]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
CHG: help text changes in cmdlfjablotron.c
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "hitag2.h"
15 #include "crc16.h"
16 #include "string.h"
17 #include "lfdemod.h"
18 #include "lfsampling.h"
19 #include "protocols.h"
20 #include "usb_cdc.h" // for usb_poll_validate_length
21
22 /**
23 * Function to do a modulation and then get samples.
24 * @param delay_off
25 * @param period_0
26 * @param period_1
27 * @param command
28 */
29 void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command)
30 {
31
32 int divisor_used = 95; // 125 KHz
33 // see if 'h' was specified
34
35 if (command[strlen((char *) command) - 1] == 'h')
36 divisor_used = 88; // 134.8 KHz
37
38 sample_config sc = { 0,0,1, divisor_used, 0};
39 setSamplingConfig(&sc);
40 //clear read buffer
41 BigBuf_Clear_keep_EM();
42
43 /* Make sure the tag is reset */
44 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
45 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
46 SpinDelay(2500);
47
48 LFSetupFPGAForADC(sc.divisor, 1);
49
50 // And a little more time for the tag to fully power up
51 SpinDelay(2000);
52
53 // now modulate the reader field
54 while(*command != '\0' && *command != ' ') {
55 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
56 LED_D_OFF();
57 SpinDelayUs(delay_off);
58 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
59
60 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
61 LED_D_ON();
62 if(*(command++) == '0')
63 SpinDelayUs(period_0);
64 else
65 SpinDelayUs(period_1);
66 }
67 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
68 LED_D_OFF();
69 SpinDelayUs(delay_off);
70 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
71
72 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
73
74 // now do the read
75 DoAcquisition_config(false);
76 }
77
78 /* blank r/w tag data stream
79 ...0000000000000000 01111111
80 1010101010101010101010101010101010101010101010101010101010101010
81 0011010010100001
82 01111111
83 101010101010101[0]000...
84
85 [5555fe852c5555555555555555fe0000]
86 */
87 void ReadTItag(void)
88 {
89 // some hardcoded initial params
90 // when we read a TI tag we sample the zerocross line at 2Mhz
91 // TI tags modulate a 1 as 16 cycles of 123.2Khz
92 // TI tags modulate a 0 as 16 cycles of 134.2Khz
93 #define FSAMPLE 2000000
94 #define FREQLO 123200
95 #define FREQHI 134200
96
97 signed char *dest = (signed char *)BigBuf_get_addr();
98 uint16_t n = BigBuf_max_traceLen();
99 // 128 bit shift register [shift3:shift2:shift1:shift0]
100 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
101
102 int i, cycles=0, samples=0;
103 // how many sample points fit in 16 cycles of each frequency
104 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
105 // when to tell if we're close enough to one freq or another
106 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
107
108 // TI tags charge at 134.2Khz
109 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
110 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
111
112 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
113 // connects to SSP_DIN and the SSP_DOUT logic level controls
114 // whether we're modulating the antenna (high)
115 // or listening to the antenna (low)
116 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
117
118 // get TI tag data into the buffer
119 AcquireTiType();
120
121 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
122
123 for (i=0; i<n-1; i++) {
124 // count cycles by looking for lo to hi zero crossings
125 if ( (dest[i]<0) && (dest[i+1]>0) ) {
126 cycles++;
127 // after 16 cycles, measure the frequency
128 if (cycles>15) {
129 cycles=0;
130 samples=i-samples; // number of samples in these 16 cycles
131
132 // TI bits are coming to us lsb first so shift them
133 // right through our 128 bit right shift register
134 shift0 = (shift0>>1) | (shift1 << 31);
135 shift1 = (shift1>>1) | (shift2 << 31);
136 shift2 = (shift2>>1) | (shift3 << 31);
137 shift3 >>= 1;
138
139 // check if the cycles fall close to the number
140 // expected for either the low or high frequency
141 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
142 // low frequency represents a 1
143 shift3 |= (1<<31);
144 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
145 // high frequency represents a 0
146 } else {
147 // probably detected a gay waveform or noise
148 // use this as gaydar or discard shift register and start again
149 shift3 = shift2 = shift1 = shift0 = 0;
150 }
151 samples = i;
152
153 // for each bit we receive, test if we've detected a valid tag
154
155 // if we see 17 zeroes followed by 6 ones, we might have a tag
156 // remember the bits are backwards
157 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
158 // if start and end bytes match, we have a tag so break out of the loop
159 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
160 cycles = 0xF0B; //use this as a flag (ugly but whatever)
161 break;
162 }
163 }
164 }
165 }
166 }
167
168 // if flag is set we have a tag
169 if (cycles!=0xF0B) {
170 DbpString("Info: No valid tag detected.");
171 } else {
172 // put 64 bit data into shift1 and shift0
173 shift0 = (shift0>>24) | (shift1 << 8);
174 shift1 = (shift1>>24) | (shift2 << 8);
175
176 // align 16 bit crc into lower half of shift2
177 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
178
179 // if r/w tag, check ident match
180 if (shift3 & (1<<15) ) {
181 DbpString("Info: TI tag is rewriteable");
182 // only 15 bits compare, last bit of ident is not valid
183 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
184 DbpString("Error: Ident mismatch!");
185 } else {
186 DbpString("Info: TI tag ident is valid");
187 }
188 } else {
189 DbpString("Info: TI tag is readonly");
190 }
191
192 // WARNING the order of the bytes in which we calc crc below needs checking
193 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
194 // bytes in reverse or something
195 // calculate CRC
196 uint32_t crc=0;
197
198 crc = update_crc16(crc, (shift0)&0xff);
199 crc = update_crc16(crc, (shift0>>8)&0xff);
200 crc = update_crc16(crc, (shift0>>16)&0xff);
201 crc = update_crc16(crc, (shift0>>24)&0xff);
202 crc = update_crc16(crc, (shift1)&0xff);
203 crc = update_crc16(crc, (shift1>>8)&0xff);
204 crc = update_crc16(crc, (shift1>>16)&0xff);
205 crc = update_crc16(crc, (shift1>>24)&0xff);
206
207 Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
208 if (crc != (shift2&0xffff)) {
209 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
210 } else {
211 DbpString("Info: CRC is good");
212 }
213 }
214 }
215
216 void WriteTIbyte(uint8_t b)
217 {
218 int i = 0;
219
220 // modulate 8 bits out to the antenna
221 for (i=0; i<8; i++)
222 {
223 if (b&(1<<i)) {
224 // stop modulating antenna
225 LOW(GPIO_SSC_DOUT);
226 SpinDelayUs(1000);
227 // modulate antenna
228 HIGH(GPIO_SSC_DOUT);
229 SpinDelayUs(1000);
230 } else {
231 // stop modulating antenna
232 LOW(GPIO_SSC_DOUT);
233 SpinDelayUs(300);
234 // modulate antenna
235 HIGH(GPIO_SSC_DOUT);
236 SpinDelayUs(1700);
237 }
238 }
239 }
240
241 void AcquireTiType(void)
242 {
243 int i, j, n;
244 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
245 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
246 #define TIBUFLEN 1250
247
248 // clear buffer
249 uint32_t *buf = (uint32_t *)BigBuf_get_addr();
250
251 //clear buffer now so it does not interfere with timing later
252 BigBuf_Clear_ext(false);
253
254 // Set up the synchronous serial port
255 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
256 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
257
258 // steal this pin from the SSP and use it to control the modulation
259 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
260 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
261
262 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
263 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
264
265 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
266 // 48/2 = 24 MHz clock must be divided by 12
267 AT91C_BASE_SSC->SSC_CMR = 12;
268
269 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
270 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
271 AT91C_BASE_SSC->SSC_TCMR = 0;
272 AT91C_BASE_SSC->SSC_TFMR = 0;
273 // iceman, FpgaSetupSsc() ?? the code above? can it be replaced?
