]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
CHG: "hf legic write" - now writes on the limits better.
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "hitag2.h"
15 #include "crc16.h"
16 #include "string.h"
17 #include "lfdemod.h"
18 #include "lfsampling.h"
19 #include "protocols.h"
20 #include "usb_cdc.h" // for usb_poll_validate_length
21
22 #ifndef SHORT_COIL
23 # define SHORT_COIL() LOW(GPIO_SSC_DOUT)
24 #endif
25 #ifndef OPEN_COIL
26 # define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
27 #endif
28
29 /**
30 * Function to do a modulation and then get samples.
31 * @param delay_off
32 * @param periods 0xFFFF0000 is period_0, 0x0000FFFF is period_1
33 * @param useHighFreg
34 * @param command
35 */
36 void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t periods, uint32_t useHighFreq, uint8_t *command)
37 {
38 /* Make sure the tag is reset */
39 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
40 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
41 SpinDelay(200);
42
43 uint16_t period_0 = periods >> 16;
44 uint16_t period_1 = periods & 0xFFFF;
45
46 // 95 == 125 KHz 88 == 124.8 KHz
47 int divisor_used = (useHighFreq) ? 88 : 95;
48 sample_config sc = { 0,0,1, divisor_used, 0};
49 setSamplingConfig(&sc);
50
51 //clear read buffer
52 BigBuf_Clear_keep_EM();
53
54 LFSetupFPGAForADC(sc.divisor, 1);
55
56 // And a little more time for the tag to fully power up
57 SpinDelay(50);
58
59 // now modulate the reader field
60 while(*command != '\0' && *command != ' ') {
61 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
62 LED_D_OFF();
63 WaitUS(delay_off);
64 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
65
66 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
67 LED_D_ON();
68 if(*(command++) == '0')
69 WaitUS(period_0);
70 else
71 WaitUS(period_1);
72 }
73 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
74 LED_D_OFF();
75 WaitUS(delay_off);
76 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
77 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
78
79 // now do the read
80 DoAcquisition_config(false);
81 }
82
83 /* blank r/w tag data stream
84 ...0000000000000000 01111111
85 1010101010101010101010101010101010101010101010101010101010101010
86 0011010010100001
87 01111111
88 101010101010101[0]000...
89
90 [5555fe852c5555555555555555fe0000]
91 */
92 void ReadTItag(void)
93 {
94 // some hardcoded initial params
95 // when we read a TI tag we sample the zerocross line at 2Mhz
96 // TI tags modulate a 1 as 16 cycles of 123.2Khz
97 // TI tags modulate a 0 as 16 cycles of 134.2Khz
98 #define FSAMPLE 2000000
99 #define FREQLO 123200
100 #define FREQHI 134200
101
102 signed char *dest = (signed char *)BigBuf_get_addr();
103 uint16_t n = BigBuf_max_traceLen();
104 // 128 bit shift register [shift3:shift2:shift1:shift0]
105 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
106
107 int i, cycles=0, samples=0;
108 // how many sample points fit in 16 cycles of each frequency
109 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
110 // when to tell if we're close enough to one freq or another
111 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
112
113 // TI tags charge at 134.2Khz
114 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
115 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
116
117 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
118 // connects to SSP_DIN and the SSP_DOUT logic level controls
119 // whether we're modulating the antenna (high)
120 // or listening to the antenna (low)
121 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
122
123 // get TI tag data into the buffer
124 AcquireTiType();
125
126 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
127
128 for (i=0; i<n-1; i++) {
129 // count cycles by looking for lo to hi zero crossings
130 if ( (dest[i]<0) && (dest[i+1]>0) ) {
131 cycles++;
132 // after 16 cycles, measure the frequency
133 if (cycles>15) {
134 cycles=0;
135 samples=i-samples; // number of samples in these 16 cycles
136
137 // TI bits are coming to us lsb first so shift them
138 // right through our 128 bit right shift register
139 shift0 = (shift0>>1) | (shift1 << 31);
140 shift1 = (shift1>>1) | (shift2 << 31);
141 shift2 = (shift2>>1) | (shift3 << 31);
142 shift3 >>= 1;
143
144 // check if the cycles fall close to the number
145 // expected for either the low or high frequency
146 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
147 // low frequency represents a 1
148 shift3 |= (1<<31);
149 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
150 // high frequency represents a 0
151 } else {
152 // probably detected a gay waveform or noise
153 // use this as gaydar or discard shift register and start again
154 shift3 = shift2 = shift1 = shift0 = 0;
155 }
156 samples = i;
157
158 // for each bit we receive, test if we've detected a valid tag
159
160 // if we see 17 zeroes followed by 6 ones, we might have a tag
161 // remember the bits are backwards
162 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
163 // if start and end bytes match, we have a tag so break out of the loop
164 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
165 cycles = 0xF0B; //use this as a flag (ugly but whatever)
166 break;
167 }
168 }
169 }
170 }
171 }
172
173 // if flag is set we have a tag
174 if (cycles!=0xF0B) {
