1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
24 // + 22279: : 0c 03 e8 01
26 // ...with an incorrect answer...
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
30 // We still left the error signalling bytes in the traces like 0xbb
32 // A correct trace should look like this:
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
37 //-----------------------------------------------------------------------------
41 #include "proxmark3.h"
48 #include "iso14443a.h"
50 // Needed for CRC in emulation mode;
51 // same construction as in ISO 14443;
52 // different initial value (CRC_ICLASS)
53 #include "iso14443crc.h"
54 #include "iso15693tools.h"
55 #include "protocols.h"
56 #include "optimized_cipher.h"
57 #include "usb_cdc.h" // for usb_poll_validate_length
58 #include "fpgaloader.h"
60 // iCLASS has a slightly different timing compared to ISO15693. According to the picopass data sheet the tag response is expected 330us after
61 // the reader command. This is measured from end of reader EOF to first modulation of the tag's SOF which starts with a 56,64us unmodulated period.
62 // 330us = 140 ssp_clk cycles @ 423,75kHz when simulating.
63 // 56,64us = 24 ssp_clk_cycles
64 #define DELAY_ICLASS_VCD_TO_VICC_SIM (140 - 24)
65 // times in ssp_clk_cycles @ 3,3625MHz when acting as reader
66 #define DELAY_ICLASS_VICC_TO_VCD_READER DELAY_ISO15693_VICC_TO_VCD_READER
67 // times in samples @ 212kHz when acting as reader
68 #define ICLASS_READER_TIMEOUT_ACTALL 330 // 1558us, nominal 330us + 7slots*160us = 1450us
69 #define ICLASS_READER_TIMEOUT_UPDATE 3390 // 16000us, nominal 4-15ms
70 #define ICLASS_READER_TIMEOUT_OTHERS 80 // 380us, nominal 330us
73 //-----------------------------------------------------------------------------
74 // The software UART that receives commands from the reader, and its state
76 //-----------------------------------------------------------------------------
80 STATE_START_OF_COMMUNICATION
,
100 static RAMFUNC
int OutOfNDecoding(int bit
) {
104 if (!Uart
.bitBuffer
) {
105 Uart
.bitBuffer
= bit
^ 0xFF0;
108 Uart
.bitBuffer
<<= 4;
109 Uart
.bitBuffer
^= bit
;
112 /*if (Uart.swapper) {
113 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
116 if (Uart.byteCnt > 15) { return true; }
122 if (Uart
.state
!= STATE_UNSYNCD
) {
125 if ((Uart
.bitBuffer
& Uart
.syncBit
) ^ Uart
.syncBit
) {
130 if (((Uart
.bitBuffer
<< 1) & Uart
.syncBit
) ^ Uart
.syncBit
) {
135 if (bit
!= bitright
) {
140 // So, now we only have to deal with *bit*, lets see...
141 if (Uart
.posCnt
== 1) {
142 // measurement first half bitperiod
144 // Drop in first half means that we are either seeing
147 if (Uart
.nOutOfCnt
== 1) {
148 // End of Communication
149 Uart
.state
= STATE_UNSYNCD
;
151 if (Uart
.byteCnt
== 0) {
152 // Its not straightforward to show single EOFs
153 // So just leave it and do not return true
154 Uart
.output
[0] = 0xf0;
159 } else if (Uart
.state
!= STATE_START_OF_COMMUNICATION
) {
160 // When not part of SOF or EOF, it is an error
161 Uart
.state
= STATE_UNSYNCD
;
167 // measurement second half bitperiod
168 // Count the bitslot we are in... (ISO 15693)
172 if (Uart
.dropPosition
) {
173 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) {
178 // It is an error if we already have seen a drop in current frame
179 Uart
.state
= STATE_UNSYNCD
;
182 Uart
.dropPosition
= Uart
.nOutOfCnt
;
189 if (Uart
.nOutOfCnt
== Uart
.OutOfCnt
&& Uart
.OutOfCnt
== 4) {
192 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) {
193 if (Uart
.dropPosition
== 4) {
194 Uart
.state
= STATE_RECEIVING
;
196 } else if (Uart
.dropPosition
== 3) {
197 Uart
.state
= STATE_RECEIVING
;
199 //Uart.output[Uart.byteCnt] = 0xdd;
202 Uart
.state
= STATE_UNSYNCD
;
205 Uart
.dropPosition
= 0;
209 if (!Uart
.dropPosition
) {
210 Uart
.state
= STATE_UNSYNCD
;
218 //if (Uart.dropPosition == 1) { Uart.dropPosition = 2; }
219 //else if (Uart.dropPosition == 2) { Uart.dropPosition = 1; }
221 Uart
.shiftReg
^= ((Uart
.dropPosition
& 0x03) << 6);
223 Uart
.dropPosition
= 0;
225 if (Uart
.bitCnt
== 8) {
226 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
& 0xff);
233 } else if (Uart
.nOutOfCnt
== Uart
.OutOfCnt
) {
236 if (!Uart
.dropPosition
) {
237 Uart
.state
= STATE_UNSYNCD
;
242 Uart
.output
[Uart
.byteCnt
] = (Uart
.dropPosition
& 0xff);
247 Uart
.dropPosition
= 0;
252 Uart.output[Uart.byteCnt] = 0xAA;
254 Uart.output[Uart.byteCnt] = error & 0xFF;
256 Uart.output[Uart.byteCnt] = 0xAA;
258 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
260 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
262 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
264 Uart.output[Uart.byteCnt] = 0xAA;
271 bit
= Uart
.bitBuffer
& 0xf0;
273 bit
^= 0x0F; // drops become 1s ;-)
275 // should have been high or at least (4 * 128) / fc
276 // according to ISO this should be at least (9 * 128 + 20) / fc
277 if (Uart
.highCnt
== 8) {
278 // we went low, so this could be start of communication
279 // it turns out to be safer to choose a less significant
280 // syncbit... so we check whether the neighbour also represents the drop
281 Uart
.posCnt
= 1; // apparently we are busy with our first half bit period
282 Uart
.syncBit
= bit
& 8;
284 if (!Uart
.syncBit
) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; }
285 else if (bit
& 4) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; bit
<<= 2; }
286 if (!Uart
.syncBit
) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; }
287 else if (bit
& 2) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; bit
<<= 1; }
288 if (!Uart
.syncBit
) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0;
289 if (Uart
.syncBit
&& (Uart
.bitBuffer
& 8)) {
292 // the first half bit period is expected in next sample
296 } else if (bit
& 1) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0; }
299 Uart
.state
= STATE_START_OF_COMMUNICATION
;
303 Uart
.OutOfCnt
= 4; // Start at 1/4, could switch to 1/256
304 Uart
.dropPosition
= 0;
310 } else if (Uart
.highCnt
< 8) {
319 //=============================================================================
321 //=============================================================================
326 DEMOD_START_OF_COMMUNICATION
,
327 DEMOD_START_OF_COMMUNICATION2
,
328 DEMOD_START_OF_COMMUNICATION3
,
332 DEMOD_END_OF_COMMUNICATION
,
333 DEMOD_END_OF_COMMUNICATION2
,
356 static RAMFUNC
int ManchesterDecoding(int v
) {
362 Demod
.buffer
= Demod
.buffer2
;
363 Demod
.buffer2
= Demod
.buffer3
;
366 if (Demod
.buff
< 3) {
371 if (Demod
.state
==DEMOD_UNSYNCD
) {
372 Demod
.output
[Demod
.len
] = 0xfa;
375 Demod
.posCount
= 1; // This is the first half bit period, so after syncing handle the second part
378 Demod
.syncBit
= 0x08;
385 Demod
.syncBit
= 0x04;
392 Demod
.syncBit
= 0x02;
395 if (bit
& 0x01 && Demod
.syncBit
) {
396 Demod
.syncBit
= 0x01;
401 Demod
.state
= DEMOD_START_OF_COMMUNICATION
;
402 Demod
.sub
= SUB_FIRST_HALF
;
406 if (Demod
.posCount
) {
407 switch (Demod
.syncBit
) {
408 case 0x08: Demod
.samples
= 3; break;
409 case 0x04: Demod
.samples
= 2; break;
410 case 0x02: Demod
.samples
= 1; break;
411 case 0x01: Demod
.samples
= 0; break;
413 // SOF must be long burst... otherwise stay unsynced!!!
