3 This program is free software; you can redistribute it and/or
4 modify it under the terms of the GNU General Public License
5 as published by the Free Software Foundation; either version 2
6 of the License, or (at your option) any later version.
8 This program is distributed in the hope that it will be useful,
9 but WITHOUT ANY WARRANTY; without even the implied warranty of
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 GNU General Public License for more details.
13 You should have received a copy of the GNU General Public License
14 along with this program; if not, write to the Free Software
15 Foundation, Inc., 51 Franklin Street, Fifth Floor,
16 Boston, MA 02110-1301, US$
18 Copyright (C) 2008-2014 bla <blapost@gmail.com>
23 #if !defined LOWMEM && defined __GNUC__
24 static uint8_t filterlut
[1 << 20];
25 static void __attribute__((constructor
)) fill_lut()
28 for(i
= 0; i
< 1 << 20; ++i
)
29 filterlut
[i
] = filter(i
);
31 #define filter(x) (filterlut[(x) & 0xfffff])
34 /** update_contribution
35 * helper, calculates the partial linear feedback contributions and puts in MSB
37 static inline void update_contribution(uint32_t *item
, const uint32_t mask1
, const uint32_t mask2
)
39 uint32_t p
= *item
>> 25;
41 p
= p
<< 1 | parity(*item
& mask1
);
42 p
= p
<< 1 | parity(*item
& mask2
);
43 *item
= p
<< 24 | (*item
& 0xffffff);
47 * using a bit of the keystream extend the table of possible lfsr states
49 static inline void extend_table(uint32_t *tbl
, uint32_t **end
, int bit
, int m1
, int m2
, uint32_t in
)
52 for(*tbl
<<= 1; tbl
<= *end
; *++tbl
<<= 1)
53 if(filter(*tbl
) ^ filter(*tbl
| 1)) {
54 *tbl
|= filter(*tbl
) ^ bit
;
55 update_contribution(tbl
, m1
, m2
);
57 } else if(filter(*tbl
) == bit
) {
60 update_contribution(tbl
, m1
, m2
);
62 update_contribution(tbl
, m1
, m2
);
67 /** extend_table_simple
68 * using a bit of the keystream extend the table of possible lfsr states
70 static inline void extend_table_simple(uint32_t *tbl
, uint32_t **end
, int bit
)
72 for(*tbl
<<= 1; tbl
<= *end
; *++tbl
<<= 1) {
73 if(filter(*tbl
) ^ filter(*tbl
| 1)) { // replace
74 *tbl
|= filter(*tbl
) ^ bit
;
75 } else if(filter(*tbl
) == bit
) { // insert
84 * recursively narrow down the search space, 4 bits of keystream at a time
86 static struct Crypto1State
*
87 recover(uint32_t *o_head
, uint32_t *o_tail
, uint32_t oks
,
88 uint32_t *e_head
, uint32_t *e_tail
, uint32_t eks
, int rem
,
89 struct Crypto1State
*sl
, uint32_t in
, bucket_array_t bucket
)
92 bucket_info_t bucket_info
;
95 for(e
= e_head
; e
<= e_tail
; ++e
) {
96 *e
= *e
<< 1 ^ parity(*e
& LF_POLY_EVEN
) ^ !!(in
& 4);
97 for(o
= o_head
; o
<= o_tail
; ++o
, ++sl
) {
99 sl
->odd
= *e
^ parity(*o
& LF_POLY_ODD
);
100 sl
[1].odd
= sl
[1].even
= 0;
106 for(uint32_t i
= 0; i
< 4 && rem
--; i
++) {
110 extend_table(o_head
, &o_tail
, oks
& 1, LF_POLY_EVEN
<< 1 | 1, LF_POLY_ODD
<< 1, 0);
114 extend_table(e_head
, &e_tail
, eks
& 1, LF_POLY_ODD
, LF_POLY_EVEN
<< 1 | 1, in
& 3);
119 bucket_sort_intersect(e_head
, e_tail
, o_head
, o_tail
, &bucket_info
, bucket
);
121 for (int i
= bucket_info
.numbuckets
- 1; i
>= 0; i
--) {
122 sl
= recover(bucket_info
.bucket_info
[1][i
].head
, bucket_info
.bucket_info
[1][i
].tail
, oks
,
123 bucket_info
.bucket_info
[0][i
].head
, bucket_info
.bucket_info
[0][i
].tail
, eks
,
124 rem
, sl
, in
, bucket
);
130 * recover the state of the lfsr given 32 bits of the keystream
131 * additionally you can use the in parameter to specify the value
132 * that was fed into the lfsr at the time the keystream was generated
134 struct Crypto1State
* lfsr_recovery32(uint32_t ks2
, uint32_t in
)
136 struct Crypto1State
*statelist
;
137 uint32_t *odd_head
= 0, *odd_tail
= 0, oks
= 0;
138 uint32_t *even_head
= 0, *even_tail
= 0, eks
= 0;
141 // split the keystream into an odd and even part
142 for(i
= 31; i
>= 0; i
-= 2)
143 oks
= oks
<< 1 | BEBIT(ks2
, i
);
144 for(i
= 30; i
>= 0; i
-= 2)
145 eks
= eks
<< 1 | BEBIT(ks2
, i
);
147 odd_head
= odd_tail
= malloc(sizeof(uint32_t) << 21);
148 even_head
= even_tail
= malloc(sizeof(uint32_t) << 21);
149 statelist
= malloc(sizeof(struct Crypto1State
) << 18);
150 if(!odd_tail
-- || !even_tail
