bucket_free(bucket);
187 return statelist;
188 }
189
190 static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
191 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
192 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
193 static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
194 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
195 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
196 0x7EC7EE90, 0x7F63F748, 0x79117020};
197 static const uint32_t T1[] = {
198 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
199 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
200 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
201 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
202 static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
203 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
204 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
205 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
206 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
207 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
208 static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};
209 static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
210 /** Reverse 64 bits of keystream into possible cipher states
211 * Variation mentioned in the paper. Somewhat optimized version
212 */
213 struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
214 {
215 struct Crypto1State *statelist, *sl;
216 uint8_t oks[32], eks[32], hi[32];
217 uint32_t low = 0, win = 0;
218 uint32_t *tail, table[1 << 16];
219 int i, j;
220
221 sl = statelist = malloc(sizeof(struct Crypto1State) << 4);
222 if(!sl)
223 return 0;
224 sl->odd = sl->even = 0;
225
226 for(i = 30; i >= 0; i -= 2) {
227 oks[i >> 1] = BEBIT(ks2, i);
228 oks[16 + (i >> 1)] = BEBIT(ks3, i);
229 }
230 for(i = 31; i >= 0; i -= 2) {
231 eks[i >> 1] = BEBIT(ks2, i);
232 eks[16 + (i >> 1)] = BEBIT(ks3, i);
233 }
234
235 for(i = 0xfffff; i >= 0; --i) {
236 if (filter(i) != oks[0])
237 continue;
238
239 *(tail = table) = i;
240 for(j = 1; tail >= table && j < 29; ++j)
241 extend_table_simple(table, &tail, oks[j]);
242
243 if(tail < table)
244 continue;
245
246 for(j = 0; j < 19; ++j)
247 low = low << 1 | parity(i & S1[j]);
248 for(j = 0; j < 32; ++j)
249 hi[j] = parity(i & T1[j]);
250
251 for(; tail >= table; --tail) {
252 for(j = 0; j < 3; ++j) {
253 *tail = *tail << 1;
254 *tail |= parity((i & C1[j]) ^ (*tail & C2[j]));
255 if(filter(*tail) != oks[29 + j])
256 goto continue2;
257 }
258
259 for(j = 0; j < 19; ++j)
260 win = win << 1 | parity(*tail & S2[j]);
261
262 win ^= low;
263 for(j = 0; j < 32; ++j) {
264 win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);
265 if(filter(win) != eks[j])
266 goto continue2;
267 }
268
269 *tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);
270 sl->odd = *tail ^ parity(LF_POLY_ODD & win);
271 sl->even = win;
272 ++sl;
273 sl->odd = sl->even = 0;
274 continue2:;
275 }
276 }
277 return statelist;
278 }
279
280 /** lfsr_rollback_bit
281 * Rollback the shift register in order to get previous states
282 */
283 uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
284 {
285 int out;
286 uint8_t ret;
287 uint32_t t;
288
289 s->odd &= 0xffffff;
290 t = s->odd, s->odd = s->even, s->even = t;
291
292 out = s->even & 1;
293 out ^= LF_POLY_EVEN & (s->even >>= 1);
294 out ^= LF_POLY_ODD & s->odd;
295 out ^= !!in;
296 out ^= (ret = filter(s->odd)) & !!fb;
297
298 s->even |= parity(out) << 23;
299 return ret;
300 }
301 /** lfsr_rollback_byte
302 * Rollback the shift register in order to get previous states
303 */
304 uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
305 {
306 /*
307 int i, ret = 0;
308 for (i = 7; i >= 0; --i)
309 ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
310 */
311 // unfold loop 20160112
