1 //-----------------------------------------------------------------------------
2 // Miscellaneous routines for low frequency tag operations.
3 // Tags supported here so far are Texas Instruments (TI), HID
4 // Also routines for raw mode reading/simulating of LF waveform
6 //-----------------------------------------------------------------------------
10 #include "../common/crc16.c"
12 int sprintf(char *dest
, const char *fmt
, ...);
14 void AcquireRawAdcSamples125k(BOOL at134khz
)
17 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
19 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
21 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
23 // Connect the A/D to the peak-detected low-frequency path.
24 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
26 // Give it a bit of time for the resonant antenna to settle.
29 // Now set up the SSC to get the ADC samples that are now streaming at us.
32 // Now call the acquisition routine
36 // split into two routines so we can avoid timing issues after sending commands //
37 void DoAcquisition125k(void)
39 BYTE
*dest
= (BYTE
*)BigBuf
;
40 int n
= sizeof(BigBuf
);
42 char output_string
[64];
47 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
48 AT91C_BASE_SSC
->SSC_THR
= 0x43;
51 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
52 dest
[i
] = (BYTE
)AT91C_BASE_SSC
->SSC_RHR
;
58 sprintf(output_string
, "read samples, dest[0]=%x dest[1]=%x",
60 DbpString(output_string
);
63 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, BYTE
*command
)
67 /* Make sure the tag is reset */
68 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
71 // see if 'h' was specified
72 if (command
[strlen((char *) command
) - 1] == 'h')
78 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
80 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
82 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
84 // Give it a bit of time for the resonant antenna to settle.
86 // And a little more time for the tag to fully power up
89 // Now set up the SSC to get the ADC samples that are now streaming at us.
92 // now modulate the reader field
93 while(*command
!= '\0' && *command
!= ' ') {
94 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
96 SpinDelayUs(delay_off
);
98 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
100 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
102 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
104 if(*(command
++) == '0')
105 SpinDelayUs(period_0
);
107 SpinDelayUs(period_1
);
109 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
111 SpinDelayUs(delay_off
);
113 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
115 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
117 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
123 /* blank r/w tag data stream
124 ...0000000000000000 01111111
125 1010101010101010101010101010101010101010101010101010101010101010
128 101010101010101[0]000...
130 [5555fe852c5555555555555555fe0000]
134 // some hardcoded initial params
135 // when we read a TI tag we sample the zerocross line at 2Mhz
136 // TI tags modulate a 1 as 16 cycles of 123.2Khz
137 // TI tags modulate a 0 as 16 cycles of 134.2Khz
138 #define FSAMPLE 2000000
139 #define FREQLO 123200
140 #define FREQHI 134200
142 signed char *dest
= (signed char *)BigBuf
;
143 int n
= sizeof(BigBuf
);
144 // int *dest = GraphBuffer;
145 // int n = GraphTraceLen;
147 // 128 bit shift register [shift3:shift2:shift1:shift0]
148 DWORD shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
150 int i
, cycles
=0, samples
=0;
151 // how many sample points fit in 16 cycles of each frequency
152 DWORD sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
153 // when to tell if we're close enough to one freq or another
154 DWORD threshold
= (sampleslo
- sampleshi
+ 1)>>1;
156 // TI tags charge at 134.2Khz
157 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
159 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
160 // connects to SSP_DIN and the SSP_DOUT logic level controls
161 // whether we're modulating the antenna (high)
162 // or listening to the antenna (low)
163 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
165 // get TI tag data into the buffer
168 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
170 for (i
=0; i
<n
-1; i
++) {
171 // count cycles by looking for lo to hi zero crossings
172 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
174 // after 16 cycles, measure the frequency
177 samples
=i
-samples
; // number of samples in these 16 cycles
179 // TI bits are coming to us lsb first so shift them
180 // right through our 128 bit right shift register
181 shift0
= (shift0
>>1) | (shift1
<< 31);
182 shift1
= (shift1
>>1) | (shift2
<< 31);
183 shift2
= (shift2
>>1) | (shift3
<< 31);
186 // check if the cycles fall close to the number
187 // expected for either the low or high frequency
188 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
189 // low frequency represents a 1
191 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
192 // high frequency represents a 0
194 // probably detected a gay waveform or noise
195 // use this as gaydar or discard shift register and start again
196 shift3
= shift2
= shift1
= shift0
= 0;
200 // for each bit we receive, test if we've detected a valid tag
202 // if we see 17 zeroes followed by 6 ones, we might have a tag
203 // remember the bits are backwards
204 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
205 // if start and end bytes match, we have a tag so break out of the loop
206 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
207 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
215 // if flag is set we have a tag
217 DbpString("Info: No valid tag detected.");
219 // put 64 bit data into shift1 and shift0
220 shift0
= (shift0
>>24) | (shift1
<< 8);
221 shift1
= (shift1
>>24) | (shift2
<< 8);
223 // align 16 bit crc into lower half of shift2
224 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
226 // if r/w tag, check ident match
227 if ( shift3
&(1<<15) ) {
228 DbpString("Info: TI tag is rewriteable");
229 // only 15 bits compare, last bit of ident is not valid
230 if ( ((shift3
>>16)^shift0
)&0x7fff ) {
231 DbpString("Error: Ident mismatch!");
233 DbpString("Info: TI tag ident is valid");
236 DbpString("Info: TI tag is readonly");
239 // WARNING the order of the bytes in which we calc crc below needs checking