274 LED_D_ON();
275
276 // modulate antenna
277 HIGH(GPIO_SSC_DOUT);
278
279 // Charge TI tag for 50ms.
280 SpinDelay(50);
281
282 // stop modulating antenna and listen
283 LOW(GPIO_SSC_DOUT);
284
285 LED_D_OFF();
286
287 i = 0;
288 for(;;) {
289 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
290 buf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
291 i++; if(i >= TIBUFLEN) break;
292 }
293 WDT_HIT();
294 }
295
296 // return stolen pin to SSP
297 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
298 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
299
300 char *dest = (char *)BigBuf_get_addr();
301 n = TIBUFLEN * 32;
302
303 // unpack buffer
304 for (i = TIBUFLEN-1; i >= 0; i--) {
305 for (j = 0; j < 32; j++) {
306 if(buf[i] & (1 << j)) {
307 dest[--n] = 1;
308 } else {
309 dest[--n] = -1;
310 }
311 }
312 }
313 }
314
315 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
316 // if crc provided, it will be written with the data verbatim (even if bogus)
317 // if not provided a valid crc will be computed from the data and written.
318 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
319 {
320 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
321 if(crc == 0) {
322 crc = update_crc16(crc, (idlo)&0xff);
323 crc = update_crc16(crc, (idlo>>8)&0xff);
324 crc = update_crc16(crc, (idlo>>16)&0xff);
325 crc = update_crc16(crc, (idlo>>24)&0xff);
326 crc = update_crc16(crc, (idhi)&0xff);
327 crc = update_crc16(crc, (idhi>>8)&0xff);
328 crc = update_crc16(crc, (idhi>>16)&0xff);
329 crc = update_crc16(crc, (idhi>>24)&0xff);
330 }
331 Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi, (unsigned int) idlo, crc);
332
333 // TI tags charge at 134.2Khz
334 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
335 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
336 // connects to SSP_DIN and the SSP_DOUT logic level controls
337 // whether we're modulating the antenna (high)
338 // or listening to the antenna (low)
339 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
340 LED_A_ON();
341
342 // steal this pin from the SSP and use it to control the modulation
343 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
344 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
345
346 // writing algorithm:
347 // a high bit consists of a field off for 1ms and field on for 1ms
348 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
349 // initiate a charge time of 50ms (field on) then immediately start writing bits
350 // start by writing 0xBB (keyword) and 0xEB (password)
351 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
352 // finally end with 0x0300 (write frame)
353 // all data is sent lsb first
354 // finish with 15ms programming time
355
356 // modulate antenna
357 HIGH(GPIO_SSC_DOUT);
358 SpinDelay(50); // charge time
359
360 WriteTIbyte(0xbb); // keyword
361 WriteTIbyte(0xeb); // password
362 WriteTIbyte( (idlo )&0xff );
363 WriteTIbyte( (idlo>>8 )&0xff );
364 WriteTIbyte( (idlo>>16)&0xff );
365 WriteTIbyte( (idlo>>24)&0xff );
366 WriteTIbyte( (idhi )&0xff );
367 WriteTIbyte( (idhi>>8 )&0xff );
368 WriteTIbyte( (idhi>>16)&0xff );
369 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
370 WriteTIbyte( (crc )&0xff ); // crc lo
371 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
372 WriteTIbyte(0x00); // write frame lo
373 WriteTIbyte(0x03); // write frame hi
374 HIGH(GPIO_SSC_DOUT);
375 SpinDelay(50); // programming time
376
377 LED_A_OFF();
378
379 // get TI tag data into the buffer
380 AcquireTiType();
381
382 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
383 DbpString("Now use `lf ti read` to check");
384 }
385
386 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
387 {
388 int i;
389 uint8_t *tab = BigBuf_get_addr();
390
391 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
392 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
393
394 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
395 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
396 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
397
398 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
399 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
400
401 i = 0;
402 for(;;) {
403 //wait until SSC_CLK goes HIGH
404 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
405 if(BUTTON_PRESS() || usb_poll_validate_length() ) {
406 DbpString("Stopped");
407 return;
408 }
409 WDT_HIT();
410 }
411 if (ledcontrol) LED_D_ON();
412
413 if(tab[i])
414 OPEN_COIL();
415 else
416 SHORT_COIL();
417
418 if (ledcontrol) LED_D_OFF();
419
420 //wait until SSC_CLK goes LOW
421 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
422 if( BUTTON_PRESS() || usb_poll_validate_length() ) {
423 DbpString("Stopped");
424 return;
425 }
426 WDT_HIT();
427 }
428
429 i++;
430 if(i == period) {
431
432 i = 0;
433 if (gap) {
434 SHORT_COIL();
435 SpinDelayUs(gap);
436 }
437 }
438 }
439 }
440
441 #define DEBUG_FRAME_CONTENTS 1
442 void SimulateTagLowFrequencyBidir(int divisor, int t0)
443 {
444 }
445
446 // compose fc/8 fc/10 waveform (FSK2)
447 static void fc(int c, int *n)
448 {
449 uint8_t *dest = BigBuf_get_addr();
450 int idx;
451
452 // for when we want an fc8 pattern every 4 logical bits
453 if(c==0) {
454 dest[((*n)++)]=1;
455 dest[((*n)++)]=1;
456 dest[((*n)++)]=1;
457 dest[((*n)++)]=1;
458 dest[((*n)++)]=0;
459 dest[((*n)++)]=0;
460 dest[((*n)++)]=0;
461 dest[((*n)++)]=0;
462 }
463
464 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
465 if(c==8) {
466 for (idx=0; idx<6; idx++) {
467 dest[((*n)++)]=1;
468 dest[((*n)++)]=1;
469 dest[((*n)++)]=1;
470 dest[((*n)++)]=1;
471 dest[((*n)++)]=0;
472 dest[((*n)++)]=0;
473 dest[((*n)++)]=0;
474 dest[((*n)++)]=0;
475 }
476 }
477
478 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
479 if(c==10) {
480 for (idx=0; idx<5; idx++) {
481 dest[((*n)++)]=1;
482 dest[((*n)++)]=1;
483 dest[((*n)++)]=1;
484 dest[((*n)++)]=1;
485 dest[((*n)++)]=1;
486 dest[((*n)++)]=0;
487 dest[((*n)++)]=0;
488 dest[((*n)++)]=0;