414 if (!(Demod
.buffer
& Demod
.syncBit
) || !(Demod
.buffer2
& Demod
.syncBit
)) {
415 Demod
.state
= DEMOD_UNSYNCD
;
418 // SOF must be long burst... otherwise stay unsynced!!!
419 if (!(Demod
.buffer2
& Demod
.syncBit
) || !(Demod
.buffer3
& Demod
.syncBit
)) {
420 Demod
.state
= DEMOD_UNSYNCD
;
429 // state is DEMOD is in SYNC from here on.
430 modulation
= bit
& Demod
.syncBit
;
431 modulation
|= ((bit
<< 1) ^ ((Demod
.buffer
& 0x08) >> 3)) & Demod
.syncBit
;
435 if (Demod
.posCount
== 0) {
438 Demod
.sub
= SUB_FIRST_HALF
;
440 Demod
.sub
= SUB_NONE
;
445 if (Demod
.sub
== SUB_FIRST_HALF
) {
446 Demod
.sub
= SUB_BOTH
;
448 Demod
.sub
= SUB_SECOND_HALF
;
450 } else if (Demod
.sub
== SUB_NONE
) {
451 if (Demod
.state
== DEMOD_SOF_COMPLETE
) {
452 Demod
.output
[Demod
.len
] = 0x0f;
454 Demod
.state
= DEMOD_UNSYNCD
;
457 Demod
.state
= DEMOD_ERROR_WAIT
;
462 switch(Demod
.state
) {
463 case DEMOD_START_OF_COMMUNICATION
:
464 if (Demod
.sub
== SUB_BOTH
) {
465 Demod
.state
= DEMOD_START_OF_COMMUNICATION2
;
467 Demod
.sub
= SUB_NONE
;
469 Demod
.output
[Demod
.len
] = 0xab;
470 Demod
.state
= DEMOD_ERROR_WAIT
;
474 case DEMOD_START_OF_COMMUNICATION2
:
475 if (Demod
.sub
== SUB_SECOND_HALF
) {
476 Demod
.state
= DEMOD_START_OF_COMMUNICATION3
;
478 Demod
.output
[Demod
.len
] = 0xab;
479 Demod
.state
= DEMOD_ERROR_WAIT
;
483 case DEMOD_START_OF_COMMUNICATION3
:
484 if (Demod
.sub
== SUB_SECOND_HALF
) {
485 Demod
.state
= DEMOD_SOF_COMPLETE
;
487 Demod
.output
[Demod
.len
] = 0xab;
488 Demod
.state
= DEMOD_ERROR_WAIT
;
492 case DEMOD_SOF_COMPLETE
:
493 case DEMOD_MANCHESTER_D
:
494 case DEMOD_MANCHESTER_E
:
495 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
496 // 00001111 = 1 (0 in 14443)
497 if (Demod
.sub
== SUB_SECOND_HALF
) { // SUB_FIRST_HALF
499 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) ^ 0x100;
500 Demod
.state
= DEMOD_MANCHESTER_D
;
501 } else if (Demod
.sub
== SUB_FIRST_HALF
) { // SUB_SECOND_HALF
503 Demod
.shiftReg
>>= 1;
504 Demod
.state
= DEMOD_MANCHESTER_E
;
505 } else if (Demod
.sub
== SUB_BOTH
) {
506 Demod
.state
= DEMOD_MANCHESTER_F
;
508 Demod
.state
= DEMOD_ERROR_WAIT
;
513 case DEMOD_MANCHESTER_F
:
514 // Tag response does not need to be a complete byte!
515 if (Demod
.len
> 0 || Demod
.bitCount
> 0) {
516 if (Demod
.bitCount
> 1) { // was > 0, do not interpret last closing bit, is part of EOF
517 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align data
518 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
522 Demod
.state
= DEMOD_UNSYNCD
;
525 Demod
.output
[Demod
.len
] = 0xad;
526 Demod
.state
= DEMOD_ERROR_WAIT
;
531 case DEMOD_ERROR_WAIT
:
532 Demod
.state
= DEMOD_UNSYNCD
;
536 Demod
.output
[Demod
.len
] = 0xdd;
537 Demod
.state
= DEMOD_UNSYNCD
;
541 if (Demod
.bitCount
>= 8) {
542 Demod
.shiftReg
>>= 1;
543 Demod
.output
[Demod
.len
] = (Demod
.shiftReg
& 0xff);
550 Demod
.output
[Demod
.len
] = 0xBB;
552 Demod
.output
[Demod
.len
] = error
& 0xFF;
554 Demod
.output
[Demod
.len
] = 0xBB;
556 Demod
.output
[Demod
.len
] = bit
& 0xFF;
558 Demod
.output
[Demod
.len
] = Demod
.buffer
& 0xFF;
561 Demod
.output
[Demod
.len
] = Demod
.buffer2
& 0xFF;
563 Demod
.output
[Demod
.len
] = Demod
.syncBit
& 0xFF;
565 Demod
.output
[Demod
.len
] = 0xBB;
572 } // end (state != UNSYNCED)
577 //=============================================================================
578 // Finally, a `sniffer' for iClass communication
579 // Both sides of communication!
580 //=============================================================================
582 //-----------------------------------------------------------------------------
583 // Record the sequence of commands sent by the reader to the tag, with
584 // triggering so that we start recording at the point that the tag is moved
586 //-----------------------------------------------------------------------------
587 void RAMFUNC
SnoopIClass(void) {
589 // We won't start recording the frames that we acquire until we trigger;
590 // a good trigger condition to get started is probably when we see a
591 // response from the tag.
592 //int triggered = false; // false to wait first for card
594 // The command (reader -> tag) that we're receiving.
595 // The length of a received command will in most cases be no more than 18 bytes.
596 // So 32 should be enough!
597 #define ICLASS_BUFFER_SIZE 32
598 uint8_t readerToTagCmd
[ICLASS_BUFFER_SIZE
];
599 // The response (tag -> reader) that we're receiving.
600 uint8_t tagToReaderResponse
[ICLASS_BUFFER_SIZE
];
602 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
604 // free all BigBuf memory
606 // The DMA buffer, used to stream samples from the FPGA
607 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
611 iso14a_set_trigger(false);
618 // Count of samples received so far, so that we can include timing
619 // information in the trace buffer.
623 // Set up the demodulator for tag -> reader responses.
