1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 void LFSetupFPGAForADC(int divisor
, bool lf_field
)
20 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
21 if ( (divisor
== 1) || (divisor
< 0) || (divisor
> 255) )
22 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
23 else if (divisor
== 0)
24 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
26 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
28 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| (lf_field
? FPGA_LF_ADC_READER_FIELD
: 0));
30 // Connect the A/D to the peak-detected low-frequency path.
31 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
32 // Give it a bit of time for the resonant antenna to settle.
34 // Now set up the SSC to get the ADC samples that are now streaming at us.
38 void AcquireRawAdcSamples125k(int divisor
)
40 LFSetupFPGAForADC(divisor
, true);
41 DoAcquisition125k(-1);
44 void SnoopLFRawAdcSamples(int divisor
, int trigger_threshold
)
46 LFSetupFPGAForADC(divisor
, false);
47 DoAcquisition125k(trigger_threshold
);
50 // split into two routines so we can avoid timing issues after sending commands //
51 void DoAcquisition125k(int trigger_threshold
)
53 uint8_t *dest
= (uint8_t *)BigBuf
;
54 int n
= sizeof(BigBuf
);
60 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
61 AT91C_BASE_SSC
->SSC_THR
= 0x43;
64 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
65 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
67 if (trigger_threshold
!= -1 && dest
[i
] < trigger_threshold
)
70 trigger_threshold
= -1;
74 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
75 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
78 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
82 /* Make sure the tag is reset */
83 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
84 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
87 // see if 'h' was specified
88 if (command
[strlen((char *) command
) - 1] == 'h')
94 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
96 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
98 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
100 // Give it a bit of time for the resonant antenna to settle.
102 // And a little more time for the tag to fully power up
105 // Now set up the SSC to get the ADC samples that are now streaming at us.
108 // now modulate the reader field
109 while(*command
!= '\0' && *command
!= ' ') {
110 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
112 SpinDelayUs(delay_off
);
114 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
116 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
118 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
120 if(*(command
++) == '0')
121 SpinDelayUs(period_0
);
123 SpinDelayUs(period_1
);
125 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
127 SpinDelayUs(delay_off
);
129 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
131 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
133 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
136 DoAcquisition125k(-1);
139 /* blank r/w tag data stream
140 ...0000000000000000 01111111
141 1010101010101010101010101010101010101010101010101010101010101010
144 101010101010101[0]000...
146 [5555fe852c5555555555555555fe0000]
150 // some hardcoded initial params
151 // when we read a TI tag we sample the zerocross line at 2Mhz
152 // TI tags modulate a 1 as 16 cycles of 123.2Khz
153 // TI tags modulate a 0 as 16 cycles of 134.2Khz
154 #define FSAMPLE 2000000
155 #define FREQLO 123200
156 #define FREQHI 134200
158 signed char *dest
= (signed char *)BigBuf
;
159 int n
= sizeof(BigBuf
);
160 // int *dest = GraphBuffer;
161 // int n = GraphTraceLen;
163 // 128 bit shift register [shift3:shift2:shift1:shift0]
164 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
166 int i
, cycles
=0, samples
=0;
167 // how many sample points fit in 16 cycles of each frequency
168 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
169 // when to tell if we're close enough to one freq or another
170 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
172 // TI tags charge at 134.2Khz
173 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
174 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
176 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
177 // connects to SSP_DIN and the SSP_DOUT logic level controls
178 // whether we're modulating the antenna (high)
179 // or listening to the antenna (low)
180 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
182 // get TI tag data into the buffer
185 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
187 for (i
=0; i
<n
-1; i
++) {
188 // count cycles by looking for lo to hi zero crossings
189 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
191 // after 16 cycles, measure the frequency
194 samples
=i
-samples
; // number of samples in these 16 cycles
196 // TI bits are coming to us lsb first so shift them
197 // right through our 128 bit right shift register
198 shift0
= (shift0
>>1) | (shift1
<< 31);
199 shift1
= (shift1
>>1) | (shift2
<< 31);
200 shift2
= (shift2
>>1) | (shift3
<< 31);
203 // check if the cycles fall close to the number
204 // expected for either the low or high frequency
205 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
206 // low frequency represents a 1
208 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
209 // high frequency represents a 0
211 // probably detected a gay waveform or noise
212 // use this as gaydar or discard shift register and start again
213 shift3
= shift2
= shift1
= shift0
= 0;
217 // for each bit we receive, test if we've detected a valid tag
219 // if we see 17 zeroes followed by 6 ones, we might have a tag
220 // remember the bits are backwards
221 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
222 // if start and end bytes match, we have a tag so break out of the loop
223 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
224 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
232 // if flag is set we have a tag
234 DbpString("Info: No valid tag detected.");
236 // put 64 bit data into shift1 and shift0
237 shift0
= (shift0
>>24) | (shift1
<< 8);
238 shift1
= (shift1
>>24) | (shift2
<< 8);
240 // align 16 bit crc into lower half of shift2
241 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
243 // if r/w tag, check ident match
244 if ( shift3
&(1<<15) ) {
245 DbpString("Info: TI tag is rewriteable");
246 // only 15 bits compare, last bit of ident is not valid
247 if ( ((shift3
>>16)^shift0
)&0x7fff ) {
248 DbpString("Error: Ident mismatch!");
250 DbpString("Info: TI tag ident is valid");
253 DbpString("Info: TI tag is readonly");
256 // WARNING the order of the bytes in which we calc crc below needs checking
257 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
258 // bytes in reverse or something
262 crc
= update_crc16(crc
, (shift0
)&0xff);
263 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
264 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
265 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
266 crc
= update_crc16(crc
, (shift1
)&0xff);
267 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
268 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
269 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
271 Dbprintf("Info: Tag data: %x%08x, crc=%x",
272 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
273 if (crc
!= (shift2
&0xffff)) {
274 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
276 DbpString("Info: CRC is good");
281 void WriteTIbyte(uint8_t b
)
285 // modulate 8 bits out to the antenna
289 // stop modulating antenna
296 // stop modulating antenna
306 void AcquireTiType(void)
309 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
310 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
311 #define TIBUFLEN 1250
314 memset(BigBuf
,0,sizeof(BigBuf
));
316 // Set up the synchronous serial port
317 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
318 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
320 // steal this pin from the SSP and use it to control the modulation
321 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
322 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
324 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
325 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
327 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
328 // 48/2 = 24 MHz clock must be divided by 12
329 AT91C_BASE_SSC
->SSC_CMR
= 12;
331 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
332 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
333 AT91C_BASE_SSC
->SSC_TCMR
= 0;
334 AT91C_BASE_SSC
->SSC_TFMR
= 0;
341 // Charge TI tag for 50ms.
