]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
fix: forgot to remove this when merging piwi's fixes.
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "usb_cdc.h"
14 #include "cmd.h"
15
16 #include "proxmark3.h"
17 #include "apps.h"
18 #include "util.h"
19 #include "printf.h"
20 #include "string.h"
21
22 #include <stdarg.h>
23
24 #include "legicrf.h"
25 #include <hitag2.h>
26 #include "lfsampling.h"
27 #include "BigBuf.h"
28 #include "mifareutil.h"
29 #include "pcf7931.h"
30 #ifdef WITH_LCD
31 #include "LCD.h"
32 #endif
33
34 // Craig Young - 14a stand-alone code
35 #ifdef WITH_ISO14443a_StandAlone
36 #include "iso14443a.h"
37 #include "protocols.h"
38 #endif
39
40 #define abs(x) ( ((x)<0) ? -(x) : (x) )
41
42 //=============================================================================
43 // A buffer where we can queue things up to be sent through the FPGA, for
44 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
45 // is the order in which they go out on the wire.
46 //=============================================================================
47
48 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
49 uint8_t ToSend[TOSEND_BUFFER_SIZE];
50 int ToSendMax = 0;
51 static int ToSendBit;
52 struct common_area common_area __attribute__((section(".commonarea")));
53
54 void ToSendReset(void)
55 {
56 ToSendMax = -1;
57 ToSendBit = 8;
58 }
59
60 void ToSendStuffBit(int b)
61 {
62 if(ToSendBit >= 8) {
63 ToSendMax++;
64 ToSend[ToSendMax] = 0;
65 ToSendBit = 0;
66 }
67
68 if(b) {
69 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
70 }
71
72 ToSendBit++;
73
74 if(ToSendMax >= sizeof(ToSend)) {
75 ToSendBit = 0;
76 DbpString("ToSendStuffBit overflowed!");
77 }
78 }
79
80 //=============================================================================
81 // Debug print functions, to go out over USB, to the usual PC-side client.
82 //=============================================================================
83
84 void DbpString(char *str)
85 {
86 byte_t len = strlen(str);
87 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
88 }
89
90 #if 0
91 void DbpIntegers(int x1, int x2, int x3)
92 {
93 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
94 }
95 #endif
96
97 void Dbprintf(const char *fmt, ...) {
98 // should probably limit size here; oh well, let's just use a big buffer
99 char output_string[128];
100 va_list ap;
101
102 va_start(ap, fmt);
103 kvsprintf(fmt, output_string, 10, ap);
104 va_end(ap);
105
106 DbpString(output_string);
107 }
108
109 // prints HEX & ASCII
110 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
111 int l=0,i;
112 char ascii[9];
113
114 while (len>0) {
115 if (len>8) l=8;
116 else l=len;
117
118 memcpy(ascii,d,l);
119 ascii[l]=0;
120
121 // filter safe ascii
122 for (i=0;i<l;i++)
123 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
124
125 if (bAsci) {
126 Dbprintf("%-8s %*D",ascii,l,d," ");
127 } else {
128 Dbprintf("%*D",l,d," ");
129 }
130
131 len-=8;
132 d+=8;
133 }
134 }
135
136 //-----------------------------------------------------------------------------
137 // Read an ADC channel and block till it completes, then return the result
138 // in ADC units (0 to 1023). Also a routine to average 32 samples and
139 // return that.
140 //-----------------------------------------------------------------------------
141 static int ReadAdc(int ch)
142 {
143 uint32_t d;
144
145 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
146 AT91C_BASE_ADC->ADC_MR =
147 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
148 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
149 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
150
151 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
152 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
153 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
154 //
155 // The maths are:
156 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
157 //
158 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
159 //
160 // Note: with the "historic" values in the comments above, the error was 34% !!!
161
162 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
163
164 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
165
166 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
167 ;
168 d = AT91C_BASE_ADC->ADC_CDR[ch];
169
170 return d;
171 }
172
173 int AvgAdc(int ch) // was static - merlok
174 {
175 int i;
176 int a = 0;
177
178 for(i = 0; i < 32; i++) {
179 a += ReadAdc(ch);
180 }
181
182 return (a + 15) >> 5;
183 }
184
185 void MeasureAntennaTuning(void)
186 {
187 uint8_t LF_Results[256];
188 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
189 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
190
191 LED_B_ON();
192
193 /*
194 * Sweeps the useful LF range of the proxmark from
195 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
196 * read the voltage in the antenna, the result left
197 * in the buffer is a graph which should clearly show
198 * the resonating frequency of your LF antenna
199 * ( hopefully around 95 if it is tuned to 125kHz!)