624 Demod
.output
= tagToReaderResponse
;
626 Demod
.state
= DEMOD_UNSYNCD
;
628 // Setup for the DMA.
629 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
631 lastRxCounter
= DMA_BUFFER_SIZE
;
632 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
634 // And the reader -> tag commands
635 memset(&Uart
, 0, sizeof(Uart
));
636 Uart
.output
= readerToTagCmd
;
637 Uart
.byteCntMax
= 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
638 Uart
.state
= STATE_UNSYNCD
;
640 // And put the FPGA in the appropriate mode
641 // Signal field is off with the appropriate LED
643 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
644 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
646 uint32_t time_0
= GetCountSspClk();
647 uint32_t time_start
= 0;
648 uint32_t time_stop
= 0;
655 // And now we loop, receiving samples.
659 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) & (DMA_BUFFER_SIZE
-1);
660 if (behindBy
> maxBehindBy
) {
661 maxBehindBy
= behindBy
;
662 if (behindBy
> (9 * DMA_BUFFER_SIZE
/ 10)) {
663 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy
);
667 if (behindBy
< 1) continue;
673 if (upTo
- dmaBuf
> DMA_BUFFER_SIZE
) {
674 upTo
-= DMA_BUFFER_SIZE
;
675 lastRxCounter
+= DMA_BUFFER_SIZE
;
676 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
677 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
684 decbyte
^= (1 << (3 - div
));
687 // FOR READER SIDE COMMUMICATION...
690 decbyter
^= (smpl
& 0x30);
694 if ((div
+ 1) % 2 == 0) {
696 if (OutOfNDecoding((smpl
& 0xF0) >> 4)) {
697 rsamples
= samples
- Uart
.samples
;
698 time_stop
= (GetCountSspClk()-time_0
) << 4;
700 //if (!LogTrace(Uart.output, Uart.byteCnt, rsamples, Uart.parityBits,true)) break;
701 //if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break;
702 uint8_t parity
[MAX_PARITY_SIZE
];
703 GetParity(Uart
.output
, Uart
.byteCnt
, parity
);
704 LogTrace_ISO15693(Uart
.output
, Uart
.byteCnt
, time_start
*32, time_stop
*32, parity
, true);
706 /* And ready to receive another command. */
707 Uart
.state
= STATE_UNSYNCD
;
708 /* And also reset the demod code, which might have been */
709 /* false-triggered by the commands from the reader. */
710 Demod
.state
= DEMOD_UNSYNCD
;
713 time_start
= (GetCountSspClk()-time_0
) << 4;
720 if (ManchesterDecoding(smpl
& 0x0F)) {
721 time_stop
= (GetCountSspClk()-time_0
) << 4;
723 rsamples
= samples
- Demod
.samples
;
725 uint8_t parity
[MAX_PARITY_SIZE
];
726 GetParity(Demod
.output
, Demod
.len
, parity
);
727 LogTrace_ISO15693(Demod
.output
, Demod
.len
, time_start
*32, time_stop
*32, parity
, false);
729 // And ready to receive another response.
730 memset(&Demod
, 0, sizeof(Demod
));
731 Demod
.output
= tagToReaderResponse
;
732 Demod
.state
= DEMOD_UNSYNCD
;
734 time_start
= (GetCountSspClk()-time_0
) << 4;
741 if (BUTTON_PRESS()) {
742 DbpString("cancelled_a");
747 DbpString("COMMAND FINISHED");
749 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
750 Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]);
753 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
754 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
755 Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]);
759 void rotateCSN(uint8_t* originalCSN
, uint8_t* rotatedCSN
) {
761 for (i
= 0; i
< 8; i
++) {
762 rotatedCSN
[i
] = (originalCSN
[i
] >> 3) | (originalCSN
[(i
+1)%8] << 5);
767 static void CodeIClassTagSOF() {
769 ToSend
[++ToSendMax
] = 0x1D;
773 static void AppendCrc(uint8_t *data
, int len
) {
774 ComputeCrc14443(CRC_ICLASS
, data
, len
, data
+len
, data
+len
+1);
779 * @brief Does the actual simulation
781 int doIClassSimulation(int simulationMode
, uint8_t *reader_mac_buf
) {
783 // free eventually allocated BigBuf memory
784 BigBuf_free_keep_EM();
786 uint16_t page_size
= 32 * 8;
787 uint8_t current_page
= 0;
789 // maintain cipher states for both credit and debit key for each page
790 State cipher_state_KC
[8];
791 State cipher_state_KD
[8];
792 State
*cipher_state
= &cipher_state_KD
[0];
794 uint8_t *emulator
= BigBuf_get_EM_addr();
795 uint8_t *csn
= emulator
;
797 // CSN followed by two CRC bytes
798 uint8_t anticoll_data
[10];
799 uint8_t csn_data
[10];
800 memcpy(csn_data
, csn
, sizeof(csn_data
));
801 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x", csn
[0], csn
[1], csn
[2], csn
[3], csn
[4], csn
[5], csn
[6], csn
[7]);
803 // Construct anticollision-CSN
804 rotateCSN(csn_data
, anticoll_data
);
806 // Compute CRC on both CSNs
807 AppendCrc(anticoll_data
, 8);
808 AppendCrc(csn_data
, 8);
810 uint8_t diversified_key_d
[8] = { 0x00 };
811 uint8_t diversified_key_c
[8] = { 0x00 };
812 uint8_t *diversified_key
= diversified_key_d
;
814 // configuration block
815 uint8_t conf_block
[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00};
818 uint8_t card_challenge_data
[8] = { 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
820 if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
821 // initialize from page 0
822 memcpy(conf_block
, emulator
+ 8 * 1, 8);
823 memcpy(card_challenge_data
, emulator
+ 8 * 2, 8); // e-purse
824 memcpy(diversified_key_d
, emulator
+ 8 * 3, 8); // Kd
825 memcpy(diversified_key_c
, emulator
+ 8 * 4, 8); // Kc
828 AppendCrc(conf_block
, 8);
830 // save card challenge for sim2,4 attack
831 if (reader_mac_buf
!= NULL
) {
832 memcpy(reader_mac_buf
, card_challenge_data
, 8);
835 if (conf_block
[5] & 0x80) {
840 // When the page is in personalization mode this bit is equal to 1.
841 // Once the application issuer has personalized and coded its dedicated areas, this bit must be set to 0:
842 // the page is then "in application mode".