344 // stop modulating antenna and listen
351 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
352 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
353 i
++; if(i
>= TIBUFLEN
) break;
358 // return stolen pin to SSP
359 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
360 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
362 char *dest
= (char *)BigBuf
;
365 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
366 for (j
=0; j
<32; j
++) {
367 if(BigBuf
[i
] & (1 << j
)) {
376 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
377 // if crc provided, it will be written with the data verbatim (even if bogus)
378 // if not provided a valid crc will be computed from the data and written.
379 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
381 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
383 crc
= update_crc16(crc
, (idlo
)&0xff);
384 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
385 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
386 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
387 crc
= update_crc16(crc
, (idhi
)&0xff);
388 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
389 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
390 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
392 Dbprintf("Writing to tag: %x%08x, crc=%x",
393 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
395 // TI tags charge at 134.2Khz
396 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
397 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
398 // connects to SSP_DIN and the SSP_DOUT logic level controls
399 // whether we're modulating the antenna (high)
400 // or listening to the antenna (low)
401 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
404 // steal this pin from the SSP and use it to control the modulation
405 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
406 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
408 // writing algorithm:
409 // a high bit consists of a field off for 1ms and field on for 1ms
410 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
411 // initiate a charge time of 50ms (field on) then immediately start writing bits
412 // start by writing 0xBB (keyword) and 0xEB (password)
413 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
414 // finally end with 0x0300 (write frame)
415 // all data is sent lsb firts
416 // finish with 15ms programming time
420 SpinDelay(50); // charge time
422 WriteTIbyte(0xbb); // keyword
423 WriteTIbyte(0xeb); // password
424 WriteTIbyte( (idlo
)&0xff );
425 WriteTIbyte( (idlo
>>8 )&0xff );
426 WriteTIbyte( (idlo
>>16)&0xff );
427 WriteTIbyte( (idlo
>>24)&0xff );
428 WriteTIbyte( (idhi
)&0xff );
429 WriteTIbyte( (idhi
>>8 )&0xff );
430 WriteTIbyte( (idhi
>>16)&0xff );
431 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
432 WriteTIbyte( (crc
)&0xff ); // crc lo
433 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
434 WriteTIbyte(0x00); // write frame lo
435 WriteTIbyte(0x03); // write frame hi
437 SpinDelay(50); // programming time
441 // get TI tag data into the buffer
444 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
445 DbpString("Now use tiread to check");
448 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
451 uint8_t *tab
= (uint8_t *)BigBuf
;
453 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
454 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
456 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
458 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
459 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
461 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
462 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
466 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
468 DbpString("Stopped");
485 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
487 DbpString("Stopped");
504 #define DEBUG_FRAME_CONTENTS 1
505 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
509 // compose fc/8 fc/10 waveform
510 static void fc(int c
, int *n
) {
511 uint8_t *dest
= (uint8_t *)BigBuf
;
514 // for when we want an fc8 pattern every 4 logical bits
525 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
527 for (idx
=0; idx
<6; idx
++) {
539 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
541 for (idx
=0; idx
<5; idx
++) {
556 // prepare a waveform pattern in the buffer based on the ID given then
557 // simulate a HID tag until the button is pressed
558 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
562 HID tag bitstream format
563 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
564 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
565 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
566 A fc8 is inserted before every 4 bits
567 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
568 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
572 DbpString("Tags can only have 44 bits.");
576 // special start of frame marker containing invalid bit sequences
577 fc(8, &n
); fc(8, &n
); // invalid
578 fc(8, &n
); fc(10, &n
); // logical 0
579 fc(10, &n
); fc(10, &n
); // invalid
580 fc(8, &n
); fc(10, &n
); // logical 0
583 // manchester encode bits 43 to 32
584 for (i
=11; i
>=0; i
--) {
585 if ((i
%4)==3) fc(0,&n
);
587 fc(10, &n
); fc(8, &n
); // low-high transition
589 fc(8, &n
); fc(10, &n
); // high-low transition
594 // manchester encode bits 31 to 0
595 for (i
=31; i
>=0; i
--) {
596 if ((i
%4)==3) fc(0,&n
);
598 fc(10, &n
); fc(8, &n
); // low-high transition
600 fc(8, &n
); fc(10, &n
); // high-low transition
606 SimulateTagLowFrequency(n
, 0, ledcontrol
);
613 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it
614 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
616 uint8_t *dest
= (uint8_t *)BigBuf
;
617 int m
=0, n
=0, i
=0, idx
=0, found
=0, lastval
=0;
618 uint32_t hi2
=0, hi
=0, lo
=0;
620 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
621 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
622 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
624 // Connect the A/D to the peak-detected low-frequency path.
