1 //-----------------------------------------------------------------------------
2 // Routines to load the FPGA image, and then to configure the FPGA's major
3 // mode once it is configured.
5 // Jonathan Westhues, April 2006
6 //-----------------------------------------------------------------------------
10 //-----------------------------------------------------------------------------
11 // Set up the Serial Peripheral Interface as master
12 // Used to write the FPGA config word
13 // May also be used to write to other SPI attached devices like an LCD
14 //-----------------------------------------------------------------------------
15 void SetupSpi(int mode
)
17 // PA10 -> SPI_NCS2 chip select (LCD)
18 // PA11 -> SPI_NCS0 chip select (FPGA)
19 // PA12 -> SPI_MISO Master-In Slave-Out
20 // PA13 -> SPI_MOSI Master-Out Slave-In
21 // PA14 -> SPI_SPCK Serial Clock
23 // Disable PIO control of the following pins, allows use by the SPI peripheral
24 PIO_DISABLE
= (1 << GPIO_NCS0
) |
30 PIO_PERIPHERAL_A_SEL
= (1 << GPIO_NCS0
) |
35 PIO_PERIPHERAL_B_SEL
= (1 << GPIO_NCS2
);
37 //enable the SPI Peripheral clock
38 PMC_PERIPHERAL_CLK_ENABLE
= (1<<PERIPH_SPI
);
40 SPI_CONTROL
= SPI_CONTROL_ENABLE
;
45 ( 0 << 24) | // Delay between chip selects (take default: 6 MCK periods)
46 (14 << 16) | // Peripheral Chip Select (selects FPGA SPI_NCS0 or PA11)
47 ( 0 << 7) | // Local Loopback Disabled
48 ( 1 << 4) | // Mode Fault Detection disabled
49 ( 0 << 2) | // Chip selects connected directly to peripheral
50 ( 0 << 1) | // Fixed Peripheral Select
51 ( 1 << 0); // Master Mode
53 ( 1 << 24) | // Delay between Consecutive Transfers (32 MCK periods)
54 ( 1 << 16) | // Delay Before SPCK (1 MCK period)
55 ( 6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24Mhz/6 = 4M baud
56 ( 8 << 4) | // Bits per Transfer (16 bits)
57 ( 0 << 3) | // Chip Select inactive after transfer
58 ( 1 << 1) | // Clock Phase data captured on leading edge, changes on following edge
59 ( 0 << 0); // Clock Polarity inactive state is logic 0
63 ( 0 << 24) | // Delay between chip selects (take default: 6 MCK periods)
64 (11 << 16) | // Peripheral Chip Select (selects LCD SPI_NCS2 or PA10)
65 ( 0 << 7) | // Local Loopback Disabled
66 ( 1 << 4) | // Mode Fault Detection disabled
67 ( 0 << 2) | // Chip selects connected directly to peripheral
68 ( 0 << 1) | // Fixed Peripheral Select
69 ( 1 << 0); // Master Mode
71 ( 1 << 24) | // Delay between Consecutive Transfers (32 MCK periods)
72 ( 1 << 16) | // Delay Before SPCK (1 MCK period)
73 ( 6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24Mhz/6 = 4M baud
74 ( 1 << 4) | // Bits per Transfer (9 bits)
75 ( 0 << 3) | // Chip Select inactive after transfer
76 ( 1 << 1) | // Clock Phase data captured on leading edge, changes on following edge
77 ( 0 << 0); // Clock Polarity inactive state is logic 0
79 default: // Disable SPI
80 SPI_CONTROL
= SPI_CONTROL_DISABLE
;
85 //-----------------------------------------------------------------------------
86 // Set up the synchronous serial port, with the one set of options that we
87 // always use when we are talking to the FPGA. Both RX and TX are enabled.
88 //-----------------------------------------------------------------------------
89 void FpgaSetupSsc(void)
91 // First configure the GPIOs, and get ourselves a clock.
92 PIO_PERIPHERAL_A_SEL
= (1 << GPIO_SSC_FRAME
) |
94 (1 << GPIO_SSC_DOUT
) |
96 PIO_DISABLE
= (1 << GPIO_SSC_DOUT
);
98 PMC_PERIPHERAL_CLK_ENABLE
= (1 << PERIPH_SSC
);
100 // Now set up the SSC proper, starting from a known state.
101 SSC_CONTROL
= SSC_CONTROL_RESET
;
103 // RX clock comes from TX clock, RX starts when TX starts, data changes
104 // on RX clock rising edge, sampled on falling edge
105 SSC_RECEIVE_CLOCK_MODE
= SSC_CLOCK_MODE_SELECT(1) | SSC_CLOCK_MODE_START(1);
107 // 8 bits per transfer, no loopback, MSB first, 1 transfer per sync
108 // pulse, no output sync, start on positive-going edge of sync
109 SSC_RECEIVE_FRAME_MODE
= SSC_FRAME_MODE_BITS_IN_WORD(8) |
110 SSC_FRAME_MODE_MSB_FIRST
| SSC_FRAME_MODE_WORDS_PER_TRANSFER(0);
112 // clock comes from TK pin, no clock output, outputs change on falling
113 // edge of TK, start on rising edge of TF
114 SSC_TRANSMIT_CLOCK_MODE
= SSC_CLOCK_MODE_SELECT(2) |
115 SSC_CLOCK_MODE_START(5);
117 // tx framing is the same as the rx framing
118 SSC_TRANSMIT_FRAME_MODE
= SSC_RECEIVE_FRAME_MODE
;
120 SSC_CONTROL
= SSC_CONTROL_RX_ENABLE
| SSC_CONTROL_TX_ENABLE
;
123 //-----------------------------------------------------------------------------
124 // Set up DMA to receive samples from the FPGA. We will use the PDC, with
125 // a single buffer as a circular buffer (so that we just chain back to
126 // ourselves, not to another buffer). The stuff to manipulate those buffers
127 // is in apps.h, because it should be inlined, for speed.