200 */
201
202 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
203 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
204 for (i=255; i>=19; i--) {
205 WDT_HIT();
206 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
207 SpinDelay(20);
208 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
209 if (i==95) vLf125 = adcval; // voltage at 125Khz
210 if (i==89) vLf134 = adcval; // voltage at 134Khz
211
212 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
213 if(LF_Results[i] > peak) {
214 peakv = adcval;
215 peak = LF_Results[i];
216 peakf = i;
217 //ptr = i;
218 }
219 }
220
221 for (i=18; i >= 0; i--) LF_Results[i] = 0;
222
223 LED_A_ON();
224 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
225 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
226 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
227 SpinDelay(20);
228 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
229
230 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
231 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
232 LED_A_OFF();
233 LED_B_OFF();
234 return;
235 }
236
237 void MeasureAntennaTuningHf(void)
238 {
239 int vHf = 0; // in mV
240
241 DbpString("Measuring HF antenna, press button to exit");
242
243 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
244 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
245 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
246
247 for (;;) {
248 SpinDelay(20);
249 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
250
251 Dbprintf("%d mV",vHf);
252 if (BUTTON_PRESS()) break;
253 }
254 DbpString("cancelled");
255
256 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
257
258 }
259
260
261 void ReadMem(int addr)
262 {
263 const uint8_t *data = ((uint8_t *)addr);
264
265 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
266 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
267 }
268
269 /* osimage version information is linked in */
270 extern struct version_information version_information;
271 /* bootrom version information is pointed to from _bootphase1_version_pointer */
272 extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
273 void SendVersion(void)
274 {
275 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
276 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
277
278 /* Try to find the bootrom version information. Expect to find a pointer at
279 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
280 * pointer, then use it.
281 */
282 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
283 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
284 strcat(VersionString, "bootrom version information appears invalid\n");
285 } else {
286 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
287 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
288 }
289
290 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
291 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
292
293 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
294 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
295 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
296 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
297
298 // Send Chip ID and used flash memory
299 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
300 uint32_t compressed_data_section_size = common_area.arg1;
301 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
302 }
303
304 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
305 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
306 void printUSBSpeed(void)
307 {
308 Dbprintf("USB Speed:");
309 Dbprintf(" Sending USB packets to client...");
310
311 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
312 uint8_t *test_data = BigBuf_get_addr();
313 uint32_t end_time;
314
315 uint32_t start_time = end_time = GetTickCount();
316 uint32_t bytes_transferred = 0;
317
318 LED_B_ON();
319 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
320 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
321 end_time = GetTickCount();
322 bytes_transferred += USB_CMD_DATA_SIZE;
323 }
324 LED_B_OFF();
325
326 Dbprintf(" Time elapsed: %dms", end_time - start_time);
327 Dbprintf(" Bytes transferred: %d", bytes_transferred);
328 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
329 1000 * bytes_transferred / (end_time - start_time));
330
331 }
332
333 /**
334 * Prints runtime information about the PM3.
335 **/
336 void SendStatus(void)
337 {
338 BigBuf_print_status();
339 Fpga_print_status();
340 printConfig(); //LF Sampling config
341 printUSBSpeed();
342 Dbprintf("Various");
343 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
344 Dbprintf(" ToSendMax..........%d", ToSendMax);
345 Dbprintf(" ToSendBit..........%d", ToSendBit);
346 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE);
347
348 cmd_send(CMD_ACK,1,0,0,0,0);
349 }
350
351 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
352
353 #define OPTS 2
354
355 void StandAloneMode()
356 {
357 DbpString("Stand-alone mode! No PC necessary.");
358 // Oooh pretty -- notify user we're in elite samy mode now
359 LED(LED_RED, 200);
360 LED(LED_ORANGE, 200);
361 LED(LED_GREEN, 200);
362 LED(LED_ORANGE, 200);
363 LED(LED_RED, 200);
364 LED(LED_ORANGE, 200);
365 LED(LED_GREEN, 200);
366 LED(LED_ORANGE, 200);
367 LED(LED_RED, 200);