-- || !statelist
) {
156 statelist
->odd
= statelist
->even
= 0;
158 // allocate memory for out of place bucket_sort
159 bucket_array_t bucket
;
161 if ( !bucket_malloc(bucket
) ) goto out
;
163 // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
164 for(i
= 1 << 20; i
>= 0; --i
) {
165 if(filter(i
) == (oks
& 1))
167 if(filter(i
) == (eks
& 1))
171 // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
172 for(i
= 0; i
< 4; i
++) {
173 extend_table_simple(odd_head
, &odd_tail
, (oks
>>= 1) & 1);
174 extend_table_simple(even_head
, &even_tail
, (eks
>>= 1) & 1);
177 // the statelists now contain all states which could have generated the last 10 Bits of the keystream.
178 // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
179 // parameter into account.
180 in
= (in
>> 16 & 0xff) | (in
<< 16) | (in
& 0xff00); // Byte swapping
181 recover(odd_head
, odd_tail
, oks
, even_head
, even_tail
, eks
, 11, statelist
, in
<< 1, bucket
);
190 static const uint32_t S1
[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
191 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
192 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
193 static const uint32_t S2
[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
194 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
195 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
196 0x7EC7EE90, 0x7F63F748, 0x79117020};
197 static const uint32_t T1
[] = {
198 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
199 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
200 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
201 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
202 static const uint32_t T2
[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
203 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
204 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
205 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
206 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
207 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
208 static const uint32_t C1
[] = { 0x846B5, 0x4235A, 0x211AD};
209 static const uint32_t C2
[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
210 /** Reverse 64 bits of keystream into possible cipher states
211 * Variation mentioned in the paper. Somewhat optimized version
213 struct Crypto1State
* lfsr_recovery64(uint32_t ks2
, uint32_t ks3
)
215 struct Crypto1State
*statelist
, *sl
;
216 uint8_t oks
[32], eks
[32], hi
[32];
217 uint32_t low
= 0, win
= 0;
218 uint32_t *tail
, table
[1 << 16];
221 sl
= statelist
= malloc(sizeof(struct Crypto1State
) << 4);
224 sl
->odd
= sl
->even
= 0;
226 for(i
= 30; i
>= 0; i
-= 2) {
227 oks
[i
>> 1] = BEBIT(ks2
, i
);
228 oks
[16 + (i
>> 1)] = BEBIT(ks3
, i
);
230 for(i
= 31; i
>= 0; i
-= 2) {
231 eks
[i
>> 1] = BEBIT(ks2
, i
);
232 eks
[16 + (i
>> 1)] = BEBIT(ks3
, i
);
235 for(i
= 0xfffff; i
>= 0; --i
) {
236 if (filter(i
) != oks
[0])
240 for(j
= 1; tail
>= table
&& j
< 29; ++j
)
241 extend_table_simple(table
, &tail
, oks
[j
]);
246 for(j
= 0; j
< 19; ++j
)
247 low
= low
<< 1 | parity(i
& S1
[j
]);
248 for(j
= 0; j
< 32; ++j
)
249 hi
[j
] = parity(i
& T1
[j
]);
251 for(; tail
>= table
; --tail
) {
252 for(j
= 0; j
< 3; ++j
) {
254 *tail
|= parity((i
& C1
[j
]) ^ (*tail
& C2
[j
]));
255 if(filter(*tail
) != oks
[29 + j
])
259 for(j
= 0; j
< 19; ++j
)
260 win
= win
<< 1 | parity(*tail
& S2
[j
]);
263 for(j
= 0; j
< 32; ++j
) {
264 win
= win
<< 1 ^ hi
[j
] ^ parity(*tail
& T2
[j
]);
265 if(filter(win
) != eks
[j
])
269 *tail
= *tail
<< 1 | parity(LF_POLY_EVEN
& *tail
);
270 sl
->odd
= *tail
^ parity(LF_POLY_ODD
& win
);
273 sl
->odd
= sl
->even
= 0;
280 /** lfsr_rollback_bit
281 * Rollback the shift register in order to get previous states
283 uint8_t lfsr_rollback_bit(struct Crypto1State
*s
, uint32_t in
, int fb
)
290 t
= s
->odd
, s
->odd
= s
->even
, s
->even
= t
;
293 out
^= LF_POLY_EVEN
& (s
->even
>>= 1);
294 out
^= LF_POLY_ODD
& s
->odd
;
296 out
^= (ret
= filter(s
->odd
)) & !!fb
;
298 s
->even
|= parity(out
) << 23;
301 /** lfsr_rollback_byte
302 * Rollback the shift register in order to get previous states
304 uint8_t lfsr_rollback_byte(struct Crypto1State
*s