843 bool personalization_mode
= conf_block
[7] & 0x80;
845 // chip memory may be divided in 8 pages
846 uint8_t max_page
= conf_block
[4] & 0x10 ? 0 : 7;
848 // Precalculate the cipher states, feeding it the CC
849 cipher_state_KD
[0] = opt_doTagMAC_1(card_challenge_data
, diversified_key_d
);
850 cipher_state_KC
[0] = opt_doTagMAC_1(card_challenge_data
, diversified_key_c
);
851 if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
852 for (int i
= 1; i
< max_page
; i
++) {
853 uint8_t *epurse
= emulator
+ i
*page_size
+ 8*2;
854 uint8_t *Kd
= emulator
+ i
*page_size
+ 8*3;
855 uint8_t *Kc
= emulator
+ i
*page_size
+ 8*4;
856 cipher_state_KD
[i
] = opt_doTagMAC_1(epurse
, Kd
);
857 cipher_state_KC
[i
] = opt_doTagMAC_1(epurse
, Kc
);
866 // Reader 81 anticoll. CSN
869 uint8_t *modulated_response
;
870 int modulated_response_size
= 0;
871 uint8_t *trace_data
= NULL
;
872 int trace_data_size
= 0;
874 // Respond SOF -- takes 1 bytes
875 uint8_t *resp_sof
= BigBuf_malloc(1);
878 // Anticollision CSN (rotated CSN)
879 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
880 uint8_t *resp_anticoll
= BigBuf_malloc(22);
881 int resp_anticoll_len
;
884 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
885 uint8_t *resp_csn
= BigBuf_malloc(22);
888 // configuration (block 1) picopass 2ks
889 uint8_t *resp_conf
= BigBuf_malloc(22);
893 // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
894 uint8_t *resp_cc
= BigBuf_malloc(18);
897 // Kd, Kc (blocks 3 and 4). Cannot be read. Always respond with 0xff bytes only
898 uint8_t *resp_ff
= BigBuf_malloc(22);
900 uint8_t ff_data
[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00};
901 AppendCrc(ff_data
, 8);
903 // Application Issuer Area (block 5)
904 uint8_t *resp_aia
= BigBuf_malloc(22);
906 uint8_t aia_data
[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00};
907 AppendCrc(aia_data
, 8);
909 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
912 // Prepare card messages
914 // First card answer: SOF only
916 memcpy(resp_sof
, ToSend
, ToSendMax
);
917 resp_sof_Len
= ToSendMax
;
920 CodeIso15693AsTag(anticoll_data
, sizeof(anticoll_data
));
921 memcpy(resp_anticoll
, ToSend
, ToSendMax
);
922 resp_anticoll_len
= ToSendMax
;
925 CodeIso15693AsTag(csn_data
, sizeof(csn_data
));
926 memcpy(resp_csn
, ToSend
, ToSendMax
);
927 resp_csn_len
= ToSendMax
;
929 // Configuration (block 1)
930 CodeIso15693AsTag(conf_block
, sizeof(conf_block
));
931 memcpy(resp_conf
, ToSend
, ToSendMax
);
932 resp_conf_len
= ToSendMax
;
935 CodeIso15693AsTag(card_challenge_data
, sizeof(card_challenge_data
));
936 memcpy(resp_cc
, ToSend
, ToSendMax
);
937 resp_cc_len
= ToSendMax
;
939 // Kd, Kc (blocks 3 and 4)
940 CodeIso15693AsTag(ff_data
, sizeof(ff_data
));
941 memcpy(resp_ff
, ToSend
, ToSendMax
);
942 resp_ff_len
= ToSendMax
;
944 // Application Issuer Area (block 5)
945 CodeIso15693AsTag(aia_data
, sizeof(aia_data
));
946 memcpy(resp_aia
, ToSend
, ToSendMax
);
947 resp_aia_len
= ToSendMax
;
949 //This is used for responding to READ-block commands or other data which is dynamically generated
950 uint8_t *data_generic_trace
= BigBuf_malloc(32 + 2); // 32 bytes data + 2byte CRC is max tag answer
951 uint8_t *data_response
= BigBuf_malloc( (32 + 2) * 2 + 2);
953 bool buttonPressed
= false;
954 enum { IDLE
, ACTIVATED
, SELECTED
, HALTED
} chip_state
= IDLE
;
959 uint32_t reader_eof_time
= 0;
960 len
= GetIso15693CommandFromReader(receivedCmd
, MAX_FRAME_SIZE
, &reader_eof_time
);
962 buttonPressed
= true;
966 // Now look at the reader command and provide appropriate responses
967 // default is no response:
968 modulated_response
= NULL
;
969 modulated_response_size
= 0;
973 if (receivedCmd
[0] == ICLASS_CMD_ACTALL
&& len
== 1) {
974 // Reader in anticollision phase
975 if (chip_state
!= HALTED
) {
976 modulated_response
= resp_sof
;
977 modulated_response_size
= resp_sof_Len
;
978 chip_state
= ACTIVATED
;
981 } else if (receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY
&& len
== 1) { // identify
982 // Reader asks for anticollision CSN
983 if (chip_state
== SELECTED
|| chip_state
== ACTIVATED
) {
984 modulated_response
= resp_anticoll
;
985 modulated_response_size
= resp_anticoll_len
;
986 trace_data
= anticoll_data
;
987 trace_data_size
= sizeof(anticoll_data
);
990 } else if (receivedCmd
[0] == ICLASS_CMD_SELECT
&& len
== 9) {
991 // Reader selects anticollision CSN.
992 // Tag sends the corresponding real CSN
993 if (chip_state
== ACTIVATED
|| chip_state
== SELECTED
) {
994 if (!memcmp(receivedCmd
+1, anticoll_data
, 8)) {
995 modulated_response
= resp_csn
;
996 modulated_response_size
= resp_csn_len
;
997 trace_data
= csn_data
;
998 trace_data_size
= sizeof(csn_data
);
999 chip_state
= SELECTED
;
1003 } else if (chip_state
== HALTED
) {
1004 // RESELECT with CSN
1005 if (!memcmp(receivedCmd
+1, csn_data
, 8)) {
1006 modulated_response
= resp_csn
;
1007 modulated_response_size
= resp_csn_len
;
1008 trace_data
= csn_data
;
1009 trace_data_size
= sizeof(csn_data
);
1010 chip_state
= SELECTED
;
1014 } else if (receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY
&& len
== 4) { // read block
1015 uint16_t blockNo
= receivedCmd
[1];
1016 if (chip_state
== SELECTED
) {
1017 if (simulationMode
== ICLASS_SIM_MODE_EXIT_AFTER_MAC
) {
1018 // provide defaults for blocks 0 ... 5
1020 case 0: // csn (block 00)
1021 modulated_response
= resp_csn
;
1022 modulated_response_size
= resp_csn_len
;
1023 trace_data
= csn_data
;
1024 trace_data_size
= sizeof(csn_data
);
1026 case 1: // configuration (block 01)
1027 modulated_response
= resp_conf
;
1028 modulated_response_size
= resp_conf_len
;
1029 trace_data
= conf_block
;
1030 trace_data_size
= sizeof(conf_block
);
1032 case 2: // e-purse (block 02)
1033 modulated_response
= resp_cc
;
1034 modulated_response_size
= resp_cc_len
;
1035 trace_data
= card_challenge_data
;
1036 trace_data_size
= sizeof(card_challenge_data
);
1037 // set epurse of sim2,4 attack
1038 if (reader_mac_buf
!= NULL
) {
1039 memcpy(reader_mac_buf
, card_challenge_data
, 8);
1043 case 4: // Kd, Kc, always respond with 0xff bytes
1044 modulated_response
= resp_ff
;
1045 modulated_response_size
= resp_ff_len
;
1046 trace_data
= ff_data
;
1047 trace_data_size
= sizeof(ff_data
);
1049 case 5: // Application Issuer Area (block 05)
1050 modulated_response
= resp_aia
;
1051 modulated_response_size
= resp_aia_len
;
1052 trace_data
= aia_data
;
1053 trace_data_size
= sizeof(aia_data
);
1055 // default: don't respond
1057 } else if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
1058 if (blockNo
== 3 || blockNo
== 4) { // Kd, Kc, always respond with 0xff bytes
1059 modulated_response
= resp_ff
;
1060 modulated_response_size
= resp_ff_len
;
1061 trace_data
= ff_data
;
1062 trace_data_size
= sizeof(ff_data
);
1063 } else { // use data from emulator memory
1064 memcpy(data_generic_trace
, emulator
+ current_page
*page_size
+ 8*blockNo
, 8);
1065 AppendCrc(data_generic_trace
, 8);
1066 trace_data
= data_generic_trace
;
1067 trace_data_size
= 10;
1068 CodeIso15693AsTag(trace_data
, trace_data_size
);
1069 memcpy(data_response
, ToSend
, ToSendMax
);
1070 modulated_response
= data_response
;
1071 modulated_response_size
= ToSendMax
;
1076 } else if ((receivedCmd
[0] == ICLASS_CMD_READCHECK_KD
1077 || receivedCmd
[0] == ICLASS_CMD_READCHECK_KC
) && receivedCmd
[1] == 0x02 && len
== 2) {
1078 // Read e-purse (88 02 || 18 02)
1079 if (chip_state
== SELECTED
) {
1080 if(receivedCmd
[0] == ICLASS_CMD_READCHECK_KD
){
1081 cipher_state
= &cipher_state_KD
[current_page
];
1082 diversified_key
= diversified_key_d
;
1084 cipher_state
= &cipher_state_KC
[current_page
];
1085 diversified_key
= diversified_key_c
;
1087 modulated_response
= resp_cc
;
1088 modulated_response_size
= resp_cc_len
;
1089 trace_data
= card_challenge_data
;
1090 trace_data_size
= sizeof(card_challenge_data
);
1093 } else if ((receivedCmd
[0] == ICLASS_CMD_CHECK_KC
1094 || receivedCmd
[0] == ICLASS_CMD_CHECK_KD
) && len
== 9) {
1095 // Reader random and reader MAC!!!