625 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
627 // Give it a bit of time for the resonant antenna to settle.
630 // Now set up the SSC to get the ADC samples that are now streaming at us.
638 DbpString("Stopped");
648 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
649 AT91C_BASE_SSC
->SSC_THR
= 0x43;
653 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
654 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
655 // we don't care about actual value, only if it's more or less than a
656 // threshold essentially we capture zero crossings for later analysis
657 if(dest
[i
] < 127) dest
[i
] = 0; else dest
[i
] = 1;
669 // sync to first lo-hi transition
670 for( idx
=1; idx
<m
; idx
++) {
671 if (dest
[idx
-1]<dest
[idx
])
677 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
678 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
679 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
680 for( i
=0; idx
<m
; idx
++) {
681 if (dest
[idx
-1]<dest
[idx
]) {
696 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
701 for( idx
=0; idx
<m
; idx
++) {
702 if (dest
[idx
]==lastval
) {
705 // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
706 // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
707 // swallowed up by rounding
708 // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
709 // special start of frame markers use invalid manchester states (no transitions) by using sequences
712 n
=(n
+1)/6; // fc/8 in sets of 6
714 n
=(n
+1)/5; // fc/10 in sets of 5
716 switch (n
) { // stuff appropriate bits in buffer
719 dest
[i
++]=dest
[idx
-1];
722 dest
[i
++]=dest
[idx
-1];
723 dest
[i
++]=dest
[idx
-1];
725 case 3: // 3 bit start of frame markers
726 dest
[i
++]=dest
[idx
-1];
727 dest
[i
++]=dest
[idx
-1];
728 dest
[i
++]=dest
[idx
-1];
730 // When a logic 0 is immediately followed by the start of the next transmisson
731 // (special pattern) a pattern of 4 bit duration lengths is created.
733 dest
[i
++]=dest
[idx
-1];
734 dest
[i
++]=dest
[idx
-1];
735 dest
[i
++]=dest
[idx
-1];
736 dest
[i
++]=dest
[idx
-1];
738 default: // this shouldn't happen, don't stuff any bits
748 // final loop, go over previously decoded manchester data and decode into usable tag ID
749 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
750 for( idx
=0; idx
<m
-6; idx
++) {
751 // search for a start of frame marker
752 if ( dest
[idx
] && dest
[idx
+1] && dest
[idx
+2] && (!dest
[idx
+3]) && (!dest
[idx
+4]) && (!dest
[idx
+5]) )
756 if (found
&& (hi2
|hi
|lo
)) {
758 Dbprintf("TAG ID: %x%08x%08x (%d)",
759 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
762 Dbprintf("TAG ID: %x%08x (%d)",
763 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
765 /* if we're only looking for one tag */
779 if (dest
[idx
] && (!dest
[idx
+1]) ) {
780 hi2
=(hi2
<<1)|(hi
>>31);
783 } else if ( (!dest
[idx
]) && dest
[idx
+1]) {
784 hi2
=(hi2
<<1)|(hi
>>31);
795 if ( dest
[idx
] && dest
[idx
+1] && dest
[idx
+2] && (!dest
[idx
+3]) && (!dest
[idx
+4]) && (!dest
[idx
+5]) )
799 if (found
&& (hi
|lo
)) {
801 Dbprintf("TAG ID: %x%08x%08x (%d)",
802 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
805 Dbprintf("TAG ID: %x%08x (%d)",
806 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
808 /* if we're only looking for one tag */
826 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
828 uint8_t *dest
= (uint8_t *)BigBuf
;
829 int m
=0, n
=0, i
=0, idx
=0, lastval
=0;
831 uint32_t code
=0, code2
=0;
832 //uint32_t hi2=0, hi=0, lo=0;
834 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
835 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
836 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
838 // Connect the A/D to the peak-detected low-frequency path.
839 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
841 // Give it a bit of time for the resonant antenna to settle.
844 // Now set up the SSC to get the ADC samples that are now streaming at us.