368
369 }
370
371 #endif
372
373
374
375 #ifdef WITH_ISO14443a_StandAlone
376 void StandAloneMode14a()
377 {
378 StandAloneMode();
379 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
380
381 int selected = 0;
382 int playing = 0, iGotoRecord = 0, iGotoClone = 0;
383 int cardRead[OPTS] = {0};
384 uint8_t readUID[10] = {0};
385 uint32_t uid_1st[OPTS]={0};
386 uint32_t uid_2nd[OPTS]={0};
387 uint32_t uid_tmp1 = 0;
388 uint32_t uid_tmp2 = 0;
389 iso14a_card_select_t hi14a_card[OPTS];
390
391 uint8_t params = (MAGIC_SINGLE | MAGIC_DATAIN);
392
393 LED(selected + 1, 0);
394
395 for (;;)
396 {
397 usb_poll();
398 WDT_HIT();
399 SpinDelay(300);
400
401 if (iGotoRecord == 1 || cardRead[selected] == 0)
402 {
403 iGotoRecord = 0;
404 LEDsoff();
405 LED(selected + 1, 0);
406 LED(LED_RED2, 0);
407
408 // record
409 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
410 /* need this delay to prevent catching some weird data */
411 SpinDelay(500);
412 /* Code for reading from 14a tag */
413 uint8_t uid[10] ={0};
414 uint32_t cuid;
415 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
416
417 for ( ; ; )
418 {
419 WDT_HIT();
420 if (BUTTON_PRESS()) {
421 if (cardRead[selected]) {
422 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
423 break;
424 }
425 else if (cardRead[(selected+1)%OPTS]) {
426 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
427 selected = (selected+1)%OPTS;
428 break; // playing = 1;
429 }
430 else {
431 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
432 SpinDelay(300);
433 }
434 }
435 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid))
436 continue;
437 else
438 {
439 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
440 memcpy(readUID,uid,10*sizeof(uint8_t));
441 uint8_t *dst = (uint8_t *)&uid_tmp1;
442 // Set UID byte order
443 for (int i=0; i<4; i++)
444 dst[i] = uid[3-i];
445 dst = (uint8_t *)&uid_tmp2;
446 for (int i=0; i<4; i++)
447 dst[i] = uid[7-i];
448 if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
449 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
450 }
451 else {
452 if (uid_tmp2) {
453 Dbprintf("Bank[%d] received a 7-byte UID",selected);
454 uid_1st[selected] = (uid_tmp1)>>8;
455 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
456 }
457 else {
458 Dbprintf("Bank[%d] received a 4-byte UID",selected);
459 uid_1st[selected] = uid_tmp1;
460 uid_2nd[selected] = uid_tmp2;
461 }
462 break;
463 }
464 }
465 }
466 Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
467 Dbprintf("SAK = %02X",hi14a_card[selected].sak);
468 LEDsoff();
469 LED(LED_GREEN, 200);
470 LED(LED_ORANGE, 200);
471 LED(LED_GREEN, 200);
472 LED(LED_ORANGE, 200);
473
474 LEDsoff();
475 LED(selected + 1, 0);
476
477 // Next state is replay:
478 playing = 1;
479
480 cardRead[selected] = 1;
481 }
482 /* MF Classic UID clone */
483 else if (iGotoClone==1)
484 {
485 iGotoClone=0;
486 LEDsoff();
487 LED(selected + 1, 0);
488 LED(LED_ORANGE, 250);
489
490 // record
491 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
492
493 // wait for button to be released
494 // Delay cloning until card is in place
495 while(BUTTON_PRESS())
496 WDT_HIT();
497
498 Dbprintf("Starting clone. [Bank: %u]", selected);
499 // need this delay to prevent catching some weird data
500 SpinDelay(500);
501 // Begin clone function here:
502 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
503 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
504 memcpy(c.d.asBytes, data, 16);
505 SendCommand(&c);
506
507 Block read is similar:
508 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
509 We need to imitate that call with blockNo 0 to set a uid.
510
511 The get and set commands are handled in this file:
512 // Work with "magic Chinese" card
513 case CMD_MIFARE_CSETBLOCK:
514 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
515 break;
516 case CMD_MIFARE_CGETBLOCK:
517 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
518 break;
519
520 mfCSetUID provides example logic for UID set workflow:
521 -Read block0 from card in field with MifareCGetBlock()
522 -Configure new values without replacing reserved bytes
523 memcpy(block0, uid, 4); // Copy UID bytes from byte array
524 // Mifare UID BCC
525 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
526 Bytes 5-7 are reserved SAK and ATQA for mifare classic
527 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
528 */
529 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
530 // arg0 = Flags, arg1=blockNo
531 MifareCGetBlock(params, 0, oldBlock0);
532 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
533 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
534 playing = 1;
535 }
536 else {
537 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
538 memcpy(newBlock0,oldBlock0,16);
539 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
540
541 newBlock0[0] = uid_1st[selected]>>24;
542 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
543 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
544 newBlock0[3] = 0xFF & (uid_1st[selected]);
545 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
546
547 // arg0 = workFlags, arg1 = blockNo, datain
548 MifareCSetBlock(params, 0, newBlock0);
549 MifareCGetBlock(params, 0, testBlock0);
550
551 if (memcmp(testBlock0, newBlock0, 16)==0) {