312 uint8_t ret = 0;
313 ret |= lfsr_rollback_bit(s, BIT(in, 7), fb) << 7;
314 ret |= lfsr_rollback_bit(s, BIT(in, 6), fb) << 6;
315 ret |= lfsr_rollback_bit(s, BIT(in, 5), fb) << 5;
316 ret |= lfsr_rollback_bit(s, BIT(in, 4), fb) << 4;
317 ret |= lfsr_rollback_bit(s, BIT(in, 3), fb) << 3;
318 ret |= lfsr_rollback_bit(s, BIT(in, 2), fb) << 2;
319 ret |= lfsr_rollback_bit(s, BIT(in, 1), fb) << 1;
320 ret |= lfsr_rollback_bit(s, BIT(in, 0), fb) << 0;
321 return ret;
322 }
323 /** lfsr_rollback_word
324 * Rollback the shift register in order to get previous states
325 */
326 uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
327 {
328 /*
329 int i;
330 uint32_t ret = 0;
331 for (i = 31; i >= 0; --i)
332 ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
333 */
334 // unfold loop 20160112
335 uint32_t ret = 0;
336 ret |= lfsr_rollback_bit(s, BEBIT(in, 31), fb) << (31 ^ 24);
337 ret |= lfsr_rollback_bit(s, BEBIT(in, 30), fb) << (30 ^ 24);
338 ret |= lfsr_rollback_bit(s, BEBIT(in, 29), fb) << (29 ^ 24);
339 ret |= lfsr_rollback_bit(s, BEBIT(in, 28), fb) << (28 ^ 24);
340 ret |= lfsr_rollback_bit(s, BEBIT(in, 27), fb) << (27 ^ 24);
341 ret |= lfsr_rollback_bit(s, BEBIT(in, 26), fb) << (26 ^ 24);
342 ret |= lfsr_rollback_bit(s, BEBIT(in, 25), fb) << (25 ^ 24);
343 ret |= lfsr_rollback_bit(s, BEBIT(in, 24), fb) << (24 ^ 24);
344
345 ret |= lfsr_rollback_bit(s, BEBIT(in, 23), fb) << (23 ^ 24);
346 ret |= lfsr_rollback_bit(s, BEBIT(in, 22), fb) << (22 ^ 24);
347 ret |= lfsr_rollback_bit(s, BEBIT(in, 21), fb) << (21 ^ 24);
348 ret |= lfsr_rollback_bit(s, BEBIT(in, 20), fb) << (20 ^ 24);
349 ret |= lfsr_rollback_bit(s, BEBIT(in, 19), fb) << (19 ^ 24);
350 ret |= lfsr_rollback_bit(s, BEBIT(in, 18), fb) << (18 ^ 24);
351 ret |= lfsr_rollback_bit(s, BEBIT(in, 17), fb) << (17 ^ 24);
352 ret |= lfsr_rollback_bit(s, BEBIT(in, 16), fb) << (16 ^ 24);
353
354 ret |= lfsr_rollback_bit(s, BEBIT(in, 15), fb) << (15 ^ 24);
355 ret |= lfsr_rollback_bit(s, BEBIT(in, 14), fb) << (14 ^ 24);
356 ret |= lfsr_rollback_bit(s, BEBIT(in, 13), fb) << (13 ^ 24);
357 ret |= lfsr_rollback_bit(s, BEBIT(in, 12), fb) << (12 ^ 24);
358 ret |= lfsr_rollback_bit(s, BEBIT(in, 11), fb) << (11 ^ 24);
359 ret |= lfsr_rollback_bit(s, BEBIT(in, 10), fb) << (10 ^ 24);
360 ret |= lfsr_rollback_bit(s, BEBIT(in, 9), fb) << (9 ^ 24);
361 ret |= lfsr_rollback_bit(s, BEBIT(in, 8), fb) << (8 ^ 24);
362
363 ret |= lfsr_rollback_bit(s, BEBIT(in, 7), fb) << (7 ^ 24);
364 ret |= lfsr_rollback_bit(s, BEBIT(in, 6), fb) << (6 ^ 24);
365 ret |= lfsr_rollback_bit(s, BEBIT(in, 5), fb) << (5 ^ 24);
366 ret |= lfsr_rollback_bit(s, BEBIT(in, 4), fb) << (4 ^ 24);
367 ret |= lfsr_rollback_bit(s, BEBIT(in, 3), fb) << (3 ^ 24);
368 ret |= lfsr_rollback_bit(s, BEBIT(in, 2), fb) << (2 ^ 24);
369 ret |= lfsr_rollback_bit(s, BEBIT(in, 1), fb) << (1 ^ 24);
370 ret |= lfsr_rollback_bit(s, BEBIT(in, 0), fb) << (0 ^ 24);
371 return ret;
372 }
373
374 /** nonce_distance
375 * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
376 */
377 static uint16_t *dist = 0;
378 int nonce_distance(uint32_t from, uint32_t to)
379 {
380 uint16_t x, i;
381 if(!dist) {
382 dist = malloc(2 << 16);
383 if(!dist)
384 return -1;
385 for (x = i = 1; i; ++i) {
386 dist[(x & 0xff) << 8 | x >> 8] = i;
387 x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
388 }
389 }
390 return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
391 }
392
393
394 static uint32_t fastfwd[2][8] = {
395 { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
396 { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
397
398
399 /** lfsr_prefix_ks
400 *
401 * Is an exported helper function from the common prefix attack
402 * Described in the "dark side" paper. It returns an -1 terminated array
403 * of possible partial(21 bit) secret state.