128 //-----------------------------------------------------------------------------
129 void FpgaSetupSscDma(BYTE
*buf
, int len
)
131 PDC_RX_POINTER(SSC_BASE
) = (DWORD
)buf
;
132 PDC_RX_COUNTER(SSC_BASE
) = len
;
133 PDC_RX_NEXT_POINTER(SSC_BASE
) = (DWORD
)buf
;
134 PDC_RX_NEXT_COUNTER(SSC_BASE
) = len
;
135 PDC_CONTROL(SSC_BASE
) = PDC_RX_ENABLE
;
138 //-----------------------------------------------------------------------------
139 // Download the FPGA image stored in flash (slave serial).
140 //-----------------------------------------------------------------------------
141 void FpgaDownloadAndGo(void)
143 // FPGA image lives in FLASH at base address 0x2000
144 // The current board design can not accomodate anything bigger than a XC2S30
145 // FPGA and the config file size is fixed at 336,768 bits = 10,524 DWORDs
146 const DWORD
*FpgaImage
=((DWORD
*)0x2000);
147 const DWORD FpgaImageLen
=10524;
151 PIO_OUTPUT_ENABLE
= (1 << GPIO_FPGA_ON
);
152 PIO_ENABLE
= (1 << GPIO_FPGA_ON
);
153 PIO_OUTPUT_DATA_SET
= (1 << GPIO_FPGA_ON
);
159 HIGH(GPIO_FPGA_NPROGRAM
);
162 PIO_OUTPUT_ENABLE
= (1 << GPIO_FPGA_NPROGRAM
) |
163 (1 << GPIO_FPGA_CCLK
) |
164 (1 << GPIO_FPGA_DIN
);
167 LOW(GPIO_FPGA_NPROGRAM
);
169 HIGH(GPIO_FPGA_NPROGRAM
);
171 for(i
= 0; i
< FpgaImageLen
; i
++) {
172 DWORD v
= FpgaImage
[i
];
173 for(j
= 0; j
< 32; j
++) {
179 HIGH(GPIO_FPGA_CCLK
);
188 //-----------------------------------------------------------------------------
189 // Send a 16 bit command/data pair to the FPGA.
190 // The bit format is: C3 C2 C1 C0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
191 // where C is the 4 bit command and D is the 12 bit data
192 //-----------------------------------------------------------------------------
193 void FpgaSendCommand(WORD cmd
, WORD v
)
195 SetupSpi(SPI_FPGA_MODE
);
196 while ((SPI_STATUS
& SPI_STATUS_TX_EMPTY
) == 0); // wait for the transfer to complete
197 SPI_TX_DATA
= SPI_CONTROL_LAST_TRANSFER
| cmd
| v
; // send the data
199 //-----------------------------------------------------------------------------
200 // Write the FPGA setup word (that determines what mode the logic is in, read
201 // vs. clone vs. etc.). This is now a special case of FpgaSendCommand() to
202 // avoid changing this function's occurence everywhere in the source code.
203 //-----------------------------------------------------------------------------
204 void FpgaWriteConfWord(BYTE v
)
206 FpgaSendCommand(FPGA_CMD_SET_CONFREG
, v
);
209 //-----------------------------------------------------------------------------
210 // Set up the CMOS switches that mux the ADC: four switches, independently
211 // closable, but should only close one at a time. Not an FPGA thing, but
212 // the samples from the ADC always flow through the FPGA.
213 //-----------------------------------------------------------------------------
214 void SetAdcMuxFor(int whichGpio
)
216 PIO_OUTPUT_ENABLE
= (1 << GPIO_MUXSEL_HIPKD
) |
217 (1 << GPIO_MUXSEL_LOPKD
) |
218 (1 << GPIO_MUXSEL_LORAW
) |
219 (1 << GPIO_MUXSEL_HIRAW
);
221 PIO_ENABLE
= (1 << GPIO_MUXSEL_HIPKD
) |
222 (1 << GPIO_MUXSEL_LOPKD
) |
223 (1 << GPIO_MUXSEL_LORAW
) |
224 (1 << GPIO_MUXSEL_HIRAW
);
226 LOW(GPIO_MUXSEL_HIPKD
);
227 LOW(GPIO_MUXSEL_HIRAW
);
228 LOW(GPIO_MUXSEL_LORAW
);
229 LOW(GPIO_MUXSEL_LOPKD
);