489 dest[((*n)++)]=0;
490 dest[((*n)++)]=0;
491 }
492 }
493 }
494 // compose fc/X fc/Y waveform (FSKx)
495 static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
496 {
497 uint8_t *dest = BigBuf_get_addr();
498 uint8_t halfFC = fc/2;
499 uint8_t wavesPerClock = clock/fc;
500 uint8_t mod = clock % fc; //modifier
501 uint8_t modAdj = fc/mod; //how often to apply modifier
502 bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
503 // loop through clock - step field clock
504 for (uint8_t idx=0; idx < wavesPerClock; idx++){
505 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
506 memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
507 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
508 *n += fc;
509 }
510 if (mod>0) (*modCnt)++;
511 if ((mod>0) && modAdjOk){ //fsk2
512 if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
513 memset(dest+(*n), 0, fc-halfFC);
514 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
515 *n += fc;
516 }
517 }
518 if (mod>0 && !modAdjOk){ //fsk1
519 memset(dest+(*n), 0, mod-(mod/2));
520 memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
521 *n += mod;
522 }
523 }
524
525 // prepare a waveform pattern in the buffer based on the ID given then
526 // simulate a HID tag until the button is pressed
527 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
528 {
529 int n=0, i=0;
530 /*
531 HID tag bitstream format
532 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
533 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
534 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
535 A fc8 is inserted before every 4 bits
536 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
537 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
538 */
539
540 if (hi>0xFFF) {
541 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
542 return;
543 }
544 fc(0,&n);
545 // special start of frame marker containing invalid bit sequences
546 fc(8, &n); fc(8, &n); // invalid
547 fc(8, &n); fc(10, &n); // logical 0
548 fc(10, &n); fc(10, &n); // invalid
549 fc(8, &n); fc(10, &n); // logical 0
550
551 WDT_HIT();
552 // manchester encode bits 43 to 32
553 for (i=11; i>=0; i--) {
554 if ((i%4)==3) fc(0,&n);
555 if ((hi>>i)&1) {
556 fc(10, &n); fc(8, &n); // low-high transition
557 } else {
558 fc(8, &n); fc(10, &n); // high-low transition
559 }
560 }
561
562 WDT_HIT();
563 // manchester encode bits 31 to 0
564 for (i=31; i>=0; i--) {
565 if ((i%4)==3) fc(0,&n);
566 if ((lo>>i)&1) {
567 fc(10, &n); fc(8, &n); // low-high transition
568 } else {
569 fc(8, &n); fc(10, &n); // high-low transition
570 }
571 }
572
573 if (ledcontrol) LED_A_ON();
574 SimulateTagLowFrequency(n, 0, ledcontrol);
575 if (ledcontrol) LED_A_OFF();
576 }
577
578 // prepare a waveform pattern in the buffer based on the ID given then
579 // simulate a FSK tag until the button is pressed
580 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
581 void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
582 {
583 int ledcontrol=1;
584 int n=0, i=0;
585 uint8_t fcHigh = arg1 >> 8;
586 uint8_t fcLow = arg1 & 0xFF;
587 uint16_t modCnt = 0;
588 uint8_t clk = arg2 & 0xFF;
589 uint8_t invert = (arg2 >> 8) & 1;
590
591 for (i=0; i<size; i++){
592 if (BitStream[i] == invert){
593 fcAll(fcLow, &n, clk, &modCnt);
594 } else {
595 fcAll(fcHigh, &n, clk, &modCnt);
596 }
597 }
598 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
599
600 if (ledcontrol) LED_A_ON();
601 SimulateTagLowFrequency(n, 0, ledcontrol);
602 if (ledcontrol) LED_A_OFF();
603 }
604
605 // compose ask waveform for one bit(ASK)
606 static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
607 {
608 uint8_t *dest = BigBuf_get_addr();
609 uint8_t halfClk = clock/2;
610 // c = current bit 1 or 0
611 if (manchester==1){
612 memset(dest+(*n), c, halfClk);
613 memset(dest+(*n) + halfClk, c^1, halfClk);
614 } else {
615 memset(dest+(*n), c, clock);
616 }
617 *n += clock;
618 }
619
620 static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
621 {
622 uint8_t *dest = BigBuf_get_addr();
623 uint8_t halfClk = clock/2;
624 if (c){
625 memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
626 memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
627 } else {
628 memset(dest+(*n), c ^ *phase, clock);
629 *phase ^= 1;
630 }
631 *n += clock;
632 }
633
634 static void stAskSimBit(int *n, uint8_t clock) {
635 uint8_t *dest = BigBuf_get_addr();
636 uint8_t halfClk = clock/2;
637 //ST = .5 high .5 low 1.5 high .5 low 1 high
638 memset(dest+(*n), 1, halfClk);
639 memset(dest+(*n) + halfClk, 0, halfClk);
640 memset(dest+(*n) + clock, 1, clock + halfClk);
641 memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
642 memset(dest+(*n) + clock*3, 1, clock);
643 *n += clock*4;
644 }
645
646 // args clock, ask/man or askraw, invert, transmission separator
647 void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
648 {
649 int ledcontrol = 1;
650 int n=0, i=0;
651 uint8_t clk = (arg1 >> 8) & 0xFF;
652 uint8_t encoding = arg1 & 0xFF;
653 uint8_t separator = arg2 & 1;
654 uint8_t invert = (arg2 >> 8) & 1;
655
656 if (encoding==2){ //biphase
657 uint8_t phase=0;
658 for (i=0; i<size; i++){
659 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
660 }
661 if (phase==1) { //run a second set inverted to keep phase in check
662 for (i=0; i<size; i++){
663 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
664 }
665 }
666 } else { // ask/manchester || ask/raw
667 for (i=0; i<size; i++){
668 askSimBit(BitStream[i]^invert, &n, clk, encoding);
669 }
670 if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
671 for (i=0; i<size; i++){
672 askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
673 }
674 }
675 }
676 if (separator==1 && encoding == 1)
677 stAskSimBit(&n, clk);
678 else if (separator==1)
679 Dbprintf("sorry but separator option not yet available");
680
681 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
682
683 if (ledcontrol) LED_A_ON();
684 SimulateTagLowFrequency(n, 0, ledcontrol);