852 DbpString("Stopped");
862 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
863 AT91C_BASE_SSC
->SSC_THR
= 0x43;
867 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
868 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
869 // we don't care about actual value, only if it's more or less than a
870 // threshold essentially we capture zero crossings for later analysis
871 if(dest
[i
] < 127) dest
[i
] = 0; else dest
[i
] = 1;
883 // sync to first lo-hi transition
884 for( idx
=1; idx
<m
; idx
++) {
885 if (dest
[idx
-1]<dest
[idx
])
891 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
892 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
893 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
894 for( i
=0; idx
<m
; idx
++) {
895 if (dest
[idx
-1]<dest
[idx
]) {
910 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
915 for( idx
=0; idx
<m
; idx
++) {
916 if (dest
[idx
]==lastval
) {
919 // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
920 // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
921 // swallowed up by rounding
922 // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
923 // special start of frame markers use invalid manchester states (no transitions) by using sequences
926 n
=(n
+1)/7; // fc/8 in sets of 7
928 n
=(n
+1)/6; // fc/10 in sets of 6
930 switch (n
) { // stuff appropriate bits in buffer
933 dest
[i
++]=dest
[idx
-1]^1;
934 //Dbprintf("%d",dest[idx-1]);
937 dest
[i
++]=dest
[idx
-1]^1;
938 dest
[i
++]=dest
[idx
-1]^1;
939 //Dbprintf("%d",dest[idx-1]);
940 //Dbprintf("%d",dest[idx-1]);
942 case 3: // 3 bit start of frame markers
943 for(int j
=0; j
<3; j
++){
944 dest
[i
++]=dest
[idx
-1]^1;
945 // Dbprintf("%d",dest[idx-1]);
949 for(int j
=0; j
<4; j
++){
950 dest
[i
++]=dest
[idx
-1]^1;
951 // Dbprintf("%d",dest[idx-1]);
955 for(int j
=0; j
<5; j
++){
956 dest
[i
++]=dest
[idx
-1]^1;
957 // Dbprintf("%d",dest[idx-1]);
961 for(int j
=0; j
<6; j
++){
962 dest
[i
++]=dest
[idx
-1]^1;
963 // Dbprintf("%d",dest[idx-1]);
967 for(int j
=0; j
<7; j
++){
968 dest
[i
++]=dest
[idx
-1]^1;
969 // Dbprintf("%d",dest[idx-1]);
973 for(int j
=0; j
<8; j
++){
974 dest
[i
++]=dest
[idx
-1]^1;
975 // Dbprintf("%d",dest[idx-1]);
979 for(int j
=0; j
<9; j
++){
980 dest
[i
++]=dest
[idx
-1]^1;
981 // Dbprintf("%d",dest[idx-1]);
985 for(int j
=0; j
<10; j
++){
986 dest
[i
++]=dest
[idx
-1]^1;
987 // Dbprintf("%d",dest[idx-1]);
991 for(int j
=0; j
<11; j
++){
992 dest
[i
++]=dest
[idx
-1]^1;
993 // Dbprintf("%d",dest[idx-1]);
997 for(int j
=0; j
<12; j
++){
998 dest
[i
++]=dest
[idx
-1]^1;
999 // Dbprintf("%d",dest[idx-1]);
1002 default: // this shouldn't happen, don't stuff any bits
1003 //Dbprintf("%d",dest[idx-1]);
1010 /*for(int j=0; j<64;j+=8){
1011 Dbprintf("%d%d%d%d%d%d%d%d",dest[j],dest[j+1],dest[j+2],dest[j+3],dest[j+4],dest[j+5],dest[j+6],dest[j+7]);
1017 for( idx
=0; idx
<m
-9; idx
++) {
1018 if ( !(dest
[idx
]) && !(dest
[idx
+1]) && !(dest
[idx
+2]) && !(dest
[idx
+3]) && !(dest
[idx
+4]) && !(dest
[idx
+5]) && !(dest
[idx
+6]) && !(dest
[idx
+7]) && !(dest
[idx
+8])&& (dest
[idx
+9])){
1022 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7]);
1023 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+8], dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15]);
1024 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+16],dest
[idx
+17],dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23]);
1025 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+24],dest
[idx
+25],dest
[idx
+26],dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31]);
1026 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35],dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39]);
1027 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44],dest
[idx
+45],dest
[idx
+46],dest
[idx
+47]);
1028 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53],dest
[idx
+54],dest
[idx
+55]);
1029 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
1031 short version
='\x00';
1032 char unknown
='\x00';
1034 for(int j
=14;j
<18;j
++){
1035 //Dbprintf("%d",dest[idx+j]);
1037 if (dest
[idx
+j
]) version
|= 1;
1039 for(int j
=19;j
<27;j
++){
1040 //Dbprintf("%d",dest[idx+j]);
1042 if (dest
[idx
+j
]) unknown
|= 1;
1044 for(int j
=36;j
<45;j
++){
1045 //Dbprintf("%d",dest[idx+j]);
1047 if (dest
[idx
+j
]) number
|= 1;
1049 for(int j
=46;j
<53;j
++){
1050 //Dbprintf("%d",dest[idx+j]);
1052 if (dest
[idx
+j
]) number
|= 1;
1054 for(int j
=0; j
<32; j
++){
1056 if(dest
[idx
+j
]) code
|= 1;
1058 for(int j
=32; j
<64; j
++){
1060 if(dest
[idx
+j
]) code2
|= 1;
1063 Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version
,unknown
,number
,code
,code2
);
1067 // if we're only looking for one tag
1085 /*------------------------------
1086 * T5555/T5557/T5567 routines
1087 *------------------------------
1090 /* T55x7 configuration register definitions */
1091 #define T55x7_POR_DELAY 0x00000001
1092 #define T55x7_ST_TERMINATOR 0x00000008
1093 #define T55x7_PWD 0x00000010
1094 #define T55x7_MAXBLOCK_SHIFT 5
1095 #define T55x7_AOR 0x00000200
1096 #define T55x7_PSKCF_RF_2 0
1097 #define T55x7_PSKCF_RF_4 0x00000400
1098 #define T55x7_PSKCF_RF_8 0x00000800
1099 #define T55x7_MODULATION_DIRECT 0
1100 #define T55x7_MODULATION_PSK1 0x00001000
1101 #define T55x7_MODULATION_PSK2 0x00002000