404 * The required keystream(ks) needs to contain the keystream that was used to
405 * encrypt the NACK which is observed when varying only the 3 last bits of Nr
406 * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
407 */
408 uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
409 {
410 uint32_t *candidates = malloc(4 << 10);
411 if(!candidates) return 0;
412
413 uint32_t c, entry;
414 int size = 0, i, good;
415
416 for(i = 0; i < 1 << 21; ++i) {
417 for(c = 0, good = 1; good && c < 8; ++c) {
418 entry = i ^ fastfwd[isodd][c];
419 good &= (BIT(ks[c], isodd) == filter(entry >> 1));
420 good &= (BIT(ks[c], isodd + 2) == filter(entry));
421 }
422 if(good)
423 candidates[size++] = i;
424 }
425
426 candidates[size] = -1;
427
428 return candidates;
429 }
430
431 /** check_pfx_parity
432 * helper function which eliminates possible secret states using parity bits
433 */
434 static struct Crypto1State* check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8], uint32_t odd, uint32_t even, struct Crypto1State* sl)
435 {
436 uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;
437
438 for(c = 0; good && c < 8; ++c) {
439 sl->odd = odd ^ fastfwd[1][c];
440 sl->even = even ^ fastfwd[0][c];
441
442 lfsr_rollback_bit(sl, 0, 0);
443 lfsr_rollback_bit(sl, 0, 0);
444
445 ks3 = lfsr_rollback_bit(sl, 0, 0);
446 ks2 = lfsr_rollback_word(sl, 0, 0);
447 ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);
448
449 nr = ks1 ^ (prefix | c << 5);
450 rr = ks2 ^ rresp;
451
452 good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
453 good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
454 good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
455 good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
456 good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;
457 }
458
459 return sl + good;
460 }
461
462 /** lfsr_common_prefix
463 * Implentation of the common prefix attack.
464 * Requires the 28 bit constant prefix used as reader nonce (pfx)
465 * The reader response used (rr)
466 * The keystream used to encrypt the observed NACK's (ks)
467 * The parity bits (par)
468 * It returns a zero terminated list of possible cipher states after the
469 * tag nonce was fed in
470 */
471
472 struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])
473 {
474 struct Crypto1State *statelist, *s;
475 uint32_t *odd, *even, *o, *e, top;
476
477 odd = lfsr_prefix_ks(ks, 1);
478 even = lfsr_prefix_ks(ks, 0);
479
480 s = statelist = malloc((sizeof *statelist) << 21);
481 if(!s || !odd || !even) {
482 free(statelist);
483 free(odd);
484 free(even);
485 return 0;
486 }
487
488 for(o = odd; *o + 1; ++o)
489 for(e = even; *e + 1; ++e)
490 for(top = 0; top < 64; ++top) {
491 *o += 1 << 21;
492 *e += (!(top & 7) + 1) << 21;
493 s = check_pfx_parity(pfx, rr, par, *o, *e, s);
494 }
495
496 s->odd = s->even = 0;
497
498 free(odd);
499 free(even);
500 return statelist;
501 }
Impressum, Datenschutz