685 if (ledcontrol) LED_A_OFF();
686 }
687
688 //carrier can be 2,4 or 8
689 static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
690 {
691 uint8_t *dest = BigBuf_get_addr();
692 uint8_t halfWave = waveLen/2;
693 //uint8_t idx;
694 int i = 0;
695 if (phaseChg){
696 // write phase change
697 memset(dest+(*n), *curPhase^1, halfWave);
698 memset(dest+(*n) + halfWave, *curPhase, halfWave);
699 *n += waveLen;
700 *curPhase ^= 1;
701 i += waveLen;
702 }
703 //write each normal clock wave for the clock duration
704 for (; i < clk; i+=waveLen){
705 memset(dest+(*n), *curPhase, halfWave);
706 memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
707 *n += waveLen;
708 }
709 }
710
711 // args clock, carrier, invert,
712 void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
713 {
714 int ledcontrol = 1;
715 int n=0, i=0;
716 uint8_t clk = arg1 >> 8;
717 uint8_t carrier = arg1 & 0xFF;
718 uint8_t invert = arg2 & 0xFF;
719 uint8_t curPhase = 0;
720 for (i=0; i<size; i++){
721 if (BitStream[i] == curPhase){
722 pskSimBit(carrier, &n, clk, &curPhase, FALSE);
723 } else {
724 pskSimBit(carrier, &n, clk, &curPhase, TRUE);
725 }
726 }
727 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
728
729 if (ledcontrol) LED_A_ON();
730 SimulateTagLowFrequency(n, 0, ledcontrol);
731 if (ledcontrol) LED_A_OFF();
732 }
733
734 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
735 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
736 {
737 uint8_t *dest = BigBuf_get_addr();
738 size_t size = 0;
739 uint32_t hi2=0, hi=0, lo=0;
740 int idx=0;
741 // Configure to go in 125Khz listen mode
742 LFSetupFPGAForADC(95, true);
743
744 //clear read buffer
745 BigBuf_Clear_keep_EM();
746
747 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
748
749 WDT_HIT();
750 if (ledcontrol) LED_A_ON();
751
752 DoAcquisition_default(-1,true);
753 // FSK demodulator
754 size = 50*128*2; //big enough to catch 2 sequences of largest format
755 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
756
757 if (idx>0 && lo>0 && (size==96 || size==192)){
758 // go over previously decoded manchester data and decode into usable tag ID
759 if (hi2 != 0){ //extra large HID tags 88/192 bits
760 Dbprintf("TAG ID: %x%08x%08x (%d)",
761 (unsigned int) hi2,
762 (unsigned int) hi,
763 (unsigned int) lo,
764 (unsigned int) (lo>>1) & 0xFFFF
765 );
766 } else { //standard HID tags 44/96 bits
767 uint8_t bitlen = 0;
768 uint32_t fc = 0;
769 uint32_t cardnum = 0;
770
771 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
772 uint32_t lo2=0;
773 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
774 uint8_t idx3 = 1;
775 while(lo2 > 1){ //find last bit set to 1 (format len bit)
776 lo2=lo2 >> 1;
777 idx3++;
778 }
779 bitlen = idx3+19;
780 fc =0;
781 cardnum=0;
782 if(bitlen == 26){
783 cardnum = (lo>>1)&0xFFFF;
784 fc = (lo>>17)&0xFF;
785 }
786 if(bitlen == 37){
787 cardnum = (lo>>1)&0x7FFFF;
788 fc = ((hi&0xF)<<12)|(lo>>20);
789 }
790 if(bitlen == 34){
791 cardnum = (lo>>1)&0xFFFF;
792 fc= ((hi&1)<<15)|(lo>>17);
793 }
794 if(bitlen == 35){
795 cardnum = (lo>>1)&0xFFFFF;
796 fc = ((hi&1)<<11)|(lo>>21);
797 }
798 }
799 else { //if bit 38 is not set then 37 bit format is used
800 bitlen= 37;
801 fc =0;
802 cardnum=0;
803 if(bitlen==37){
804 cardnum = (lo>>1)&0x7FFFF;
805 fc = ((hi&0xF)<<12)|(lo>>20);
806 }
807 }
808 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
809 (unsigned int) hi,
810 (unsigned int) lo,
811 (unsigned int) (lo>>1) & 0xFFFF,
812 (unsigned int) bitlen,
813 (unsigned int) fc,
814 (unsigned int) cardnum);
815 }
816 if (findone){
817 if (ledcontrol) LED_A_OFF();
818 *high = hi;
819 *low = lo;
820 return;
821 }
822 // reset
823 }
824 hi2 = hi = lo = idx = 0;
825 WDT_HIT();
826 }
827 DbpString("Stopped");
828 if (ledcontrol) LED_A_OFF();
829 }
830
831 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
832 void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
833 {
834 uint8_t *dest = BigBuf_get_addr();
835 size_t size;
836 int idx=0;
837 //clear read buffer
838 BigBuf_Clear_keep_EM();
839 // Configure to go in 125Khz listen mode
840 LFSetupFPGAForADC(95, true);
841
842 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
843
844 WDT_HIT();
845 if (ledcontrol) LED_A_ON();
846
847 DoAcquisition_default(-1,true);
848 // FSK demodulator
849 size = 50*128*2; //big enough to catch 2 sequences of largest format
850 idx = AWIDdemodFSK(dest, &size);
851
852 if (idx<=0 || size!=96) continue;
853 // Index map
854 // 0 10 20 30 40 50 60
855 // | | | | | | |
856 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
857 // -----------------------------------------------------------------------------
858 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
859 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
860 // |---26 bit---| |-----117----||-------------142-------------|
861 // b = format bit len, o = odd parity of last 3 bits
862 // f = facility code, c = card number
863 // w = wiegand parity
864 // (26 bit format shown)
865
866 //get raw ID before removing parities
867 uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
868 uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
869 uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
870
871 size = removeParity(dest, idx+8, 4, 1, 88);
872 if (size != 66) continue;
873
874 // Index map
875 // 0 10 20 30 40 50 60
876 // | | | | | | |
877 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
878 // -----------------------------------------------------------------------------
879 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
880 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
881 // |26 bit| |-117--| |-----142------|
882 //
883 // 00110010 0 0000011111010000000000000001000100101000100001111 0 00000000
884 // bbbbbbbb w ffffffffffffffffccccccccccccccccccccccccccccccccc w xxxxxxxx
885 // |50 bit| |----4000------||-----------2248975-------------|
886 //
887 // b = format bit len, o = odd parity of last 3 bits