552 DbpString("Cloned successfull!");
553 cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
554 playing = 0;
555 iGotoRecord = 1;
556 selected = (selected + 1) % OPTS;
557 } else {
558 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
559 playing = 1;
560 }
561 }
562 LEDsoff();
563 LED(selected + 1, 0);
564 }
565 // Change where to record (or begin playing)
566 else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
567 {
568 LEDsoff();
569 LED(selected + 1, 0);
570
571 // Begin transmitting
572 if (playing)
573 {
574 LED(LED_GREEN, 0);
575 DbpString("Playing");
576 for ( ; ; ) {
577 WDT_HIT();
578 int button_action = BUTTON_HELD(1000);
579 if (button_action == 0) { // No button action, proceed with sim
580 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
581 uint8_t flags = ( uid_2nd[selected] > 0x00 ) ? FLAG_7B_UID_IN_DATA : FLAG_4B_UID_IN_DATA;
582 num_to_bytes(uid_1st[selected], 3, data);
583 num_to_bytes(uid_2nd[selected], 4, data);
584
585 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
586 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
587 DbpString("Mifare Classic");
588 SimulateIso14443aTag(1, flags, data); // Mifare Classic
589 }
590 else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
591 DbpString("Mifare Ultralight");
592 SimulateIso14443aTag(2, flags, data); // Mifare Ultralight
593 }
594 else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
595 DbpString("Mifare DESFire");
596 SimulateIso14443aTag(3, flags, data); // Mifare DESFire
597 }
598 else {
599 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
600 SimulateIso14443aTag(1, flags, data);
601 }
602 }
603 else if (button_action == BUTTON_SINGLE_CLICK) {
604 selected = (selected + 1) % OPTS;
605 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
606 iGotoRecord = 1;
607 break;
608 }
609 else if (button_action == BUTTON_HOLD) {
610 Dbprintf("Playtime over. Begin cloning...");
611 iGotoClone = 1;
612 break;
613 }
614 WDT_HIT();
615 }
616
617 /* We pressed a button so ignore it here with a delay */
618 SpinDelay(300);
619 LEDsoff();
620 LED(selected + 1, 0);
621 }
622 else
623 while(BUTTON_PRESS())
624 WDT_HIT();
625 }
626 }
627 }
628 #elif WITH_LF
629 // samy's sniff and repeat routine
630 void SamyRun()
631 {
632 StandAloneMode();
633 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
634
635 int high[OPTS], low[OPTS];
636 int selected = 0;
637 int playing = 0;
638 int cardRead = 0;
639
640 // Turn on selected LED
641 LED(selected + 1, 0);
642
643 for (;;)
644 {
645 usb_poll();
646 WDT_HIT();
647
648 // Was our button held down or pressed?
649 int button_pressed = BUTTON_HELD(1000);
650 SpinDelay(300);
651
652 // Button was held for a second, begin recording
653 if (button_pressed > 0 && cardRead == 0)
654 {
655 LEDsoff();
656 LED(selected + 1, 0);
657 LED(LED_RED2, 0);
658
659 // record
660 DbpString("Starting recording");
661
662 // wait for button to be released
663 while(BUTTON_PRESS())
664 WDT_HIT();
665
666 /* need this delay to prevent catching some weird data */
667 SpinDelay(500);
668
669 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
670 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
671
672 LEDsoff();
673 LED(selected + 1, 0);
674 // Finished recording
675
676 // If we were previously playing, set playing off
677 // so next button push begins playing what we recorded
678 playing = 0;
679
680 cardRead = 1;
681
682 }
683
684 else if (button_pressed > 0 && cardRead == 1)
685 {
686 LEDsoff();
687 LED(selected + 1, 0);
688 LED(LED_ORANGE, 0);
689
690 // record
691 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
692
693 // wait for button to be released
694 while(BUTTON_PRESS())
695 WDT_HIT();
696
697 /* need this delay to prevent catching some weird data */
698 SpinDelay(500);
699
700 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
701 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
702
703 LEDsoff();
704 LED(selected + 1, 0);
705 // Finished recording
706
707 // If we were previously playing, set playing off
708 // so next button push begins playing what we recorded
709 playing = 0;
710
711 cardRead = 0;
712
713 }
714
715 // Change where to record (or begin playing)
716 else if (button_pressed)
717 {
718 // Next option if we were previously playing
719 if (playing)
720 selected = (selected + 1) % OPTS;
721 playing = !playing;
722
723 LEDsoff();
724 LED(selected + 1, 0);
725
726 // Begin transmitting
727 if (playing)
728 {
729 LED(LED_GREEN, 0);
730 DbpString("Playing");
731 // wait for button to be released
732 while(BUTTON_PRESS())
733 WDT_HIT();
734 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
735 CmdHIDsimTAG(high[selected], low[selected], 0);
736 DbpString("Done playing");
737 if (BUTTON_HELD(1000) > 0)
738 {
739 DbpString("Exiting");
740 LEDsoff();
741 return;
742 }
743
744 /* We pressed a button so ignore it here with a delay */
745 SpinDelay(300);
746
747 // when done, we're done playing, move to next option
748 selected = (selected + 1) % OPTS;
749 playing = !playing;
750 LEDsoff();
751 LED(selected + 1, 0);
752 }
753 else
754 while(BUTTON_PRESS())
755 WDT_HIT();
756 }
757 }
758 }
759
760 #endif
761 /*
762 OBJECTIVE
763 Listen and detect an external reader. Determine the best location
764 for the antenna.