1096 if (chip_state
== SELECTED
) {
1097 if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
1098 //NR, from reader, is in receivedCmd+1
1099 opt_doTagMAC_2(*cipher_state
, receivedCmd
+1, data_generic_trace
, diversified_key
);
1100 trace_data
= data_generic_trace
;
1101 trace_data_size
= 4;
1102 CodeIso15693AsTag(trace_data
, trace_data_size
);
1103 memcpy(data_response
, ToSend
, ToSendMax
);
1104 modulated_response
= data_response
;
1105 modulated_response_size
= ToSendMax
;
1107 } else { // Not fullsim, we don't respond
1108 // We do not know what to answer, so lets keep quiet
1109 if (simulationMode
== ICLASS_SIM_MODE_EXIT_AFTER_MAC
) {
1110 if (reader_mac_buf
!= NULL
) {
1111 // save NR and MAC for sim 2,4
1112 memcpy(reader_mac_buf
+ 8, receivedCmd
+ 1, 8);
1119 } else if (receivedCmd
[0] == ICLASS_CMD_HALT
&& len
== 1) {
1120 if (chip_state
== SELECTED
) {
1121 // Reader ends the session
1122 modulated_response
= resp_sof
;
1123 modulated_response_size
= resp_sof_Len
;
1124 chip_state
= HALTED
;
1127 } else if (simulationMode
== ICLASS_SIM_MODE_FULL
&& receivedCmd
[0] == ICLASS_CMD_READ4
&& len
== 4) { // 0x06
1129 if (chip_state
== SELECTED
) {
1130 uint8_t blockNo
= receivedCmd
[1];
1131 memcpy(data_generic_trace
, emulator
+ current_page
*page_size
+ blockNo
*8, 8 * 4);
1132 AppendCrc(data_generic_trace
, 8 * 4);
1133 trace_data
= data_generic_trace
;
1134 trace_data_size
= 8 * 4 + 2;
1135 CodeIso15693AsTag(trace_data
, trace_data_size
);
1136 memcpy(data_response
, ToSend
, ToSendMax
);
1137 modulated_response
= data_response
;
1138 modulated_response_size
= ToSendMax
;
1141 } else if (receivedCmd
[0] == ICLASS_CMD_UPDATE
&& (len
== 12 || len
== 14)) {
1142 // We're expected to respond with the data+crc, exactly what's already in the receivedCmd
1143 // receivedCmd is now UPDATE 1b | ADDRESS 1b | DATA 8b | Signature 4b or CRC 2b
1144 if (chip_state
== SELECTED
) {
1145 uint8_t blockNo
= receivedCmd
[1];
1146 if (blockNo
== 2) { // update e-purse
1147 memcpy(card_challenge_data
, receivedCmd
+2, 8);
1148 CodeIso15693AsTag(card_challenge_data
, sizeof(card_challenge_data
));
1149 memcpy(resp_cc
, ToSend
, ToSendMax
);
1150 resp_cc_len
= ToSendMax
;
1151 cipher_state_KD
[current_page
] = opt_doTagMAC_1(card_challenge_data
, diversified_key_d
);
1152 cipher_state_KC
[current_page
] = opt_doTagMAC_1(card_challenge_data
, diversified_key_c
);
1153 if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
1154 memcpy(emulator
+ current_page
*page_size
+ 8*2, card_challenge_data
, 8);
1156 } else if (blockNo
== 3) { // update Kd
1157 for (int i
= 0; i
< 8; i
++) {
1158 if (personalization_mode
) {
1159 diversified_key_d
[i
] = receivedCmd
[2 + i
];
1161 diversified_key_d
[i
] ^= receivedCmd
[2 + i
];
1164 cipher_state_KD
[current_page
] = opt_doTagMAC_1(card_challenge_data
, diversified_key_d
);
1165 if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
1166 memcpy(emulator
+ current_page
*page_size
+ 8*3, diversified_key_d
, 8);
1168 } else if (blockNo
== 4) { // update Kc
1169 for (int i
= 0; i
< 8; i
++) {
1170 if (personalization_mode
) {
1171 diversified_key_c
[i
] = receivedCmd
[2 + i
];
1173 diversified_key_c
[i
] ^= receivedCmd
[2 + i
];
1176 cipher_state_KC
[current_page
] = opt_doTagMAC_1(card_challenge_data
, diversified_key_c
);
1177 if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
1178 memcpy(emulator
+ current_page
*page_size
+ 8*4, diversified_key_c
, 8);
1180 } else if (simulationMode
== ICLASS_SIM_MODE_FULL
) { // update any other data block
1181 memcpy(emulator
+ current_page
*page_size
+ 8*blockNo
, receivedCmd
+2, 8);
1183 memcpy(data_generic_trace
, receivedCmd
+ 2, 8);
1184 AppendCrc(data_generic_trace
, 8);
1185 trace_data
= data_generic_trace
;
1186 trace_data_size
= 10;
1187 CodeIso15693AsTag(trace_data
, trace_data_size
);
1188 memcpy(data_response
, ToSend
, ToSendMax
);
1189 modulated_response
= data_response
;
1190 modulated_response_size
= ToSendMax
;
1193 } else if (receivedCmd
[0] == ICLASS_CMD_PAGESEL
&& len
== 4) {
1195 // Chips with a single page will not answer to this command
1196 // Otherwise, we should answer 8bytes (conf block 1) + 2bytes CRC
1197 if (chip_state
== SELECTED
) {
1198 if (simulationMode
== ICLASS_SIM_MODE_FULL
&& max_page
> 0) {
1199 current_page
= receivedCmd
[1];
1200 memcpy(data_generic_trace
, emulator
+ current_page
*page_size
+ 8*1, 8);
1201 memcpy(diversified_key_d
, emulator
+ current_page
*page_size
+ 8*3, 8);
1202 memcpy(diversified_key_c
, emulator
+ current_page
*page_size
+ 8*4, 8);
1203 cipher_state
= &cipher_state_KD
[current_page
];
1204 personalization_mode
= data_generic_trace
[7] & 0x80;
1205 AppendCrc(data_generic_trace
, 8);
1206 trace_data
= data_generic_trace
;
1207 trace_data_size
= 10;
1208 CodeIso15693AsTag(trace_data
, trace_data_size
);
1209 memcpy(data_response
, ToSend
, ToSendMax
);
1210 modulated_response
= data_response
;
1211 modulated_response_size
= ToSendMax
;
1215 } else if (receivedCmd
[0] == 0x26 && len
== 5) {
1216 // standard ISO15693 INVENTORY command. Ignore.