888 // f = facility code, c = card number
889 // w = wiegand parity
890
891 uint32_t fc = 0;
892 uint32_t cardnum = 0;
893 uint32_t code1 = 0;
894 uint32_t code2 = 0;
895 uint8_t fmtLen = bytebits_to_byte(dest,8);
896 switch(fmtLen) {
897 case 26:
898 fc = bytebits_to_byte(dest + 9, 8);
899 cardnum = bytebits_to_byte(dest + 17, 16);
900 code1 = bytebits_to_byte(dest + 8,fmtLen);
901 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
902 break;
903 case 50:
904 fc = bytebits_to_byte(dest + 9, 16);
905 cardnum = bytebits_to_byte(dest + 25, 32);
906 code1 = bytebits_to_byte(dest + 8, (fmtLen-32) );
907 code2 = bytebits_to_byte(dest + 8 + (fmtLen-32), 32);
908 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, code2, rawHi2, rawHi, rawLo);
909 break;
910 default:
911 if (fmtLen > 32 ) {
912 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
913 code1 = bytebits_to_byte(dest+8,fmtLen-32);
914 code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
915 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
916 } else {
917 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
918 code1 = bytebits_to_byte(dest+8,fmtLen);
919 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
920 }
921 break;
922 }
923 if (findone){
924 if (ledcontrol) LED_A_OFF();
925 return;
926 }
927 idx = 0;
928 WDT_HIT();
929 }
930 DbpString("Stopped");
931 if (ledcontrol) LED_A_OFF();
932 }
933
934 void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
935 {
936 uint8_t *dest = BigBuf_get_addr();
937
938 size_t size=0, idx=0;
939 int clk=0, invert=0, errCnt=0, maxErr=20;
940 uint32_t hi=0;
941 uint64_t lo=0;
942 //clear read buffer
943 BigBuf_Clear_keep_EM();
944 // Configure to go in 125Khz listen mode
945 LFSetupFPGAForADC(95, true);
946
947 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
948
949 WDT_HIT();
950 if (ledcontrol) LED_A_ON();
951
952 DoAcquisition_default(-1,true);
953 size = BigBuf_max_traceLen();
954 //askdemod and manchester decode
955 if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
956 errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
957 WDT_HIT();
958
959 if (errCnt<0) continue;
960
961 errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
962 if (errCnt){
963 if (size>64){
964 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
965 hi,
966 (uint32_t)(lo>>32),
967 (uint32_t)lo,
968 (uint32_t)(lo&0xFFFF),
969 (uint32_t)((lo>>16LL) & 0xFF),
970 (uint32_t)(lo & 0xFFFFFF));
971 } else {
972 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
973 (uint32_t)(lo>>32),
974 (uint32_t)lo,
975 (uint32_t)(lo&0xFFFF),
976 (uint32_t)((lo>>16LL) & 0xFF),
977 (uint32_t)(lo & 0xFFFFFF));
978 }
979
980 if (findone){
981 if (ledcontrol) LED_A_OFF();
982 *high=lo>>32;
983 *low=lo & 0xFFFFFFFF;
984 return;
985 }
986 }
987 WDT_HIT();
988 hi = lo = size = idx = 0;
989 clk = invert = errCnt = 0;
990 }
991 DbpString("Stopped");
992 if (ledcontrol) LED_A_OFF();
993 }
994
995 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
996 {
997 uint8_t *dest = BigBuf_get_addr();
998 int idx=0;
999 uint32_t code=0, code2=0;
1000 uint8_t version=0;
1001 uint8_t facilitycode=0;
1002 uint16_t number=0;
1003 uint8_t crc = 0;
1004 uint16_t calccrc = 0;
1005
1006 //clear read buffer
1007 BigBuf_Clear_keep_EM();
1008
1009 // Configure to go in 125Khz listen mode
1010 LFSetupFPGAForADC(95, true);
1011
1012 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1013 WDT_HIT();
1014 if (ledcontrol) LED_A_ON();
1015 DoAcquisition_default(-1,true);
1016 //fskdemod and get start index
1017 WDT_HIT();
1018 idx = IOdemodFSK(dest, BigBuf_max_traceLen());
1019 if (idx<0) continue;
1020 //valid tag found
1021
1022 //Index map
1023 //0 10 20 30 40 50 60
1024 //| | | | | | |
1025 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1026 //-----------------------------------------------------------------------------
1027 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
1028 //
1029 //Checksum:
1030 //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
1031 //preamble F0 E0 01 03 B6 75
1032 // How to calc checksum,
1033 // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
1034 // F0 + E0 + 01 + 03 + B6 = 28A
1035 // 28A & FF = 8A
1036 // FF - 8A = 75
1037 // Checksum: 0x75
1038 //XSF(version)facility:codeone+codetwo
1039 //Handle the data
1040 if(findone){ //only print binary if we are doing one
1041 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1042 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1043 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1044 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1045 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1046 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1047 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1048 }
1049 code = bytebits_to_byte(dest+idx,32);
1050 code2 = bytebits_to_byte(dest+idx+32,32);
1051 version = bytebits_to_byte(dest+idx+27,8); //14,4
1052 facilitycode = bytebits_to_byte(dest+idx+18,8);
1053 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1054
1055 crc = bytebits_to_byte(dest+idx+54,8);
1056 for (uint8_t i=1; i<6; ++i)
1057 calccrc += bytebits_to_byte(dest+idx+9*i,8);
1058 calccrc &= 0xff;
1059 calccrc = 0xff - calccrc;
1060
1061 char *crcStr = (crc == calccrc) ? "ok":"!crc";
1062
1063 Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr);
1064 // if we're only looking for one tag
1065 if (findone){
1066 if (ledcontrol) LED_A_OFF();
1067 *high=code;
1068 *low=code2;
1069 return;
1070 }
1071 code=code2=0;
1072 version=facilitycode=0;
1073 number=0;
1074 idx=0;
1075
1076 WDT_HIT();
1077 }
1078 DbpString("Stopped");
1079 if (ledcontrol) LED_A_OFF();
1080 }
1081
1082 /*------------------------------
1083 * T5555/T5557/T5567/T5577 routines
1084 *------------------------------
1085 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1086 *
1087 * Relevant communication times in microsecond
1088 * To compensate antenna falling times shorten the write times
1089 * and enlarge the gap ones.