1102 #define T55x7_MODULATION_PSK3 0x00003000
1103 #define T55x7_MODULATION_FSK1 0x00004000
1104 #define T55x7_MODULATION_FSK2 0x00005000
1105 #define T55x7_MODULATION_FSK1a 0x00006000
1106 #define T55x7_MODULATION_FSK2a 0x00007000
1107 #define T55x7_MODULATION_MANCHESTER 0x00008000
1108 #define T55x7_MODULATION_BIPHASE 0x00010000
1109 #define T55x7_BITRATE_RF_8 0
1110 #define T55x7_BITRATE_RF_16 0x00040000
1111 #define T55x7_BITRATE_RF_32 0x00080000
1112 #define T55x7_BITRATE_RF_40 0x000C0000
1113 #define T55x7_BITRATE_RF_50 0x00100000
1114 #define T55x7_BITRATE_RF_64 0x00140000
1115 #define T55x7_BITRATE_RF_100 0x00180000
1116 #define T55x7_BITRATE_RF_128 0x001C0000
1118 /* T5555 (Q5) configuration register definitions */
1119 #define T5555_ST_TERMINATOR 0x00000001
1120 #define T5555_MAXBLOCK_SHIFT 0x00000001
1121 #define T5555_MODULATION_MANCHESTER 0
1122 #define T5555_MODULATION_PSK1 0x00000010
1123 #define T5555_MODULATION_PSK2 0x00000020
1124 #define T5555_MODULATION_PSK3 0x00000030
1125 #define T5555_MODULATION_FSK1 0x00000040
1126 #define T5555_MODULATION_FSK2 0x00000050
1127 #define T5555_MODULATION_BIPHASE 0x00000060
1128 #define T5555_MODULATION_DIRECT 0x00000070
1129 #define T5555_INVERT_OUTPUT 0x00000080
1130 #define T5555_PSK_RF_2 0
1131 #define T5555_PSK_RF_4 0x00000100
1132 #define T5555_PSK_RF_8 0x00000200
1133 #define T5555_USE_PWD 0x00000400
1134 #define T5555_USE_AOR 0x00000800
1135 #define T5555_BITRATE_SHIFT 12
1136 #define T5555_FAST_WRITE 0x00004000
1137 #define T5555_PAGE_SELECT 0x00008000
1140 * Relevant times in microsecond
1141 * To compensate antenna falling times shorten the write times
1142 * and enlarge the gap ones.
1144 #define START_GAP 250
1145 #define WRITE_GAP 160
1146 #define WRITE_0 144 // 192
1147 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
1149 // Write one bit to card
1150 void T55xxWriteBit(int bit
)
1152 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1153 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1154 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1156 SpinDelayUs(WRITE_0
);
1158 SpinDelayUs(WRITE_1
);
1159 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1160 SpinDelayUs(WRITE_GAP
);
1163 // Write one card block in page 0, no lock
1164 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1168 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1169 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1170 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1172 // Give it a bit of time for the resonant antenna to settle.
1173 // And for the tag to fully power up
1176 // Now start writting
1177 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1178 SpinDelayUs(START_GAP
);
1182 T55xxWriteBit(0); //Page 0
1185 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1186 T55xxWriteBit(Pwd
& i
);
1192 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1193 T55xxWriteBit(Data
& i
);
1196 for (i
= 0x04; i
!= 0; i
>>= 1)
1197 T55xxWriteBit(Block
& i
);
1199 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1200 // so wait a little more)
1201 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1202 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1204 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1207 // Read one card block in page 0
1208 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1210 uint8_t *dest
= (uint8_t *)BigBuf
;
1213 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1215 // Clear destination buffer before sending the command
1216 memset(dest
, 128, m
);
1217 // Connect the A/D to the peak-detected low-frequency path.
1218 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1219 // Now set up the SSC to get the ADC samples that are now streaming at us.
1223 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1224 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1226 // Give it a bit of time for the resonant antenna to settle.
1227 // And for the tag to fully power up
1230 // Now start writting
1231 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1232 SpinDelayUs(START_GAP
);
1236 T55xxWriteBit(0); //Page 0
1239 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1240 T55xxWriteBit(Pwd
& i
);
1245 for (i
= 0x04; i
!= 0; i
>>= 1)
1246 T55xxWriteBit(Block
& i
);
1248 // Turn field on to read the response
1249 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1250 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1252 // Now do the acquisition
1255 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1256 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1258 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1259 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1260 // we don't care about actual value, only if it's more or less than a
1261 // threshold essentially we capture zero crossings for later analysis
1262 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1268 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1273 // Read card traceability data (page 1)
1274 void T55xxReadTrace(void){
1275 uint8_t *dest
= (uint8_t *)BigBuf
;
1278 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1280 // Clear destination buffer before sending the command
1281 memset(dest
, 128, m
);
1282 // Connect the A/D to the peak-detected low-frequency path.