240 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
241 // bytes in reverse or something
245 crc
= update_crc16(crc
, (shift0
)&0xff);
246 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
247 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
248 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
249 crc
= update_crc16(crc
, (shift1
)&0xff);
250 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
251 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
252 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
254 char output_string
[64];
255 sprintf(output_string
, "Info: Tag data_hi=%x, data_lo=%x, crc=%x",
256 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
257 DbpString(output_string
);
258 if (crc
!= (shift2
&0xffff)) {
259 sprintf(output_string
, "Error: CRC mismatch, expected %x", (unsigned int)crc
);
260 DbpString(output_string
);
262 DbpString("Info: CRC is good");
267 void WriteTIbyte(BYTE b
)
271 // modulate 8 bits out to the antenna
275 // stop modulating antenna
282 // stop modulating antenna
292 void AcquireTiType(void)
295 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
296 // each sample is 1 bit stuffed into a DWORD so we need 1250 DWORDS
297 #define TIBUFLEN 1250
300 memset(BigBuf
,0,sizeof(BigBuf
));
302 // Set up the synchronous serial port
303 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
304 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
306 // steal this pin from the SSP and use it to control the modulation
307 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
308 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
310 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
311 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
313 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
314 // 48/2 = 24 MHz clock must be divided by 12
315 AT91C_BASE_SSC
->SSC_CMR
= 12;
317 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
318 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
319 AT91C_BASE_SSC
->SSC_TCMR
= 0;
320 AT91C_BASE_SSC
->SSC_TFMR
= 0;
327 // Charge TI tag for 50ms.
330 // stop modulating antenna and listen
337 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
338 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
339 i
++; if(i
>= TIBUFLEN
) break;
344 // return stolen pin to SSP
345 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
346 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
348 char *dest
= (char *)BigBuf
;
351 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
352 // DbpIntegers(0, 0, BigBuf[i]);
353 for (j
=0; j
<32; j
++) {
354 if(BigBuf
[i
] & (1 << j
)) {
363 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
364 // if crc provided, it will be written with the data verbatim (even if bogus)
365 // if not provided a valid crc will be computed from the data and written.
366 void WriteTItag(DWORD idhi
, DWORD idlo
, WORD crc
)
369 // WARNING the order of the bytes in which we calc crc below needs checking
370 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
371 // bytes in reverse or something
374 crc
= update_crc16(crc
, (idlo
)&0xff);
375 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
376 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
377 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
378 crc
= update_crc16(crc
, (idhi
)&0xff);
379 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
380 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
381 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
383 char output_string
[64];
384 sprintf(output_string
, "Writing the following data to tag: %x, %x, %x",
385 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
386 DbpString(output_string
);
388 // TI tags charge at 134.2Khz
389 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
390 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
391 // connects to SSP_DIN and the SSP_DOUT logic level controls
392 // whether we're modulating the antenna (high)
393 // or listening to the antenna (low)
394 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
397 // steal this pin from the SSP and use it to control the modulation
398 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
399 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
401 // writing algorithm:
402 // a high bit consists of a field off for 1ms and field on for 1ms
403 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
404 // initiate a charge time of 50ms (field on) then immediately start writing bits
405 // start by writing 0xBB (keyword) and 0xEB (password)
406 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
407 // finally end with 0x0300 (write frame)
408 // all data is sent lsb firts
409 // finish with 15ms programming time
413 SpinDelay(50); // charge time
415 WriteTIbyte(0xbb); // keyword
416 WriteTIbyte(0xeb); // password
417 WriteTIbyte( (idlo
)&0xff );
418 WriteTIbyte( (idlo
>>8 )&0xff );
419 WriteTIbyte( (idlo
>>16)&0xff );
420 WriteTIbyte( (idlo
>>24)&0xff );
421 WriteTIbyte( (idhi
)&0xff );
422 WriteTIbyte( (idhi
>>8 )&0xff );
423 WriteTIbyte( (idhi
>>16)&0xff );
424 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
425 WriteTIbyte( (crc
)&0xff ); // crc lo
426 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
427 WriteTIbyte(0x00); // write frame lo
428 WriteTIbyte(0x03); // write frame hi
430 SpinDelay(50); // programming time
434 // get TI tag data into the buffer
437 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
438 DbpString("Now use tiread to check");
441 void SimulateTagLowFrequency(int period
, int ledcontrol
)
444 BYTE
*tab
= (BYTE
*)BigBuf
;
446 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR
);
448 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
450 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
451 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
453 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
454 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
458 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
460 DbpString("Stopped");
477 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
479 DbpString("Stopped");
486 if(i
== period
) i
= 0;
490 /* Provides a framework for bidirectional LF tag communication
491 * Encoding is currently Hitag2, but the general idea can probably
492 * be transferred to other encodings.