1090 * Q5 tags seems to have issues when these values changes.
1091 */
1092
1093 #define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1094 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1095 #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1096 #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1097 #define READ_GAP 15*8
1098
1099 // VALUES TAKEN FROM EM4x function: SendForward
1100 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1101 // WRITE_GAP = 128; (16*8)
1102 // WRITE_1 = 256 32*8; (32*8)
1103
1104 // These timings work for 4469/4269/4305 (with the 55*8 above)
1105 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1106
1107 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
1108 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
1109 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
1110 // T0 = TIMER_CLOCK1 / 125000 = 192
1111 // 1 Cycle = 8 microseconds(us) == 1 field clock
1112
1113 void TurnReadLFOn(int delay) {
1114 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1115 // Give it a bit of time for the resonant antenna to settle.
1116
1117 // measure antenna strength.
1118 //int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
1119 // where to save it
1120
1121 SpinDelayUs(delay);
1122 }
1123
1124 // Write one bit to card
1125 void T55xxWriteBit(int bit) {
1126 if (!bit)
1127 TurnReadLFOn(WRITE_0);
1128 else
1129 TurnReadLFOn(WRITE_1);
1130 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1131 SpinDelayUs(WRITE_GAP);
1132 }
1133
1134 // Send T5577 reset command then read stream (see if we can identify the start of the stream)
1135 void T55xxResetRead(void) {
1136 LED_A_ON();
1137 //clear buffer now so it does not interfere with timing later
1138 BigBuf_Clear_keep_EM();
1139
1140 // Set up FPGA, 125kHz
1141 LFSetupFPGAForADC(95, true);
1142
1143 // Trigger T55x7 in mode.
1144 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1145 SpinDelayUs(START_GAP);
1146
1147 // reset tag - op code 00
1148 T55xxWriteBit(0);
1149 T55xxWriteBit(0);
1150
1151 // Turn field on to read the response
1152 TurnReadLFOn(READ_GAP);
1153
1154 // Acquisition
1155 doT55x7Acquisition(BigBuf_max_traceLen());
1156
1157 // Turn the field off
1158 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1159 cmd_send(CMD_ACK,0,0,0,0,0);
1160 LED_A_OFF();
1161 }
1162
1163 // Write one card block in page 0, no lock
1164 void T55xxWriteBlockExt(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
1165 LED_A_ON();
1166 bool PwdMode = arg & 0x1;
1167 uint8_t Page = (arg & 0x2)>>1;
1168 uint32_t i = 0;
1169
1170 // Set up FPGA, 125kHz
1171 LFSetupFPGAForADC(95, true);
1172
1173 // Trigger T55x7 in mode.
1174 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1175 SpinDelayUs(START_GAP);
1176
1177 // Opcode 10
1178 T55xxWriteBit(1);
1179 T55xxWriteBit(Page); //Page 0
1180 if (PwdMode){
1181 // Send Pwd
1182 for (i = 0x80000000; i != 0; i >>= 1)
1183 T55xxWriteBit(Pwd & i);
1184 }
1185 // Send Lock bit
1186 T55xxWriteBit(0);
1187
1188 // Send Data
1189 for (i = 0x80000000; i != 0; i >>= 1)
1190 T55xxWriteBit(Data & i);
1191
1192 // Send Block number
1193 for (i = 0x04; i != 0; i >>= 1)
1194 T55xxWriteBit(Block & i);
1195
1196 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1197 // so wait a little more)
1198 TurnReadLFOn(20 * 1000);
1199 //could attempt to do a read to confirm write took
1200 // as the tag should repeat back the new block
1201 // until it is reset, but to confirm it we would
1202 // need to know the current block 0 config mode
1203
1204 // turn field off
1205 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1206 LED_A_OFF();
1207 }
1208
1209 // Write one card block in page 0, no lock
1210 void T55xxWriteBlock(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
1211 T55xxWriteBlockExt(Data, Block, Pwd, arg);
1212 cmd_send(CMD_ACK,0,0,0,0,0);
1213 }
1214
1215 // Read one card block in page [page]
1216 void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
1217 LED_A_ON();
1218 bool PwdMode = arg0 & 0x1;
1219 uint8_t Page = (arg0 & 0x2) >> 1;
1220 uint32_t i = 0;
1221 bool RegReadMode = (Block == 0xFF);
1222
1223 //clear buffer now so it does not interfere with timing later
1224 BigBuf_Clear_ext(false);
1225
1226 //make sure block is at max 7
1227 Block &= 0x7;
1228
1229 // Set up FPGA, 125kHz to power up the tag
1230 LFSetupFPGAForADC(95, true);
1231
1232 // Trigger T55x7 Direct Access Mode with start gap
1233 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1234 SpinDelayUs(START_GAP);
1235
1236 // Opcode 1[page]
1237 T55xxWriteBit(1);
1238 T55xxWriteBit(Page); //Page 0
1239
1240 if (PwdMode){
1241 // Send Pwd
1242 for (i = 0x80000000; i != 0; i >>= 1)
1243 T55xxWriteBit(Pwd & i);
1244 }
1245 // Send a zero bit separation
1246 T55xxWriteBit(0);
1247
1248 // Send Block number (if direct access mode)
1249 if (!RegReadMode)
1250 for (i = 0x04; i != 0; i >>= 1)
1251 T55xxWriteBit(Block & i);
1252
1253 // Turn field on to read the response
1254 TurnReadLFOn(READ_GAP);
1255
1256 // Acquisition
1257 doT55x7Acquisition(12000);
1258
1259 // Turn the field off
1260 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1261 cmd_send(CMD_ACK,0,0,0,0,0);
1262 LED_A_OFF();
1263 }
1264
1265 void T55xxWakeUp(uint32_t Pwd){
1266 LED_B_ON();
1267 uint32_t i = 0;
1268
1269 // Set up FPGA, 125kHz
1270 LFSetupFPGAForADC(95, true);
1271
1272 // Trigger T55x7 Direct Access Mode
1273 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1274 SpinDelayUs(START_GAP);
1275
1276 // Opcode 10
1277 T55xxWriteBit(1);