, uint32_t in
, int fb
)
308 for (i = 7; i >= 0; --i)
309 ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
311 // unfold loop 20160112
313 ret
|= lfsr_rollback_bit(s
, BIT(in
, 7), fb
) << 7;
314 ret
|= lfsr_rollback_bit(s
, BIT(in
, 6), fb
) << 6;
315 ret
|= lfsr_rollback_bit(s
, BIT(in
, 5), fb
) << 5;
316 ret
|= lfsr_rollback_bit(s
, BIT(in
, 4), fb
) << 4;
317 ret
|= lfsr_rollback_bit(s
, BIT(in
, 3), fb
) << 3;
318 ret
|= lfsr_rollback_bit(s
, BIT(in
, 2), fb
) << 2;
319 ret
|= lfsr_rollback_bit(s
, BIT(in
, 1), fb
) << 1;
320 ret
|= lfsr_rollback_bit(s
, BIT(in
, 0), fb
) << 0;
323 /** lfsr_rollback_word
324 * Rollback the shift register in order to get previous states
326 uint32_t lfsr_rollback_word(struct Crypto1State
*s
, uint32_t in
, int fb
)
331 for (i = 31; i >= 0; --i)
332 ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
334 // unfold loop 20160112
336 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 31), fb
) << (31 ^ 24);
337 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 30), fb
) << (30 ^ 24);
338 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 29), fb
) << (29 ^ 24);
339 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 28), fb
) << (28 ^ 24);
340 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 27), fb
) << (27 ^ 24);
341 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 26), fb
) << (26 ^ 24);
342 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 25), fb
) << (25 ^ 24);
343 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 24), fb
) << (24 ^ 24);
345 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 23), fb
) << (23 ^ 24);
346 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 22), fb
) << (22 ^ 24);
347 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 21), fb
) << (21 ^ 24);
348 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 20), fb
) << (20 ^ 24);
349 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 19), fb
) << (19 ^ 24);
350 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 18), fb
) << (18 ^ 24);
351 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 17), fb
) << (17 ^ 24);
352 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 16), fb
) << (16 ^ 24);
354 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 15), fb
) << (15 ^ 24);
355 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 14), fb
) << (14 ^ 24);
356 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 13), fb
) << (13 ^ 24);
357 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 12), fb
) << (12 ^ 24);
358 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 11), fb
) << (11 ^ 24);
359 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 10), fb
) << (10 ^ 24);
360 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 9), fb
) << (9 ^ 24);
361 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 8), fb
) << (8 ^ 24);
363 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 7), fb
) << (7 ^ 24);
364 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 6), fb
) << (6 ^ 24);
365 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 5), fb
) << (5 ^ 24);
366 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 4), fb
) << (4 ^ 24);
367 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 3), fb
) << (3 ^ 24);
368 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 2), fb
) << (2 ^ 24);
369 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 1), fb
) << (1 ^ 24);
370 ret
|= lfsr_rollback_bit(s
, BEBIT(in
, 0), fb
) << (0 ^ 24);
375 * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
377 static uint16_t *dist
= 0;
378 int nonce_distance(uint32_t from
, uint32_t to
)
382 dist
= malloc(2 << 16);
385 for (x
= i
= 1; i
; ++i
) {
386 dist
[(x
& 0xff) << 8 | x
>> 8] = i
;
387 x
= x
>> 1 | (x
^ x
>> 2 ^ x
>> 3 ^ x
>> 5) << 15;
390 return (65535 + dist
[to
>> 16] - dist
[from
>> 16]) % 65535;
394 static uint32_t fastfwd
[2][8] = {
395 { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
396 { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
401 * Is an exported helper function from the common prefix attack
402 * Described in the "dark side" paper. It returns an -1 terminated array
403 * of possible partial(21 bit) secret state.