765
766 INSTRUCTIONS:
767 Inside the ListenReaderField() function, there is two mode.
768 By default, when you call the function, you will enter mode 1.
769 If you press the PM3 button one time, you will enter mode 2.
770 If you press the PM3 button a second time, you will exit the function.
771
772 DESCRIPTION OF MODE 1:
773 This mode just listens for an external reader field and lights up green
774 for HF and/or red for LF. This is the original mode of the detectreader
775 function.
776
777 DESCRIPTION OF MODE 2:
778 This mode will visually represent, using the LEDs, the actual strength of the
779 current compared to the maximum current detected. Basically, once you know
780 what kind of external reader is present, it will help you spot the best location to place
781 your antenna. You will probably not get some good results if there is a LF and a HF reader
782 at the same place! :-)
783
784 LIGHT SCHEME USED:
785 */
786 static const char LIGHT_SCHEME[] = {
787 0x0, /* ---- | No field detected */
788 0x1, /* X--- | 14% of maximum current detected */
789 0x2, /* -X-- | 29% of maximum current detected */
790 0x4, /* --X- | 43% of maximum current detected */
791 0x8, /* ---X | 57% of maximum current detected */
792 0xC, /* --XX | 71% of maximum current detected */
793 0xE, /* -XXX | 86% of maximum current detected */
794 0xF, /* XXXX | 100% of maximum current detected */
795 };
796 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
797
798 void ListenReaderField(int limit)
799 {
800 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
801 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
802 int mode=1, display_val, display_max, i;
803
804 #define LF_ONLY 1
805 #define HF_ONLY 2
806 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
807
808
809 // switch off FPGA - we don't want to measure our own signal
810 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
811 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
812
813 LEDsoff();
814
815 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
816
817 if(limit != HF_ONLY) {
818 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
819 lf_baseline = lf_av;
820 }
821
822 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
823
824 if (limit != LF_ONLY) {
825 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
826 hf_baseline = hf_av;
827 }
828
829 for(;;) {
830 if (BUTTON_PRESS()) {
831 SpinDelay(500);
832 switch (mode) {
833 case 1:
834 mode=2;
835 DbpString("Signal Strength Mode");
836 break;
837 case 2:
838 default:
839 DbpString("Stopped");
840 LEDsoff();
841 return;
842 break;
843 }
844 }
845 WDT_HIT();
846
847 if (limit != HF_ONLY) {
848 if(mode == 1) {
849 if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
850 LED_D_ON();
851 else
852 LED_D_OFF();
853 }
854
855 lf_av_new = AvgAdc(ADC_CHAN_LF);
856 // see if there's a significant change
857 if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
858 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
859 lf_av = lf_av_new;
860 if (lf_av > lf_max)
861 lf_max = lf_av;
862 }
863 }
864
865 if (limit != LF_ONLY) {
866 if (mode == 1){
867 if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
868 LED_B_ON();
869 else
870 LED_B_OFF();
871 }
872
873 hf_av_new = AvgAdc(ADC_CHAN_HF);
874 // see if there's a significant change
875 if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
876 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
877 hf_av = hf_av_new;
878 if (hf_av > hf_max)
879 hf_max = hf_av;
880 }
881 }
882
883 if(mode == 2) {
884 if (limit == LF_ONLY) {
885 display_val = lf_av;
886 display_max = lf_max;
887 } else if (limit == HF_ONLY) {
888 display_val = hf_av;
889 display_max = hf_max;
890 } else { /* Pick one at random */
891 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
892 display_val = hf_av;
893 display_max = hf_max;
894 } else {
895 display_val = lf_av;
896 display_max = lf_max;
897 }
898 }
899 for (i=0; i<LIGHT_LEN; i++) {
900 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
901 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
902 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
903 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
904 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
905 break;
906 }
907 }
908 }
909 }
910 }
911
912 void UsbPacketReceived(uint8_t *packet, int len)
913 {
914 UsbCommand *c = (UsbCommand *)packet;
915
916 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
917
918 switch(c->cmd) {
919 #ifdef WITH_LF
920 case CMD_SET_LF_SAMPLING_CONFIG:
921 setSamplingConfig((sample_config *) c->d.asBytes);
922 break;
923 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
924 cmd_send(CMD_ACK, SampleLF(c->arg[0]),0,0,0,0);