494 * The new FPGA code will, for the LF simulator mode, give on SSC_FRAME
495 * (PA15) a thresholded version of the signal from the ADC. Setting the
496 * ADC path to the low frequency peak detection signal, will enable a
497 * somewhat reasonable receiver for modulation on the carrier signal
498 * that is generated by the reader. The signal is low when the reader
499 * field is switched off, and high when the reader field is active. Due
500 * to the way that the signal looks like, mostly only the rising edge is
501 * useful, your mileage may vary.
503 * Neat perk: PA15 can not only be used as a bit-banging GPIO, but is also
504 * TIOA1, which can be used as the capture input for timer 1. This should
505 * make it possible to measure the exact edge-to-edge time, without processor
508 * Arguments: divisor is the divisor to be sent to the FPGA (e.g. 95 for 125kHz)
509 * t0 is the carrier frequency cycle duration in terms of MCK (384 for 125kHz)
511 * The following defines are in carrier periods:
513 #define HITAG_T_0_MIN 15 /* T[0] should be 18..22 */
514 #define HITAG_T_1_MIN 24 /* T[1] should be 26..30 */
515 #define HITAG_T_EOF 40 /* T_EOF should be > 36 */
516 #define HITAG_T_WRESP 208 /* T_wresp should be 204..212 */
518 static void hitag_handle_frame(int t0
, int frame_len
, char *frame
);
519 //#define DEBUG_RA_VALUES 1
520 #define DEBUG_FRAME_CONTENTS 1
521 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
523 #if DEBUG_RA_VALUES || DEBUG_FRAME_CONTENTS
529 DbpString("Starting Hitag2 emulator, press button to end");
532 /* Set up simulator mode, frequency divisor which will drive the FPGA
533 * and analog mux selection.
535 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR
);
536 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
537 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
541 * Capture mode, timer source MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
542 * external trigger rising edge, load RA on rising edge of TIOA, load RB on rising
543 * edge of TIOA. Assign PA15 to TIOA1 (peripheral B)
546 AT91C_BASE_PMC
->PMC_PCER
= (1 << AT91C_ID_TC1
);
547 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_SSC_FRAME
;
548 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKDIS
;
549 AT91C_BASE_TC1
->TC_CMR
= TC_CMR_TCCLKS_TIMER_CLOCK1
|
550 AT91C_TC_ETRGEDG_RISING
|
552 AT91C_TC_LDRA_RISING
|
553 AT91C_TC_LDRB_RISING
;
554 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKEN
|
557 /* calculate the new value for the carrier period in terms of TC1 values */
561 while(!BUTTON_PRESS()) {
563 if(AT91C_BASE_TC1
->TC_SR
& AT91C_TC_LDRAS
) {
564 int ra
= AT91C_BASE_TC1
->TC_RA
;
565 if((ra
> t0
*HITAG_T_EOF
) | overflow
) ra
= t0
*HITAG_T_EOF
+1;
567 if(ra
> 255 || overflow
) ra
= 255;
568 ((char*)BigBuf
)[i
] = ra
;
572 if(overflow
|| (ra
> t0
*HITAG_T_EOF
) || (ra
< t0
*HITAG_T_0_MIN
)) {
574 } else if(ra
>= t0
*HITAG_T_1_MIN
) {
576 if(frame_pos
< 8*sizeof(frame
)) {
577 frame
[frame_pos
/ 8] |= 1<<( 7-(frame_pos
%8) );
580 } else if(ra
>= t0
*HITAG_T_0_MIN
) {
582 if(frame_pos
< 8*sizeof(frame
)) {
583 frame
[frame_pos
/ 8] |= 0<<( 7-(frame_pos
%8) );
591 if(AT91C_BASE_TC1
->TC_CV
> t0
*HITAG_T_EOF
) {
592 /* Minor nuisance: In Capture mode, the timer can not be
593 * stopped by a Compare C. There's no way to stop the clock
594 * in software, so we'll just have to note the fact that an
595 * overflow happened and the next loaded timer value might
596 * have wrapped. Also, this marks the end of frame, and the
597 * still running counter can be used to determine the correct
598 * time for the start of the reply.