404 * The required keystream(ks) needs to contain the keystream that was used to
405 * encrypt the NACK which is observed when varying only the 3 last bits of Nr
406 * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
408 uint32_t *lfsr_prefix_ks(uint8_t ks
[8], int isodd
)
410 uint32_t *candidates
= malloc(4 << 10);
411 if(!candidates
) return 0;
414 int size
= 0, i
, good
;
416 for(i
= 0; i
< 1 << 21; ++i
) {
417 for(c
= 0, good
= 1; good
&& c
< 8; ++c
) {
418 entry
= i
^ fastfwd
[isodd
][c
];
419 good
&= (BIT(ks
[c
], isodd
) == filter(entry
>> 1));
420 good
&= (BIT(ks
[c
], isodd
+ 2) == filter(entry
));
423 candidates
[size
++] = i
;
426 candidates
[size
] = -1;
432 * helper function which eliminates possible secret states using parity bits
434 static struct Crypto1State
* check_pfx_parity(uint32_t prefix
, uint32_t rresp
, uint8_t parities
[8][8], uint32_t odd
, uint32_t even
, struct Crypto1State
* sl
)
436 uint32_t ks1
, nr
, ks2
, rr
, ks3
, c
, good
= 1;
438 for(c
= 0; good
&& c
< 8; ++c
) {
439 sl
->odd
= odd
^ fastfwd
[1][c
];
440 sl
->even
= even
^ fastfwd
[0][c
];
442 lfsr_rollback_bit(sl
, 0, 0);
443 lfsr_rollback_bit(sl
, 0, 0);
445 ks3
= lfsr_rollback_bit(sl
, 0, 0);
446 ks2
= lfsr_rollback_word(sl
, 0, 0);
447 ks1
= lfsr_rollback_word(sl
, prefix
| c
<< 5, 1);
449 nr
= ks1
^ (prefix
| c
<< 5);
452 good
&= parity(nr
& 0x000000ff) ^ parities
[c
][3] ^ BIT(ks2
, 24);
453 good
&= parity(rr
& 0xff000000) ^ parities
[c
][4] ^ BIT(ks2
, 16);
454 good
&= parity(rr
& 0x00ff0000) ^ parities
[c
][5] ^ BIT(ks2
, 8);
455 good
&= parity(rr
& 0x0000ff00) ^ parities
[c
][6] ^ BIT(ks2
, 0);
456 good
&= parity(rr
& 0x000000ff) ^ parities
[c
][7] ^ ks3
;
462 /** lfsr_common_prefix
463 * Implentation of the common prefix attack.
464 * Requires the 28 bit constant prefix used as reader nonce (pfx)
465 * The reader response used (rr)
466 * The keystream used to encrypt the observed NACK's (ks)
467 * The parity bits (par)
468 * It returns a zero terminated list of possible cipher states after the
469 * tag nonce was fed in
472 struct Crypto1State
* lfsr_common_prefix(uint32_t pfx
, uint32_t rr
, uint8_t ks
[8], uint8_t par
[8][8])
474 struct Crypto1State
*statelist
, *s
;
475 uint32_t *odd
, *even
, *o
, *e
, top
;
477 odd
= lfsr_prefix_ks(ks
, 1);
478 even
= lfsr_prefix_ks(ks
, 0);
480 s
= statelist
= malloc((sizeof *statelist
) << 21);
481 if(!s
|| !odd
|| !even
) {
488 for(o
= odd
; *o
+ 1; ++o
)
489 for(e
= even
; *e
+ 1; ++e
)
490 for(top
= 0; top
< 64; ++top
) {
492 *e
+= (!(top
& 7) + 1) << 21;
493 s
= check_pfx_parity(pfx
, rr
, par
, *o
, *e
, s
);
496 s
->odd
= s
->even
= 0;