1283 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1284 // Now set up the SSC to get the ADC samples that are now streaming at us.
1288 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1289 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1291 // Give it a bit of time for the resonant antenna to settle.
1292 // And for the tag to fully power up
1295 // Now start writting
1296 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1297 SpinDelayUs(START_GAP
);
1301 T55xxWriteBit(1); //Page 1
1303 // Turn field on to read the response
1304 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1305 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1307 // Now do the acquisition
1310 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1311 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1313 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1314 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1320 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1325 /*-------------- Cloning routines -----------*/
1326 // Copy HID id to card and setup block 0 config
1327 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1329 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1333 // Ensure no more than 84 bits supplied
1335 DbpString("Tags can only have 84 bits.");
1338 // Build the 6 data blocks for supplied 84bit ID
1340 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1341 for (int i
=0;i
<4;i
++) {
1342 if (hi2
& (1<<(19-i
)))
1343 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1345 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1349 for (int i
=0;i
<16;i
++) {
1350 if (hi2
& (1<<(15-i
)))
1351 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1353 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1357 for (int i
=0;i
<16;i
++) {
1358 if (hi
& (1<<(31-i
)))
1359 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1361 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1365 for (int i
=0;i
<16;i
++) {
1366 if (hi
& (1<<(15-i
)))
1367 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1369 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1373 for (int i
=0;i
<16;i
++) {
1374 if (lo
& (1<<(31-i
)))
1375 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1377 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1381 for (int i
=0;i
<16;i
++) {
1382 if (lo
& (1<<(15-i
)))
1383 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1385 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1389 // Ensure no more than 44 bits supplied
1391 DbpString("Tags can only have 44 bits.");
1395 // Build the 3 data blocks for supplied 44bit ID
1398 data1
= 0x1D000000; // load preamble
1400 for (int i
=0;i
<12;i
++) {
1401 if (hi
& (1<<(11-i
)))
1402 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1404 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1408 for (int i
=0;i
<16;i
++) {
1409 if (lo
& (1<<(31-i
)))
1410 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1412 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1416 for (int i
=0;i
<16;i
++) {
1417 if (lo
& (1<<(15-i
)))
1418 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1420 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1425 // Program the data blocks for supplied ID
1426 // and the block 0 for HID format
1427 T55xxWriteBlock(data1
,1,0,0);
1428 T55xxWriteBlock(data2
,2,0,0);
1429 T55xxWriteBlock(data3
,3,0,0);
1431 if (longFMT
) { // if long format there are 6 blocks
1432 T55xxWriteBlock(data4
,4,0,0);
1433 T55xxWriteBlock(data5
,5,0,0);
1434 T55xxWriteBlock(data6
,6,0,0);
1437 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1438 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1439 T55x7_MODULATION_FSK2a
|
1440 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1448 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1450 int data1
=0, data2
=0; //up to six blocks for long format
1452 data1
= hi
; // load preamble
1456 // Program the data blocks for supplied ID
1457 // and the block 0 for HID format
1458 T55xxWriteBlock(data1
,1,0,0);
1459 T55xxWriteBlock(data2
,2,0,0);
1462 T55xxWriteBlock(0x00147040,0,0,0);
1468 // Define 9bit header for EM410x tags
1469 #define EM410X_HEADER 0x1FF
1470 #define EM410X_ID_LENGTH 40
1472 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1475 uint64_t id
= EM410X_HEADER
;
1476 uint64_t rev_id
= 0; // reversed ID
1477 int c_parity
[4]; // column parity
1478 int r_parity
= 0; // row parity
1481 // Reverse ID bits given as parameter (for simpler operations)
1482 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1484 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1487 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1492 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1493 id_bit
= rev_id
& 1;
1496 // Don't write row parity bit at start of parsing
1498 id
= (id
<< 1) | r_parity
;
1499 // Start counting parity for new row
1506 // First elements in column?