1219 // don't know how to handle this command
1220 char debug_message
[250]; // should be enough
1221 sprintf(debug_message
, "Unhandled command (len = %d) received from reader:", len
);
1222 for (int i
= 0; i
< len
&& strlen(debug_message
) < sizeof(debug_message
) - 3 - 1; i
++) {
1223 sprintf(debug_message
+ strlen(debug_message
), " %02x", receivedCmd
[i
]);
1225 Dbprintf("%s", debug_message
);
1230 A legit tag has about 273,4us delay between reader EOT and tag SOF.
1232 if (modulated_response_size
> 0) {
1233 uint32_t response_time
= reader_eof_time
+ DELAY_ICLASS_VCD_TO_VICC_SIM
;
1234 TransmitTo15693Reader(modulated_response
, modulated_response_size
, &response_time
, 0, false);
1235 LogTrace_ISO15693(trace_data
, trace_data_size
, response_time
*32, response_time
*32 + modulated_response_size
/2, NULL
, false);
1242 DbpString("Button pressed");
1244 return buttonPressed
;
1248 * @brief SimulateIClass simulates an iClass card.
1249 * @param arg0 type of simulation
1250 * - 0 uses the first 8 bytes in usb data as CSN
1251 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
1252 * in the usb data. This mode collects MAC from the reader, in order to do an offline
1253 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
1254 * - Other : Uses the default CSN (031fec8af7ff12e0)
1255 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
1259 void SimulateIClass(uint32_t arg0
, uint32_t arg1
, uint32_t arg2
, uint8_t *datain
) {
1263 uint32_t simType
= arg0
;
1264 uint32_t numberOfCSNS
= arg1
;
1266 // setup hardware for simulation:
1267 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1268 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1269 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
1271 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR
);
1274 // Enable and clear the trace
1277 //Use the emulator memory for SIM
1278 uint8_t *emulator
= BigBuf_get_EM_addr();
1280 if (simType
== ICLASS_SIM_MODE_CSN
) {
1281 // Use the CSN from commandline
1282 memcpy(emulator
, datain
, 8);
1283 doIClassSimulation(ICLASS_SIM_MODE_CSN
, NULL
);
1284 } else if (simType
== ICLASS_SIM_MODE_CSN_DEFAULT
) {
1286 uint8_t csn_crc
[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
1287 // Use the CSN from commandline
1288 memcpy(emulator
, csn_crc
, 8);
1289 doIClassSimulation(ICLASS_SIM_MODE_CSN
, NULL
);
1290 } else if (simType
== ICLASS_SIM_MODE_READER_ATTACK
) {
1291 uint8_t mac_responses
[USB_CMD_DATA_SIZE
] = { 0 };
1292 Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS
);
1293 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
1294 // in order to collect MAC's from the reader. This can later be used in an offline-attack
1295 // in order to obtain the keys, as in the "dismantling iclass"-paper.
1297 for (i
= 0; i
< numberOfCSNS
&& i
*16+16 <= USB_CMD_DATA_SIZE
; i
++) {
1298 // The usb data is 512 bytes, fitting 32 responses (8 byte CC + 4 Byte NR + 4 Byte MAC = 16 Byte response).
1299 memcpy(emulator
, datain
+(i
*8), 8);
1300 if (doIClassSimulation(ICLASS_SIM_MODE_EXIT_AFTER_MAC
, mac_responses
+i
*16)) {
1304 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
1305 datain
[i
*8+0], datain
[i
*8+1], datain
[i
*8+2], datain
[i
*8+3],
1306 datain
[i
*8+4], datain
[i
*8+5], datain
[i
*8+6], datain
[i
*8+7]);
1307 Dbprintf("NR,MAC: %02x %02x %02x %02x %02x %02x %02x %02x",
1308 mac_responses
[i
*16+ 8], mac_responses
[i
*16+ 9], mac_responses
[i
*16+10], mac_responses
[i
*16+11],
1309 mac_responses
[i
*16+12], mac_responses
[i
*16+13], mac_responses
[i
*16+14], mac_responses
[i
*16+15]);
1310 SpinDelay(100); // give the reader some time to prepare for next CSN
1312 cmd_send(CMD_ACK
, CMD_SIMULATE_TAG_ICLASS
, i
, 0, mac_responses
, i
*16);
1313 } else if (simType
== ICLASS_SIM_MODE_FULL
) {
1314 //This is 'full sim' mode, where we use the emulator storage for data.
1315 doIClassSimulation(ICLASS_SIM_MODE_FULL
, NULL
);
1317 // We may want a mode here where we hardcode the csns to use (from proxclone).
1318 // That will speed things up a little, but not required just yet.