1278 T55xxWriteBit(0); //Page 0
1279
1280 // Send Pwd
1281 for (i = 0x80000000; i != 0; i >>= 1)
1282 T55xxWriteBit(Pwd & i);
1283
1284 // Turn and leave field on to let the begin repeating transmission
1285 TurnReadLFOn(20*1000);
1286 }
1287
1288 /*-------------- Cloning routines -----------*/
1289 void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
1290 // write last block first and config block last (if included)
1291 for (uint8_t i = numblocks+startblock; i > startblock; i--)
1292 T55xxWriteBlockExt(blockdata[i-1], i-1, 0, 0);
1293 }
1294
1295 // Copy HID id to card and setup block 0 config
1296 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
1297 uint32_t data[] = {0,0,0,0,0,0,0};
1298 uint8_t last_block = 0;
1299
1300 if (longFMT){
1301 // Ensure no more than 84 bits supplied
1302 if (hi2 > 0xFFFFF) {
1303 DbpString("Tags can only have 84 bits.");
1304 return;
1305 }
1306 // Build the 6 data blocks for supplied 84bit ID
1307 last_block = 6;
1308 // load preamble (1D) & long format identifier (9E manchester encoded)
1309 data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
1310 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1311 data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
1312 data[3] = manchesterEncode2Bytes(hi >> 16);
1313 data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
1314 data[5] = manchesterEncode2Bytes(lo >> 16);
1315 data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
1316 } else {
1317 // Ensure no more than 44 bits supplied
1318 if (hi > 0xFFF) {
1319 DbpString("Tags can only have 44 bits.");
1320 return;
1321 }
1322 // Build the 3 data blocks for supplied 44bit ID
1323 last_block = 3;
1324 // load preamble
1325 data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
1326 data[2] = manchesterEncode2Bytes(lo >> 16);
1327 data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
1328 }
1329 // load chip config block
1330 data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
1331
1332 //TODO add selection of chip for Q5 or T55x7
1333 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1334
1335 LED_D_ON();
1336 // Program the data blocks for supplied ID
1337 // and the block 0 for HID format
1338 WriteT55xx(data, 0, last_block+1);
1339
1340 LED_D_OFF();
1341
1342 DbpString("DONE!");
1343 }
1344
1345 void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
1346 uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1347 //TODO add selection of chip for Q5 or T55x7
1348 //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
1349 // data[0] = (64 << T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1350
1351 LED_D_ON();
1352 // Program the data blocks for supplied ID
1353 // and the block 0 config
1354 WriteT55xx(data, 0, 3);
1355 LED_D_OFF();
1356 DbpString("DONE!");
1357 }
1358
1359 // Clone Indala 64-bit tag by UID to T55x7
1360 void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
1361 //Program the 2 data blocks for supplied 64bit UID
1362 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1363 uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1364 //TODO add selection of chip for Q5 or T55x7
1365 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1366
1367 WriteT55xx(data, 0, 3);
1368 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1369 // T5567WriteBlock(0x603E1042,0);
1370 DbpString("DONE!");
1371 }
1372 // Clone Indala 224-bit tag by UID to T55x7
1373 void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
1374 //Program the 7 data blocks for supplied 224bit UID
1375 uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
1376 // and the block 0 for Indala224 format
1377 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1378 data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT);
1379 //TODO add selection of chip for Q5 or T55x7
1380 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
1381 WriteT55xx(data, 0, 8);
1382 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1383 // T5567WriteBlock(0x603E10E2,0);
1384 DbpString("DONE!");
1385 }
1386 // clone viking tag to T55xx
1387 void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
1388 uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
1389 //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
1390 if (Q5) data[0] = (32 << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
1391 // Program the data blocks for supplied ID and the block 0 config
1392 WriteT55xx(data, 0, 3);
1393 LED_D_OFF();
1394 cmd_send(CMD_ACK,0,0,0,0,0);
1395 }
1396
1397 // Define 9bit header for EM410x tags
1398 #define EM410X_HEADER 0x1FF
1399 #define EM410X_ID_LENGTH 40
1400
1401 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
1402 int i, id_bit;
1403 uint64_t id = EM410X_HEADER;
1404 uint64_t rev_id = 0; // reversed ID
1405 int c_parity[4]; // column parity
1406 int r_parity = 0; // row parity
1407 uint32_t clock = 0;
1408
1409 // Reverse ID bits given as parameter (for simpler operations)
1410 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1411 if (i < 32) {
1412 rev_id = (rev_id << 1) | (id_lo & 1);
1413 id_lo >>= 1;
1414 } else {
1415 rev_id = (rev_id << 1) | (id_hi & 1);
1416 id_hi >>= 1;
1417 }
1418 }
1419
1420 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1421 id_bit = rev_id & 1;
1422
1423 if (i % 4 == 0) {
1424 // Don't write row parity bit at start of parsing
1425 if (i)
1426 id = (id << 1) | r_parity;
1427 // Start counting parity for new row
1428 r_parity = id_bit;
1429 } else {
1430 // Count row parity
1431 r_parity ^= id_bit;
1432 }
1433
1434 // First elements in column?