1508 // Fill out first elements
1509 c_parity
[i
] = id_bit
;
1511 // Count column parity
1512 c_parity
[i
% 4] ^= id_bit
;
1515 id
= (id
<< 1) | id_bit
;
1519 // Insert parity bit of last row
1520 id
= (id
<< 1) | r_parity
;
1522 // Fill out column parity at the end of tag
1523 for (i
= 0; i
< 4; ++i
)
1524 id
= (id
<< 1) | c_parity
[i
];
1529 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1533 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1534 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1536 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1538 // Clock rate is stored in bits 8-15 of the card value
1539 clock
= (card
& 0xFF00) >> 8;
1540 Dbprintf("Clock rate: %d", clock
);
1544 clock
= T55x7_BITRATE_RF_32
;
1547 clock
= T55x7_BITRATE_RF_16
;
1550 // A value of 0 is assumed to be 64 for backwards-compatibility
1553 clock
= T55x7_BITRATE_RF_64
;
1556 Dbprintf("Invalid clock rate: %d", clock
);
1560 // Writing configuration for T55x7 tag
1561 T55xxWriteBlock(clock
|
1562 T55x7_MODULATION_MANCHESTER
|
1563 2 << T55x7_MAXBLOCK_SHIFT
,
1567 // Writing configuration for T5555(Q5) tag
1568 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1569 T5555_MODULATION_MANCHESTER
|
1570 2 << T5555_MAXBLOCK_SHIFT
,
1574 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1575 (uint32_t)(id
>> 32), (uint32_t)id
);
1578 // Clone Indala 64-bit tag by UID to T55x7
1579 void CopyIndala64toT55x7(int hi
, int lo
)
1582 //Program the 2 data blocks for supplied 64bit UID
1583 // and the block 0 for Indala64 format
1584 T55xxWriteBlock(hi
,1,0,0);
1585 T55xxWriteBlock(lo
,2,0,0);
1586 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1587 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1588 T55x7_MODULATION_PSK1
|
1589 2 << T55x7_MAXBLOCK_SHIFT
,
1591 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1592 // T5567WriteBlock(0x603E1042,0);
1598 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1601 //Program the 7 data blocks for supplied 224bit UID
1602 // and the block 0 for Indala224 format
1603 T55xxWriteBlock(uid1
,1,0,0);
1604 T55xxWriteBlock(uid2
,2,0,0);
1605 T55xxWriteBlock(uid3
,3,0,0);
1606 T55xxWriteBlock(uid4
,4,0,0);
1607 T55xxWriteBlock(uid5
,5,0,0);
1608 T55xxWriteBlock(uid6
,6,0,0);
1609 T55xxWriteBlock(uid7
,7,0,0);
1610 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1611 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1612 T55x7_MODULATION_PSK1
|
1613 7 << T55x7_MAXBLOCK_SHIFT
,
1615 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1616 // T5567WriteBlock(0x603E10E2,0);
1623 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1624 #define max(x,y) ( x<y ? y:x)
1626 int DemodPCF7931(uint8_t **outBlocks
) {
1627 uint8_t BitStream
[256];
1628 uint8_t Blocks
[8][16];
1629 uint8_t *GraphBuffer
= (uint8_t *)BigBuf
;
1630 int GraphTraceLen
= sizeof(BigBuf
);
1631 int i
, j
, lastval
, bitidx
, half_switch
;
1633 int tolerance
= clock
/ 8;
1634 int pmc
, block_done
;
1635 int lc
, warnings
= 0;
1637 int lmin
=128, lmax
=128;
1640 AcquireRawAdcSamples125k(0);
1647 /* Find first local max/min */
1648 if(GraphBuffer
[1] > GraphBuffer
[0]) {
1649 while(i
< GraphTraceLen
) {
1650 if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
)
1657 while(i
< GraphTraceLen
) {
1658 if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
)
1670 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1672 if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir
== 0 && GraphBuffer
[i
] < lmin
))
1677 // Switch depending on lc length:
1678 // Tolerance is 1/8 of clock rate (arbitrary)
1679 if (abs(lc
-clock
/4) < tolerance
) {
1681 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1683 i
+= (128+127+16+32+33+16)-1;
1691 } else if (abs(lc
-clock
/2) < tolerance
) {
1693 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1695 i
+= (128+127+16+32+33)-1;
1700 else if(half_switch
== 1) {
1701 BitStream
[bitidx
++] = 0;
1706 } else if (abs(lc
-clock
) < tolerance
) {
1708 BitStream
[bitidx
++] = 1;
1714 Dbprintf("Error: too many detection errors, aborting.");
1719 if(block_done
== 1) {
1721 for(j
=0; j
<16; j
++) {
1722 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1723 64*BitStream
[j
*8+6]+
1724 32*BitStream
[j
*8+5]+
1725 16*BitStream
[j
*8+4]+
1737 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0;
1743 if(num_blocks
== 4) break;
1745 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1749 int IsBlock0PCF7931(uint8_t *Block
) {
1750 // Assume RFU means 0 :)
1751 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1753 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1758 int IsBlock1PCF7931(uint8_t *Block
) {
1759 // Assume RFU means 0 :)
1760 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1761 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1769 void ReadPCF7931() {
1770 uint8_t Blocks
[8][17];
1771 uint8_t tmpBlocks
[4][16];
1772 int i
, j
, ind
, ind2
, n
;
1779 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1782 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1783 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1786 if(error
==10 && num_blocks
== 0) {
1787 Dbprintf("Error, no tag or bad tag");
1790 else if (tries
==20 || error
==10) {
1791 Dbprintf("Error reading the tag");
1792 Dbprintf("Here is the partial content");
1797 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1798 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1799 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1801 for(i
=0; i
<n
; i
++) {
1802 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1804 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1808 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1809 Blocks
[0][ALLOC
] = 1;
1810 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1811 Blocks
[1][ALLOC
] = 1;
1812 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1814 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1816 // Handle following blocks
1817 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1820 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1821 Blocks
[ind2
][ALLOC
] = 1;
1829 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1830 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1831 for(j
=0; j
<max_blocks
; j
++) {
1832 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1833 // Found an identical block
1834 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1837 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1838 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1839 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1840 Blocks
[ind2
][ALLOC
] = 1;
1842 if(num_blocks
== max_blocks
) goto end
;
1845 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1846 if(ind2
> max_blocks
)