1319 Dbprintf("The mode is not implemented, reserved for future use");
1322 Dbprintf("Done...");
1330 static void ReaderTransmitIClass(uint8_t *frame
, int len
, uint32_t *start_time
) {
1332 CodeIso15693AsReader(frame
, len
);
1334 TransmitTo15693Tag(ToSend
, ToSendMax
, start_time
);
1336 uint32_t end_time
= *start_time
+ 32*(8*ToSendMax
-4); // substract the 4 padding bits after EOF
1337 LogTrace_ISO15693(frame
, len
, *start_time
*4, end_time
*4, NULL
, true);
1341 static bool sendCmdGetResponseWithRetries(uint8_t* command
, size_t cmdsize
, uint8_t* resp
, size_t max_resp_size
,
1342 uint8_t expected_size
, uint8_t retries
, uint32_t start_time
, uint32_t timeout
, uint32_t *eof_time
) {
1343 while (retries
-- > 0) {
1344 ReaderTransmitIClass(command
, cmdsize
, &start_time
);
1345 if (expected_size
== GetIso15693AnswerFromTag(resp
, max_resp_size
, timeout
, eof_time
)) {
1349 return false;//Error
1353 * @brief Selects an iclass tag
1354 * @param card_data where the CSN is stored for return
1355 * @return false = fail
1358 static bool selectIclassTag(uint8_t *card_data
, uint32_t *eof_time
) {
1359 uint8_t act_all
[] = { 0x0a };
1360 uint8_t identify
[] = { 0x0c };
1361 uint8_t select
[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1363 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1365 uint32_t start_time
= GetCountSspClk();
1368 ReaderTransmitIClass(act_all
, 1, &start_time
);
1370 if (GetIso15693AnswerFromTag(resp
, sizeof(resp
), ICLASS_READER_TIMEOUT_ACTALL
, eof_time
) < 0) return false;//Fail
1373 start_time
= *eof_time
+ DELAY_ICLASS_VICC_TO_VCD_READER
;
1374 ReaderTransmitIClass(identify
, 1, &start_time
);
1375 //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
1376 uint8_t len
= GetIso15693AnswerFromTag(resp
, sizeof(resp
), ICLASS_READER_TIMEOUT_OTHERS
, eof_time
);
1377 if (len
!= 10) return false;//Fail
1379 //Copy the Anti-collision CSN to our select-packet
1380 memcpy(&select
[1], resp
, 8);
1382 start_time
= *eof_time
+ DELAY_ICLASS_VICC_TO_VCD_READER
;
1383 ReaderTransmitIClass(select
, sizeof(select
), &start_time
);
1384 //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
1385 len
= GetIso15693AnswerFromTag(resp
, sizeof(resp
), ICLASS_READER_TIMEOUT_OTHERS
, eof_time
);
1386 if (len
!= 10) return false;//Fail
1388 //Success - we got CSN
1389 //Save CSN in response data
1390 memcpy(card_data
, resp
, 8);
1396 // Select an iClass tag and read all blocks which are always readable without authentication
1397 void ReaderIClass(uint8_t flags
) {
1401 uint8_t card_data
[6 * 8] = {0};
1402 memset(card_data
, 0xFF, sizeof(card_data
));
1403 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1404 //Read conf block CRC(0x01) => 0xfa 0x22
1405 uint8_t readConf
[] = {ICLASS_CMD_READ_OR_IDENTIFY
, 0x01, 0xfa, 0x22};
1406 //Read e-purse block CRC(0x02) => 0x61 0x10
1407 uint8_t readEpurse
[] = {ICLASS_CMD_READ_OR_IDENTIFY
, 0x02, 0x61, 0x10};
1408 //Read App Issuer Area block CRC(0x05) => 0xde 0x64
1409 uint8_t readAA
[] = {ICLASS_CMD_READ_OR_IDENTIFY
, 0x05, 0xde, 0x64};
1411 uint8_t result_status
= 0;
1413 if (flags
& FLAG_ICLASS_READER_INIT
) {
1414 Iso15693InitReader();
1417 if (flags
& FLAG_ICLASS_READER_CLEARTRACE
) {
1423 uint32_t start_time
= 0;
1424 uint32_t eof_time
= 0;
1426 if (selectIclassTag(resp
, &eof_time
)) {
1427 result_status
= FLAG_ICLASS_READER_CSN
;
1428 memcpy(card_data
, resp
, 8);
1431 start_time
= eof_time
+ DELAY_ICLASS_VICC_TO_VCD_READER
;
1433 //Read block 1, config
1434 if (flags
& FLAG_ICLASS_READER_CONF
) {
1435 if (sendCmdGetResponseWithRetries(readConf
, sizeof(readConf
), resp
, sizeof(resp
), 10, 10, start_time
, ICLASS_READER_TIMEOUT_OTHERS
, &eof_time
)) {
1436 result_status
|= FLAG_ICLASS_READER_CONF
;
1437 memcpy(card_data
+8, resp
, 8);
1439 Dbprintf("Failed to read config block");
1441 start_time
= eof_time
+ DELAY_ICLASS_VICC_TO_VCD_READER
;
1444 //Read block 2, e-purse
1445 if (flags
& FLAG_ICLASS_READER_CC
) {
1446 if (sendCmdGetResponseWithRetries(readEpurse
, sizeof(readEpurse
), resp
, sizeof(resp
), 10, 10, start_time
, ICLASS_READER_TIMEOUT_OTHERS
, &eof_time
)) {
1447 result_status
|= FLAG_ICLASS_READER_CC
;
1448 memcpy(card_data
+ (8*2), resp
, 8);
1450 Dbprintf("Failed to read e-purse");
1452 start_time
= eof_time
+ DELAY_ICLASS_VICC_TO_VCD_READER
;
1456 if (flags
& FLAG_ICLASS_READER_AA
) {
1457 if (sendCmdGetResponseWithRetries(readAA
, sizeof(readAA
), resp
, sizeof(resp
), 10, 10, start_time
, ICLASS_READER_TIMEOUT_OTHERS
, &eof_time
)) {
1458 result_status
|= FLAG_ICLASS_READER_AA
;
1459 memcpy(card_data
+ (8*5), resp
, 8);
1461 Dbprintf("Failed to read AA block");
1465 cmd_send(CMD_ACK
, result_status
, 0, 0, card_data
, sizeof(card_data
));
1471 void ReaderIClass_Replay(uint8_t arg0
, uint8_t *MAC
) {
1475 bool use_credit_key
= false;
1476 uint8_t card_data
[USB_CMD_DATA_SIZE
]={0};
1477 uint16_t block_crc_LUT
[255] = {0};
1479 //Generate a lookup table for block crc
1480 for (int block
= 0; block
< 255; block
++){
1482 block_crc_LUT
[block
] = iclass_crc16(&bl
,1);
1484 //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
1486 uint8_t readcheck_cc
[] = { ICLASS_CMD_READCHECK_KD
, 0x02 };
1488 readcheck_cc
[0] = ICLASS_CMD_READCHECK_KC
;
1489 uint8_t check
[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1490 uint8_t read
[] = { 0x0c, 0x00, 0x00, 0x00 };
1493 uint8_t cardsize
= 0;
1496 static struct memory_t
{
1504 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1508 Iso15693InitReader();
1511 uint32_t start_time
= 0;
1512 uint32_t eof_time
= 0;
1514 while (!BUTTON_PRESS()) {
1518 if (!get_tracing()) {
1519 DbpString("Trace full");
1523 if (!selectIclassTag(card_data
, &eof_time
)) continue;
1525 start_time
= eof_time
+ DELAY_ICLASS_VICC_TO_VCD_READER
;
1526 if (!sendCmdGetResponseWithRetries(readcheck_cc
, sizeof(readcheck_cc
), resp
, sizeof(resp
), 8, 3, start_time
, ICLASS_READER_TIMEOUT_OTHERS
, &eof_time
)) continue;
1528 // replay captured auth (cc must not have been updated)
1529 memcpy(check
+5, MAC
, 4);
1531 start_time
= eof_time
+ DELAY_ICLASS_VICC_TO_VCD_READER
;
1532 if (!sendCmdGetResponseWithRetries(check
, sizeof(check
), resp
, sizeof(resp
), 4, 5, start_time
, ICLASS_READER_TIMEOUT_OTHERS
, &eof_time
)) {
1533 Dbprintf("Error: Authentication Fail!");
1537 //first get configuration block (block 1)
1538 crc
= block_crc_LUT
[1];
1541 read
[3] = crc
& 0xff;
1543 start_time
= eof_time
+ DELAY_ICLASS_VICC_TO_VCD_READER
;
1544 if (!sendCmdGetResponseWithRetries(read
, sizeof(read
), resp
, sizeof(resp
), 10, 10, start_time
, ICLASS_READER_TIMEOUT_OTHERS
, &eof_time
)) {
1545 start_time
= eof_time
+ DELAY_ICLASS_VICC_TO_VCD_READER
;
1546 Dbprintf("Dump config (block 1) failed");
1551 memory
.k16
= (mem
& 0x80);
1552 memory
.book
= (mem
& 0x20);
1553 memory
.k2
= (mem
& 0x8);
1554 memory
.lockauth
= (mem
& 0x2);
1555 memory
.keyaccess
= (mem
& 0x1);
1557 cardsize
= memory
.k16
? 255 : 32;
1559 //Set card_data to all zeroes, we'll fill it with data
1560 memset(card_data
, 0x0, USB_CMD_DATA_SIZE
);
1561 uint8_t failedRead
= 0;
1562 uint32_t stored_data_length
= 0;
1563 //then loop around remaining blocks
1564 for (int block
= 0; block
< cardsize
; block
++) {
1566 crc
= block_crc_LUT
[block
];
1568 read
[3] = crc
& 0xff;
1570 start_time
= eof_time
+ DELAY_ICLASS_VICC_TO_VCD_READER
;
1571 if (sendCmdGetResponseWithRetries(read
, sizeof(read
), resp
, sizeof(resp
), 10, 10, start_time
, ICLASS_READER_TIMEOUT_OTHERS
, &eof_time
)) {
1572 Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
1573 block
, resp
[0], resp
[1], resp
[2],
1574 resp
[3], resp
[4], resp
[5],
1577 //Fill up the buffer
1578 memcpy(card_data
+stored_data_length
, resp
, 8);
1579 stored_data_length
+= 8;
1580 if (stored_data_length
+8 > USB_CMD_DATA_SIZE
) {
1581 //Time to send this off and start afresh
1583 stored_data_length
,//data length
1584 failedRead
,//Failed blocks?