1435 if (i < 4)
1436 // Fill out first elements
1437 c_parity[i] = id_bit;
1438 else
1439 // Count column parity
1440 c_parity[i % 4] ^= id_bit;
1441
1442 // Insert ID bit
1443 id = (id << 1) | id_bit;
1444 rev_id >>= 1;
1445 }
1446
1447 // Insert parity bit of last row
1448 id = (id << 1) | r_parity;
1449
1450 // Fill out column parity at the end of tag
1451 for (i = 0; i < 4; ++i)
1452 id = (id << 1) | c_parity[i];
1453
1454 // Add stop bit
1455 id <<= 1;
1456
1457 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1458 LED_D_ON();
1459
1460 // Write EM410x ID
1461 uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
1462
1463 clock = (card & 0xFF00) >> 8;
1464 clock = (clock == 0) ? 64 : clock;
1465 Dbprintf("Clock rate: %d", clock);
1466 if (card & 0xFF) { //t55x7
1467 clock = GetT55xxClockBit(clock);
1468 if (clock == 0) {
1469 Dbprintf("Invalid clock rate: %d", clock);
1470 return;
1471 }
1472 data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
1473 } else { //t5555 (Q5)
1474 clock = (clock-2)>>1; //n = (RF-2)/2
1475 data[0] = (clock << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
1476 }
1477
1478 WriteT55xx(data, 0, 3);
1479
1480 LED_D_OFF();
1481 Dbprintf("Tag %s written with 0x%08x%08x\n",
1482 card ? "T55x7":"T5555",
1483 (uint32_t)(id >> 32),
1484 (uint32_t)id);
1485 }
1486
1487 //-----------------------------------
1488 // EM4469 / EM4305 routines
1489 //-----------------------------------
1490 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1491 #define FWD_CMD_WRITE 0xA
1492 #define FWD_CMD_READ 0x9
1493 #define FWD_CMD_DISABLE 0x5
1494
1495 uint8_t forwardLink_data[64]; //array of forwarded bits
1496 uint8_t * forward_ptr; //ptr for forward message preparation
1497 uint8_t fwd_bit_sz; //forwardlink bit counter
1498 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1499
1500 //====================================================================
1501 // prepares command bits
1502 // see EM4469 spec
1503 //====================================================================
1504 //--------------------------------------------------------------------
1505 // VALUES TAKEN FROM EM4x function: SendForward
1506 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1507 // WRITE_GAP = 128; (16*8)
1508 // WRITE_1 = 256 32*8; (32*8)
1509
1510 // These timings work for 4469/4269/4305 (with the 55*8 above)
1511 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1512
1513 uint8_t Prepare_Cmd( uint8_t cmd ) {
1514
1515 *forward_ptr++ = 0; //start bit
1516 *forward_ptr++ = 0; //second pause for 4050 code
1517
1518 *forward_ptr++ = cmd;
1519 cmd >>= 1;
1520 *forward_ptr++ = cmd;
1521 cmd >>= 1;
1522 *forward_ptr++ = cmd;
1523 cmd >>= 1;
1524 *forward_ptr++ = cmd;
1525
1526 return 6; //return number of emited bits
1527 }
1528
1529 //====================================================================
1530 // prepares address bits
1531 // see EM4469 spec
1532 //====================================================================
1533 uint8_t Prepare_Addr( uint8_t addr ) {
1534
1535 register uint8_t line_parity;
1536
1537 uint8_t i;
1538 line_parity = 0;
1539 for(i=0;i<6;i++) {
1540 *forward_ptr++ = addr;
1541 line_parity ^= addr;
1542 addr >>= 1;
1543 }
1544
1545 *forward_ptr++ = (line_parity & 1);
1546
1547 return 7; //return number of emited bits
1548 }
1549
1550 //====================================================================
1551 // prepares data bits intreleaved with parity bits
1552 // see EM4469 spec
1553 //====================================================================
1554 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1555
1556 register uint8_t line_parity;
1557 register uint8_t column_parity;
1558 register uint8_t i, j;
1559 register uint16_t data;
1560
1561 data = data_low;
1562 column_parity = 0;
1563
1564 for(i=0; i<4; i++) {
1565 line_parity = 0;
1566 for(j=0; j<8; j++) {
1567 line_parity ^= data;
1568 column_parity ^= (data & 1) << j;
1569 *forward_ptr++ = data;
1570 data >>= 1;
1571 }
1572 *forward_ptr++ = line_parity;
1573 if(i == 1)
1574 data = data_hi;
1575 }
1576
1577 for(j=0; j<8; j++) {
1578 *forward_ptr++ = column_parity;
1579 column_parity >>= 1;
1580 }
1581 *forward_ptr = 0;
1582
1583 return 45; //return number of emited bits
1584 }
1585
1586 //====================================================================
1587 // Forward Link send function
1588 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1589 // fwd_bit_count set with number of bits to be sent
1590 //====================================================================
1591 void SendForward(uint8_t fwd_bit_count) {
1592
1593 fwd_write_ptr = forwardLink_data;
1594 fwd_bit_sz = fwd_bit_count;
1595
1596 LED_D_ON();
1597
1598 // Set up FPGA, 125kHz
1599 LFSetupFPGAForADC(95, true);
1600
1601 // force 1st mod pulse (start gap must be longer for 4305)
1602 fwd_bit_sz--; //prepare next bit modulation
1603 fwd_write_ptr++;
1604 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1605 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1606 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1607 SpinDelayUs(16*8); //16 cycles on (8us each)
1608
1609 // now start writting
1610 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1611 if(((*fwd_write_ptr++) & 1) == 1)
1612 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1613 else {
1614 //These timings work for 4469/4269/4305 (with the 55*8 above)
1615 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1616 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1617 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1618 SpinDelayUs(9*8); //16 cycles on (8us each)
1619 }
1620 }
1621 }
1622
1623 void EM4xLogin(uint32_t Password) {
1624
1625 uint8_t fwd_bit_count;
1626
1627 forward_ptr = forwardLink_data;
1628 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1629 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1630
1631 SendForward(fwd_bit_count);
1632
1633 //Wait for command to complete
1634 SpinDelay(20);
1635 }
1636
1637 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1638
1639 uint8_t fwd_bit_count;
1640 uint8_t *dest = BigBuf_get_addr();
1641 uint16_t bufsize = BigBuf_max_traceLen();
1642 uint32_t i = 0;
1643
1644 // Clear destination buffer before sending the command
1645 BigBuf_Clear_ext(false);
1646
1647 //If password mode do login
1648 if (PwdMode == 1) EM4xLogin(Pwd);
1649
1650 forward_ptr = forwardLink_data;
1651 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1652 fwd_bit_count += Prepare_Addr( Address );
1653
1654 // Connect the A/D to the peak-detected low-frequency path.
1655 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1656 // Now set up the SSC to get the ADC samples that are now streaming at us.
1657 FpgaSetupSsc();
1658
1659 SendForward(fwd_bit_count);
1660
1661 // Now do the acquisition
1662 i = 0;
1663 for(;;) {
1664 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1665 AT91C_BASE_SSC->SSC_THR = 0x43;
1666 }
1667 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1668 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1669 ++i;
1670 if (i >= bufsize) break;
1671 }
1672 }
1673
1674 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1675 cmd_send(CMD_ACK,0,0,0,0,0);
1676 LED_D_OFF();
1677 }
1678
1679 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1680
1681 uint8_t fwd_bit_count;
1682
1683 //If password mode do login
1684 if (PwdMode == 1) EM4xLogin(Pwd);
1685
1686 forward_ptr = forwardLink_data;
1687 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1688 fwd_bit_count += Prepare_Addr( Address );
1689 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1690
1691 SendForward(fwd_bit_count);
1692
1693 //Wait for write to complete
1694 SpinDelay(20);
1695 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1696 LED_D_OFF();
1697 }
Impressum, Datenschutz