603 /* Have a frame, do something with it */
604 #if DEBUG_FRAME_CONTENTS
605 ((char*)BigBuf
)[i
++] = frame_pos
;
606 memcpy( ((char*)BigBuf
)+i
, frame
, 7);
608 i
= i
% sizeof(BigBuf
);
610 hitag_handle_frame(t0
, frame_pos
, frame
);
611 memset(frame
, 0, sizeof(frame
));
619 DbpString("All done");
622 static void hitag_send_bit(int t0
, int bit
) {
624 /* Manchester: Loaded, then unloaded */
627 while(AT91C_BASE_TC1
->TC_CV
< t0
*15);
629 while(AT91C_BASE_TC1
->TC_CV
< t0
*31);
631 } else if(bit
== 0) {
632 /* Manchester: Unloaded, then loaded */
635 while(AT91C_BASE_TC1
->TC_CV
< t0
*15);
637 while(AT91C_BASE_TC1
->TC_CV
< t0
*31);
640 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_SWTRG
; /* Reset clock for the next bit */
643 static void hitag_send_frame(int t0
, int frame_len
, const char const * frame
, int fdt
)
646 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
648 /* Wait for HITAG_T_WRESP carrier periods after the last reader bit,
649 * not that since the clock counts since the rising edge, but T_wresp is
650 * with respect to the falling edge, we need to wait actually (T_wresp - T_g)
651 * periods. The gap time T_g varies (4..10).
653 while(AT91C_BASE_TC1
->TC_CV
< t0
*(fdt
-8));
655 int saved_cmr
= AT91C_BASE_TC1
->TC_CMR
;
656 AT91C_BASE_TC1
->TC_CMR
&= ~AT91C_TC_ETRGEDG
; /* Disable external trigger for the clock */
657 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_SWTRG
; /* Reset the clock and use it for response timing */
661 hitag_send_bit(t0
, 1); /* Start of frame */
663 for(i
=0; i
<frame_len
; i
++) {
664 hitag_send_bit(t0
, !!(frame
[i
/ 8] & (1<<( 7-(i
%8) ))) );
668 AT91C_BASE_TC1
->TC_CMR
= saved_cmr
;
671 /* Callback structure to cleanly separate tag emulation code from the radio layer. */
672 static int hitag_cb(const char* response_data
, const int response_length
, const int fdt
, void *cb_cookie
)
674 hitag_send_frame(*(int*)cb_cookie
, response_length
, response_data
, fdt
);
677 /* Frame length in bits, frame contents in MSBit first format */
678 static void hitag_handle_frame(int t0
, int frame_len
, char *frame
)
680 hitag2_handle_command(frame
, frame_len
, hitag_cb
, &t0
);
683 // compose fc/8 fc/10 waveform
684 static void fc(int c
, int *n
) {
685 BYTE
*dest
= (BYTE
*)BigBuf
;
688 // for when we want an fc8 pattern every 4 logical bits
699 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
701 for (idx
=0; idx
<6; idx
++) {
713 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
715 for (idx
=0; idx
<5; idx
++) {
730 // prepare a waveform pattern in the buffer based on the ID given then
731 // simulate a HID tag until the button is pressed
732 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
736 HID tag bitstream format
737 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
738 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
739 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
740 A fc8 is inserted before every 4 bits
741 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
742 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
746 DbpString("Tags can only have 44 bits.");
750 // special start of frame marker containing invalid bit sequences
751 fc(8, &n
); fc(8, &n
); // invalid
752 fc(8, &n
); fc(10, &n
); // logical 0
753 fc(10, &n
); fc(10, &n
); // invalid
754 fc(8, &n
); fc(10, &n
); // logical 0
757 // manchester encode bits 43 to 32
758 for (i
=11; i
>=0; i
--) {
759 if ((i
%4)==3) fc(0,&n
);
761 fc(10, &n
); fc(8, &n
); // low-high transition
763 fc(8, &n
); fc(10, &n
); // high-low transition
768 // manchester encode bits 31 to 0
769 for (i
=31; i
>=0; i
--) {
770 if ((i
%4)==3) fc(0,&n
);
772 fc(10, &n
); fc(8, &n
); // low-high transition
774 fc(8, &n
); fc(10, &n
); // high-low transition
780 SimulateTagLowFrequency(n
, ledcontrol
);
787 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it
788 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
790 BYTE
*dest
= (BYTE
*)BigBuf
;
791 int m
=0, n
=0, i
=0, idx
=0, found
=0, lastval
=0;
794 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
795 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
797 // Connect the A/D to the peak-detected low-frequency path.