1586 card_data
, stored_data_length
);
1588 stored_data_length
= 0;
1594 stored_data_length
+= 8;//Otherwise, data becomes misaligned
1595 Dbprintf("Failed to dump block %d", block
);
1599 //Send off any remaining data
1600 if (stored_data_length
> 0) {
1602 stored_data_length
,//data length
1603 failedRead
,//Failed blocks?
1606 stored_data_length
);
1608 //If we got here, let's break
1611 //Signal end of transmission
1619 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1625 void iClass_Check(uint8_t *MAC
) {
1626 uint8_t check
[9] = {ICLASS_CMD_CHECK_KD
, 0x00};
1628 memcpy(check
+5, MAC
, 4);
1630 bool isOK
= sendCmdGetResponseWithRetries(check
, sizeof(check
), resp
, sizeof(resp
), 4, 6, 0, ICLASS_READER_TIMEOUT_OTHERS
, &eof_time
);
1631 cmd_send(CMD_ACK
, isOK
, 0, 0, resp
, sizeof(resp
));
1635 void iClass_Readcheck(uint8_t block
, bool use_credit_key
) {
1636 uint8_t readcheck
[2] = {ICLASS_CMD_READCHECK_KD
, block
};
1637 if (use_credit_key
) {
1638 readcheck
[0] = ICLASS_CMD_READCHECK_KC
;
1642 bool isOK
= sendCmdGetResponseWithRetries(readcheck
, sizeof(readcheck
), resp
, sizeof(resp
), 8, 6, 0, ICLASS_READER_TIMEOUT_OTHERS
, &eof_time
);
1643 cmd_send(CMD_ACK
, isOK
, 0, 0, resp
, sizeof(resp
));
1647 static bool iClass_ReadBlock(uint8_t blockNo
, uint8_t *readdata
) {
1648 uint8_t readcmd
[] = {ICLASS_CMD_READ_OR_IDENTIFY
, blockNo
, 0x00, 0x00}; //0x88, 0x00 // can i use 0C?
1650 uint16_t rdCrc
= iclass_crc16(&bl
, 1);
1651 readcmd
[2] = rdCrc
>> 8;
1652 readcmd
[3] = rdCrc
& 0xff;
1656 bool isOK
= sendCmdGetResponseWithRetries(readcmd
, sizeof(readcmd
), resp
, sizeof(resp
), 10, 10, 0, ICLASS_READER_TIMEOUT_OTHERS
, &eof_time
);
1657 memcpy(readdata
, resp
, sizeof(resp
));
1663 void iClass_ReadBlk(uint8_t blockno
) {
1667 uint8_t readblockdata
[] = {0,0,0,0,0,0,0,0,0,0};
1668 bool isOK
= iClass_ReadBlock(blockno
, readblockdata
);
1669 cmd_send(CMD_ACK
, isOK
, 0, 0, readblockdata
, 8);
1670 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1677 void iClass_Dump(uint8_t startblock
, uint8_t numblks
) {
1681 uint8_t readblockdata
[USB_CMD_DATA_SIZE
+2] = {0};
1683 uint16_t blkCnt
= 0;
1685 if (numblks
> USB_CMD_DATA_SIZE
/ 8) {
1686 numblks
= USB_CMD_DATA_SIZE
/ 8;
1689 for (blkCnt
= 0; blkCnt
< numblks
; blkCnt
++) {
1690 isOK
= iClass_ReadBlock(startblock
+blkCnt
, readblockdata
+8*blkCnt
);
1692 Dbprintf("Block %02X failed to read", startblock
+blkCnt
);
1697 cmd_send(CMD_ACK
, isOK
, blkCnt
, 0, readblockdata
, blkCnt
*8);
1703 static bool iClass_WriteBlock_ext(uint8_t blockNo
, uint8_t *data
) {
1705 uint8_t write
[16] = {ICLASS_CMD_UPDATE
, blockNo
};
1706 memcpy(write
+2, data
, 12); // data + mac
1707 AppendCrc(write
+1, 13);
1710 uint32_t eof_time
= 0;
1712 isOK
= sendCmdGetResponseWithRetries(write
, sizeof(write
), resp
, sizeof(resp
), 10, 10, 0, ICLASS_READER_TIMEOUT_UPDATE
, &eof_time
);
1713 if (isOK
&& blockNo
!= 3 && blockNo
!= 4 && memcmp(write
+2, resp
, 8)) { // check response
1721 void iClass_WriteBlock(uint8_t blockNo
, uint8_t *data
) {
1725 bool isOK
= iClass_WriteBlock_ext(blockNo
, data
);
1727 Dbprintf("Write block [%02x] successful", blockNo
);
1729 Dbprintf("Write block [%02x] failed", blockNo
);
1731 cmd_send(CMD_ACK
, isOK
, 0, 0, 0, 0);
1733 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1740 void iClass_Clone(uint8_t startblock
, uint8_t endblock
, uint8_t *data
) {
1743 int total_block
= (endblock
- startblock
) + 1;
1744 for (i
= 0; i
< total_block
; i
++) {
1746 if (iClass_WriteBlock_ext(i
+startblock
, data
+ (i
*12))){
1747 Dbprintf("Write block [%02x] successful", i
+ startblock
);
1750 if (iClass_WriteBlock_ext(i
+startblock
, data
+ (i
*12))){
1751 Dbprintf("Write block [%02x] successful", i
+ startblock
);
1754 Dbprintf("Write block [%02x] failed", i
+ startblock
);
1758 if (written
== total_block
)
1759 Dbprintf("Clone complete");
1761 Dbprintf("Clone incomplete");
1763 cmd_send(CMD_ACK
, 1, 0, 0, 0, 0);
1764 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);