1848 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1849 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1850 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1851 Blocks
[ind2
][ALLOC
] = 1;
1853 if(num_blocks
== max_blocks
) goto end
;
1862 if (BUTTON_PRESS()) return;
1863 } while (num_blocks
!= max_blocks
);
1865 Dbprintf("-----------------------------------------");
1866 Dbprintf("Memory content:");
1867 Dbprintf("-----------------------------------------");
1868 for(i
=0; i
<max_blocks
; i
++) {
1869 if(Blocks
[i
][ALLOC
]==1)
1870 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1871 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1872 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1874 Dbprintf("<missing block %d>", i
);
1876 Dbprintf("-----------------------------------------");
1882 //-----------------------------------
1883 // EM4469 / EM4305 routines
1884 //-----------------------------------
1885 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1886 #define FWD_CMD_WRITE 0xA
1887 #define FWD_CMD_READ 0x9
1888 #define FWD_CMD_DISABLE 0x5
1891 uint8_t forwardLink_data
[64]; //array of forwarded bits
1892 uint8_t * forward_ptr
; //ptr for forward message preparation
1893 uint8_t fwd_bit_sz
; //forwardlink bit counter
1894 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1896 //====================================================================
1897 // prepares command bits
1899 //====================================================================
1900 //--------------------------------------------------------------------
1901 uint8_t Prepare_Cmd( uint8_t cmd
) {
1902 //--------------------------------------------------------------------
1904 *forward_ptr
++ = 0; //start bit
1905 *forward_ptr
++ = 0; //second pause for 4050 code
1907 *forward_ptr
++ = cmd
;
1909 *forward_ptr
++ = cmd
;
1911 *forward_ptr
++ = cmd
;
1913 *forward_ptr
++ = cmd
;
1915 return 6; //return number of emited bits
1918 //====================================================================
1919 // prepares address bits
1921 //====================================================================
1923 //--------------------------------------------------------------------
1924 uint8_t Prepare_Addr( uint8_t addr
) {
1925 //--------------------------------------------------------------------
1927 register uint8_t line_parity
;
1932 *forward_ptr
++ = addr
;
1933 line_parity
^= addr
;
1937 *forward_ptr
++ = (line_parity
& 1);
1939 return 7; //return number of emited bits
1942 //====================================================================
1943 // prepares data bits intreleaved with parity bits
1945 //====================================================================
1947 //--------------------------------------------------------------------
1948 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1949 //--------------------------------------------------------------------
1951 register uint8_t line_parity
;
1952 register uint8_t column_parity
;
1953 register uint8_t i
, j
;
1954 register uint16_t data
;
1959 for(i
=0; i
<4; i
++) {
1961 for(j
=0; j
<8; j
++) {
1962 line_parity
^= data
;
1963 column_parity
^= (data
& 1) << j
;
1964 *forward_ptr
++ = data
;
1967 *forward_ptr
++ = line_parity
;
1972 for(j
=0; j
<8; j
++) {
1973 *forward_ptr
++ = column_parity
;
1974 column_parity
>>= 1;
1978 return 45; //return number of emited bits
1981 //====================================================================
1982 // Forward Link send function
1983 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1984 // fwd_bit_count set with number of bits to be sent
1985 //====================================================================
1986 void SendForward(uint8_t fwd_bit_count
) {
1988 fwd_write_ptr
= forwardLink_data
;
1989 fwd_bit_sz
= fwd_bit_count
;
1994 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1995 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1996 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1998 // Give it a bit of time for the resonant antenna to settle.
1999 // And for the tag to fully power up
2002 // force 1st mod pulse (start gap must be longer for 4305)
2003 fwd_bit_sz
--; //prepare next bit modulation
2005 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
2006 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
2007 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
2008 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
2009 SpinDelayUs(16*8); //16 cycles on (8us each)
2011 // now start writting
2012 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
2013 if(((*fwd_write_ptr
++) & 1) == 1)
2014 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
2016 //These timings work for 4469/4269/4305 (with the 55*8 above)
2017 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
2018 SpinDelayUs(23*8); //16-4 cycles off (8us each)
2019 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
2020 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
2021 SpinDelayUs(9*8); //16 cycles on (8us each)
2026 void EM4xLogin(uint32_t Password
) {
2028 uint8_t fwd_bit_count
;
2030 forward_ptr
= forwardLink_data
;
2031 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
2032 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
2034 SendForward(fwd_bit_count
);
2036 //Wait for command to complete
2041 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
2043 uint8_t fwd_bit_count
;
2044 uint8_t *dest
= (uint8_t *)BigBuf
;
2047 //If password mode do login
2048 if (PwdMode
== 1) EM4xLogin(Pwd
);
2050 forward_ptr
= forwardLink_data
;
2051 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
2052 fwd_bit_count
+= Prepare_Addr( Address
);
2055 // Clear destination buffer before sending the command
2056 memset(dest
, 128, m
);
2057 // Connect the A/D to the peak-detected low-frequency path.
2058 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
2059 // Now set up the SSC to get the ADC samples that are now streaming at us.
2062 SendForward(fwd_bit_count
);
2064 // Now do the acquisition
2067 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
2068 AT91C_BASE_SSC
->SSC_THR
= 0x43;
2070 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
2071 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
2076 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
2080 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
2082 uint8_t fwd_bit_count
;
2084 //If password mode do login
2085 if (PwdMode
== 1) EM4xLogin(Pwd
);
2087 forward_ptr
= forwardLink_data
;
2088 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
2089 fwd_bit_count
+= Prepare_Addr( Address
);
2090 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
2092 SendForward(fwd_bit_count
);
2094 //Wait for write to complete
2096 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off