798 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
800 // Give it a bit of time for the resonant antenna to settle.
803 // Now set up the SSC to get the ADC samples that are now streaming at us.
811 DbpString("Stopped");
821 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
822 AT91C_BASE_SSC
->SSC_THR
= 0x43;
826 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
827 dest
[i
] = (BYTE
)AT91C_BASE_SSC
->SSC_RHR
;
828 // we don't care about actual value, only if it's more or less than a
829 // threshold essentially we capture zero crossings for later analysis
830 if(dest
[i
] < 127) dest
[i
] = 0; else dest
[i
] = 1;
842 // sync to first lo-hi transition
843 for( idx
=1; idx
<m
; idx
++) {
844 if (dest
[idx
-1]<dest
[idx
])
850 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
851 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
852 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
853 for( i
=0; idx
<m
; idx
++) {
854 if (dest
[idx
-1]<dest
[idx
]) {
869 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
874 for( idx
=0; idx
<m
; idx
++) {
875 if (dest
[idx
]==lastval
) {
878 // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
879 // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
880 // swallowed up by rounding
881 // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
882 // special start of frame markers use invalid manchester states (no transitions) by using sequences
885 n
=(n
+1)/6; // fc/8 in sets of 6
887 n
=(n
+1)/5; // fc/10 in sets of 5
889 switch (n
) { // stuff appropriate bits in buffer
892 dest
[i
++]=dest
[idx
-1];
895 dest
[i
++]=dest
[idx
-1];
896 dest
[i
++]=dest
[idx
-1];
898 case 3: // 3 bit start of frame markers
899 dest
[i
++]=dest
[idx
-1];
900 dest
[i
++]=dest
[idx
-1];
901 dest
[i
++]=dest
[idx
-1];
903 // When a logic 0 is immediately followed by the start of the next transmisson
904 // (special pattern) a pattern of 4 bit duration lengths is created.
906 dest
[i
++]=dest
[idx
-1];
907 dest
[i
++]=dest
[idx
-1];
908 dest
[i
++]=dest
[idx
-1];
909 dest
[i
++]=dest
[idx
-1];
911 default: // this shouldn't happen, don't stuff any bits
921 // final loop, go over previously decoded manchester data and decode into usable tag ID
922 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
923 for( idx
=0; idx
<m
-6; idx
++) {
924 // search for a start of frame marker
925 if ( dest
[idx
] && dest
[idx
+1] && dest
[idx
+2] && (!dest
[idx
+3]) && (!dest
[idx
+4]) && (!dest
[idx
+5]) )
929 if (found
&& (hi
|lo
)) {
930 char output_string
[64];
931 sprintf(output_string
, "TAG ID: %x %x %x",
932 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
933 DbpString(output_string
);
934 /* if we're only looking for one tag */
947 if (dest
[idx
] && (!dest
[idx
+1]) ) {
950 } else if ( (!dest
[idx
]) && dest
[idx
+1]) {
960 if ( dest
[idx
] && dest
[idx
+1] && dest
[idx
+2] && (!dest
[idx
+3]) && (!dest
[idx
+4]) && (!dest
[idx
+5]) )
964 if (found
&& (hi
|lo
)) {
965 char output_string
[64];
966 sprintf(output_string
, "TAG ID: %x %x %x",
967 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
968 DbpString(output_string
);
969 /* if we're only looking for one tag */