925 break;
926 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
927 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
928 break;
929 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
930 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
931 break;
932 case CMD_HID_DEMOD_FSK:
933 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
934 break;
935 case CMD_HID_SIM_TAG:
936 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
937 break;
938 case CMD_FSK_SIM_TAG:
939 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
940 break;
941 case CMD_ASK_SIM_TAG:
942 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
943 break;
944 case CMD_PSK_SIM_TAG:
945 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
946 break;
947 case CMD_HID_CLONE_TAG:
948 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
949 break;
950 case CMD_IO_DEMOD_FSK:
951 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
952 break;
953 case CMD_IO_CLONE_TAG:
954 CopyIOtoT55x7(c->arg[0], c->arg[1]);
955 break;
956 case CMD_EM410X_DEMOD:
957 CmdEM410xdemod(c->arg[0], 0, 0, 1);
958 break;
959 case CMD_EM410X_WRITE_TAG:
960 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
961 break;
962 case CMD_READ_TI_TYPE:
963 ReadTItag();
964 break;
965 case CMD_WRITE_TI_TYPE:
966 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
967 break;
968 case CMD_SIMULATE_TAG_125K:
969 LED_A_ON();
970 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
971 LED_A_OFF();
972 break;
973 case CMD_LF_SIMULATE_BIDIR:
974 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
975 break;
976 case CMD_INDALA_CLONE_TAG:
977 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
978 break;
979 case CMD_INDALA_CLONE_TAG_L:
980 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
981 break;
982 case CMD_T55XX_READ_BLOCK:
983 T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
984 break;
985 case CMD_T55XX_WRITE_BLOCK:
986 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
987 break;
988 case CMD_T55XX_WAKEUP:
989 T55xxWakeUp(c->arg[0]);
990 break;
991 case CMD_T55XX_RESET_READ:
992 T55xxResetRead();
993 break;
994 case CMD_PCF7931_READ:
995 ReadPCF7931();
996 break;
997 case CMD_PCF7931_WRITE:
998 WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
999 break;
1000 case CMD_EM4X_READ_WORD:
1001 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
1002 break;
1003 case CMD_EM4X_WRITE_WORD:
1004 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
1005 break;
1006 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
1007 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
1008 break;
1009 case CMD_VIKING_CLONE_TAG:
1010 CopyViKingtoT55x7(c->arg[0],c->arg[1]);
1011 break;
1012
1013
1014 #endif
1015
1016 #ifdef WITH_HITAG
1017 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1018 SnoopHitag(c->arg[0]);
1019 break;
1020 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1021 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1022 break;
1023 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1024 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1025 break;
1026 #endif
1027
1028 #ifdef WITH_ISO15693
1029 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1030 AcquireRawAdcSamplesIso15693();
1031 break;
1032 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
1033 RecordRawAdcSamplesIso15693();
1034 break;
1035
1036 case CMD_ISO_15693_COMMAND:
1037 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1038 break;
1039
1040 case CMD_ISO_15693_FIND_AFI:
1041 BruteforceIso15693Afi(c->arg[0]);
1042 break;
1043
1044 case CMD_ISO_15693_DEBUG:
1045 SetDebugIso15693(c->arg[0]);
1046 break;
1047
1048 case CMD_READER_ISO_15693:
1049 ReaderIso15693(c->arg[0]);
1050 break;
1051 case CMD_SIMTAG_ISO_15693:
1052 SimTagIso15693(c->arg[0], c->d.asBytes);
1053 break;
1054 #endif
1055
1056 #ifdef WITH_LEGICRF
1057 case CMD_SIMULATE_TAG_LEGIC_RF:
1058 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
1059 break;
1060
1061 case CMD_WRITER_LEGIC_RF:
1062 LegicRfWriter(c->arg[1], c->arg[0]);
1063 break;
1064
1065 case CMD_READER_LEGIC_RF:
1066 LegicRfReader(c->arg[0], c->arg[1]);
1067 break;
1068 #endif
1069
1070 #ifdef WITH_ISO14443b
1071 case CMD_READ_SRI512_TAG:
1072 ReadSTMemoryIso14443b(0x0F);
1073 break;
1074 case CMD_READ_SRIX4K_TAG:
1075 ReadSTMemoryIso14443b(0x7F);
1076 break;
1077 case CMD_SNOOP_ISO_14443B:
1078 SnoopIso14443b();
1079 break;
1080 case CMD_SIMULATE_TAG_ISO_14443B:
1081 SimulateIso14443bTag();
1082 break;
1083 case CMD_ISO_14443B_COMMAND:
1084 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1085 break;
1086 #endif
1087
1088 #ifdef WITH_ISO14443a
1089 case CMD_SNOOP_ISO_14443a:
1090 SniffIso14443a(c->arg[0]);
1091 break;
1092 case CMD_READER_ISO_14443a:
1093 ReaderIso14443a(c);
1094 break;
1095 case CMD_SIMULATE_TAG_ISO_14443a:
1096 SimulateIso14443aTag(c->arg[0], c->arg[1], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
1097 break;
1098
1099 case CMD_EPA_PACE_COLLECT_NONCE:
1100 EPA_PACE_Collect_Nonce(c);
1101 break;
1102 case CMD_EPA_PACE_REPLAY:
1103 EPA_PACE_Replay(c);
1104 break;
1105
1106 case CMD_READER_MIFARE:
1107 ReaderMifare(c->arg[0]);
1108 break;
1109 case CMD_MIFARE_READBL:
1110 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1111 break;
1112 case CMD_MIFAREU_READBL:
1113 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
1114 break;
1115 case CMD_MIFAREUC_AUTH:
1116 MifareUC_Auth(c->arg[0],c->d.asBytes);
1117 break;
1118 case CMD_MIFAREU_READCARD:
1119 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1120 break;
1121 case CMD_MIFAREUC_SETPWD:
1122 MifareUSetPwd(c->arg[0], c->d.asBytes);
1123 break;
1124 case CMD_MIFARE_READSC:
1125 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1126 break;
1127 case CMD_MIFARE_WRITEBL:
1128 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1129 break;
1130 //case CMD_MIFAREU_WRITEBL_COMPAT:
1131 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1132 //break;
1133 case CMD_MIFAREU_WRITEBL:
1134 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
1135 break;
1136 case CMD_MIFARE_NESTED:
1137 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1138 break;
1139 case CMD_MIFARE_CHKKEYS:
1140 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1141 break;
1142 case CMD_SIMULATE_MIFARE_CARD:
1143 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1144 break;
1145
1146 // emulator
1147 case CMD_MIFARE_SET_DBGMODE:
1148 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1149 break;
1150 case CMD_MIFARE_EML_MEMCLR:
1151 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1152 break;
1153 case CMD_MIFARE_EML_MEMSET:
1154 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1155 break;
1156 case CMD_MIFARE_EML_MEMGET:
1157 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1158 break;
1159 case CMD_MIFARE_EML_CARDLOAD:
1160 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1161 break;
1162
1163 // Work with "magic Chinese" card
1164 case CMD_MIFARE_CSETBLOCK:
1165 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
1166 break;
1167 case CMD_MIFARE_CGETBLOCK:
1168 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
1169 break;
1170 case CMD_MIFARE_CIDENT:
1171 MifareCIdent();
1172 break;
1173
1174 // mifare sniffer
1175 case CMD_MIFARE_SNIFFER:
1176 SniffMifare(c->arg[0]);
1177 break;
1178
1179 //mifare desfire
1180 case CMD_MIFARE_DESFIRE_READBL: break;
1181 case CMD_MIFARE_DESFIRE_WRITEBL: break;
1182 case CMD_MIFARE_DESFIRE_AUTH1:
1183 MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1184 break;
1185 case CMD_MIFARE_DESFIRE_AUTH2:
1186 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1187 break;
1188 case CMD_MIFARE_DES_READER:
1189 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1190 break;
1191 case CMD_MIFARE_DESFIRE_INFO:
1192 MifareDesfireGetInformation();
1193 break;
1194 case CMD_MIFARE_DESFIRE:
1195 MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
1196 break;
1197
1198 case CMD_MIFARE_COLLECT_NONCES:
1199 break;
1200 #endif
1201
1202 #ifdef WITH_ICLASS
1203 // Makes use of ISO14443a FPGA Firmware
1204 case CMD_SNOOP_ICLASS:
1205 SnoopIClass();
1206 break;
1207 case CMD_SIMULATE_TAG_ICLASS:
1208 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1209 break;
1210 case CMD_READER_ICLASS:
1211 ReaderIClass(c->arg[0]);
1212 break;
1213 case CMD_READER_ICLASS_REPLAY:
1214 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
1215 break;
1216 case CMD_ICLASS_EML_MEMSET:
1217 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1218 break;
1219 case CMD_ICLASS_WRITEBLOCK:
1220 iClass_WriteBlock(c->arg[0], c->d.asBytes);
1221 break;
1222 case CMD_ICLASS_READCHECK: // auth step 1
1223 iClass_ReadCheck(c->arg[0], c->arg[1]);
1224 break;
1225 case CMD_ICLASS_READBLOCK:
1226 iClass_ReadBlk(c->arg[0]);
1227 break;
1228 case CMD_ICLASS_AUTHENTICATION: //check
1229 iClass_Authentication(c->d.asBytes);
1230 break;
1231 case CMD_ICLASS_DUMP:
1232 iClass_Dump(c->arg[0], c->arg[1]);
1233 break;
1234 case CMD_ICLASS_CLONE:
1235 iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
1236 break;
1237 #endif
1238 #ifdef WITH_HFSNOOP
1239 case CMD_HF_SNIFFER:
1240 HfSnoop(c->arg[0], c->arg[1]);
1241 break;
1242 #endif
1243
1244 case CMD_BUFF_CLEAR:
1245 BigBuf_Clear();
1246 break;
1247
1248 case CMD_MEASURE_ANTENNA_TUNING:
1249 MeasureAntennaTuning();
1250 break;
1251
1252 case CMD_MEASURE_ANTENNA_TUNING_HF:
1253 MeasureAntennaTuningHf();
1254 break;
1255
1256 case CMD_LISTEN_READER_FIELD:
1257 ListenReaderField(c->arg[0]);
1258 break;
1259
1260 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1261 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1262 SpinDelay(200);
1263 LED_D_OFF(); // LED D indicates field ON or OFF
1264 break;
1265
1266 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
1267
1268 LED_B_ON();
1269 uint8_t *BigBuf = BigBuf_get_addr();
1270 size_t len = 0;
1271 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
1272 len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
1273 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1274 }
1275 // Trigger a finish downloading signal with an ACK frame
1276 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
1277 LED_B_OFF();
1278 break;
1279
1280 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
1281 uint8_t *b = BigBuf_get_addr();
1282 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1283 cmd_send(CMD_ACK,0,0,0,0,0);
1284 break;
1285 }
1286 case CMD_READ_MEM:
1287 ReadMem(c->arg[0]);
1288 break;
1289
1290 case CMD_SET_LF_DIVISOR:
1291 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1292 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1293 break;
1294
1295 case CMD_SET_ADC_MUX:
1296 switch(c->arg[0]) {
1297 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1298 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1299 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1300 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1301 }
1302 break;
1303
1304 case CMD_VERSION:
1305 SendVersion();
1306 break;
1307 case CMD_STATUS:
1308 SendStatus();
1309 break;
1310 case CMD_PING:
1311 cmd_send(CMD_ACK,0,0,0,0,0);
1312 break;
1313 #ifdef WITH_LCD
1314 case CMD_LCD_RESET:
1315 LCDReset();
1316 break;
1317 case CMD_LCD:
1318 LCDSend(c->arg[0]);
1319 break;
1320 #endif
1321 case CMD_SETUP_WRITE:
1322 case CMD_FINISH_WRITE:
1323 case CMD_HARDWARE_RESET:
1324 usb_disable();
1325 SpinDelay(2000);
1326 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1327 for(;;) {
1328 // We're going to reset, and the bootrom will take control.
1329 }
1330 break;
1331
1332 case CMD_START_FLASH:
1333 if(common_area.flags.bootrom_present) {
1334 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1335 }
1336 usb_disable();
1337 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1338 for(;;);
1339 break;
1340
1341 case CMD_DEVICE_INFO: {
1342 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1343 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1344 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1345 break;
1346 }
1347 default:
1348 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1349 break;
1350 }
1351 }
1352
1353 void __attribute__((noreturn)) AppMain(void)
1354 {
1355 SpinDelay(100);
1356 clear_trace();
1357 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1358 /* Initialize common area */
1359 memset(&common_area, 0, sizeof(common_area));
1360 common_area.magic = COMMON_AREA_MAGIC;
1361 common_area.version = 1;
1362 }
1363 common_area.flags.osimage_present = 1;
1364
1365 LED_D_OFF();
1366 LED_C_OFF();
1367 LED_B_OFF();
1368 LED_A_OFF();
1369
1370 // Init USB device
1371 usb_enable();
1372
1373 // The FPGA gets its clock from us from PCK0 output, so set that up.
1374 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1375 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1376 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1377 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1378 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1379 AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1380 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1381
1382 // Reset SPI
1383 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1384 // Reset SSC
1385 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1386
1387 // Load the FPGA image, which we have stored in our flash.
1388 // (the HF version by default)
1389 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1390
1391 StartTickCount();
1392
1393 #ifdef WITH_LCD
1394 LCDInit();
1395 #endif
1396
1397 byte_t rx[sizeof(UsbCommand)];
1398 size_t rx_len;
1399
1400 for(;;) {
1401 if (usb_poll()) {
1402 rx_len = usb_read(rx,sizeof(UsbCommand));
1403 if (rx_len) {
1404 UsbPacketReceived(rx,rx_len);
1405 }
1406 }
1407 WDT_HIT();
1408
1409 #ifdef WITH_LF
1410 #ifndef WITH_ISO14443a_StandAlone
1411 if (BUTTON_HELD(1000) > 0)
1412 SamyRun();
1413 #endif
1414 #endif
1415 #ifdef WITH_ISO14443a
1416 #ifdef WITH_ISO14443a_StandAlone
1417 if (BUTTON_HELD(1000) > 0)
1418 StandAloneMode14a();
1419 #endif
1420 #endif
1421 }
1422 }
Impressum, Datenschutz