175 DbpString("Info: No valid tag detected.");
176 } else {
177 // put 64 bit data into shift1 and shift0
178 shift0 = (shift0>>24) | (shift1 << 8);
179 shift1 = (shift1>>24) | (shift2 << 8);
180
181 // align 16 bit crc into lower half of shift2
182 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
183
184 // if r/w tag, check ident match
185 if (shift3 & (1<<15) ) {
186 DbpString("Info: TI tag is rewriteable");
187 // only 15 bits compare, last bit of ident is not valid
188 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
189 DbpString("Error: Ident mismatch!");
190 } else {
191 DbpString("Info: TI tag ident is valid");
192 }
193 } else {
194 DbpString("Info: TI tag is readonly");
195 }
196
197 // WARNING the order of the bytes in which we calc crc below needs checking
198 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
199 // bytes in reverse or something
200 // calculate CRC
201 uint32_t crc=0;
202
203 crc = update_crc16(crc, (shift0)&0xff);
204 crc = update_crc16(crc, (shift0>>8)&0xff);
205 crc = update_crc16(crc, (shift0>>16)&0xff);
206 crc = update_crc16(crc, (shift0>>24)&0xff);
207 crc = update_crc16(crc, (shift1)&0xff);
208 crc = update_crc16(crc, (shift1>>8)&0xff);
209 crc = update_crc16(crc, (shift1>>16)&0xff);
210 crc = update_crc16(crc, (shift1>>24)&0xff);
211
212 Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
213 if (crc != (shift2&0xffff)) {
214 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
215 } else {
216 DbpString("Info: CRC is good");
217 }
218 }
219 }
220
221 void WriteTIbyte(uint8_t b)
222 {
223 int i = 0;
224
225 // modulate 8 bits out to the antenna
226 for (i=0; i<8; i++)
227 {
228 if ( b & ( 1 << i ) ) {
229 // stop modulating antenna 1ms
230 LOW(GPIO_SSC_DOUT);
231 WaitUS(1000);
232 // modulate antenna 1ms
233 HIGH(GPIO_SSC_DOUT);
234 WaitUS(1000);
235 } else {
236 // stop modulating antenna 1ms
237 LOW(GPIO_SSC_DOUT);
238 WaitUS(300);
239 // modulate antenna 1m
240 HIGH(GPIO_SSC_DOUT);
241 WaitUS(1700);
242 }
243 }
244 }
245
246 void AcquireTiType(void)
247 {
248 int i, j, n;
249 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
250 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
251 #define TIBUFLEN 1250
252
253 // clear buffer
254 uint32_t *buf = (uint32_t *)BigBuf_get_addr();
255
256 //clear buffer now so it does not interfere with timing later
257 BigBuf_Clear_ext(false);
258
259 // Set up the synchronous serial port
260 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
261 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
262
263 // steal this pin from the SSP and use it to control the modulation
264 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
265 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
266
267 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
268 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
269
270 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
271 // 48/2 = 24 MHz clock must be divided by 12
272 AT91C_BASE_SSC->SSC_CMR = 12;
273
274 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
275 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
276 AT91C_BASE_SSC->SSC_TCMR = 0;
277 AT91C_BASE_SSC->SSC_TFMR = 0;
278 // iceman, FpgaSetupSsc() ?? the code above? can it be replaced?
279 LED_D_ON();
280
281 // modulate antenna
282 HIGH(GPIO_SSC_DOUT);
283
284 // Charge TI tag for 50ms.
285 SpinDelay(50);
286
287 // stop modulating antenna and listen
288 LOW(GPIO_SSC_DOUT);
289
290 LED_D_OFF();
291
292 i = 0;
293 for(;;) {
294 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
295 buf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
296 i++; if(i >= TIBUFLEN) break;
297 }
298 WDT_HIT();
299 }
300
301 // return stolen pin to SSP
302 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
303 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
304
305 char *dest = (char *)BigBuf_get_addr();
306 n = TIBUFLEN * 32;
307
308 // unpack buffer
309 for (i = TIBUFLEN-1; i >= 0; i--) {
310 for (j = 0; j < 32; j++) {
311 if(buf[i] & (1 << j)) {
312 dest[--n] = 1;
313 } else {
314 dest[--n] = -1;
315 }
316 }
317 }
318 }
319
320 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
321 // if crc provided, it will be written with the data verbatim (even if bogus)
322 // if not provided a valid crc will be computed from the data and written.
323 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
324 {
325 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
326 if(crc == 0) {
327 crc = update_crc16(crc, (idlo)&0xff);
328 crc = update_crc16(crc, (idlo>>8)&0xff);
329 crc = update_crc16(crc, (idlo>>16)&0xff);
330 crc = update_crc16(crc, (idlo>>24)&0xff);
331 crc = update_crc16(crc, (idhi)&0xff);
332 crc = update_crc16(crc, (idhi>>8)&0xff);
333 crc = update_crc16(crc, (idhi>>16)&0xff);
334 crc = update_crc16(crc, (idhi>>24)&0xff);
335 }
336 Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi, (unsigned int) idlo, crc);
337
338 // TI tags charge at 134.2Khz
339 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
340 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
341 // connects to SSP_DIN and the SSP_DOUT logic level controls
342 // whether we're modulating the antenna (high)
343 // or listening to the antenna (low)
344 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
345 LED_A_ON();
346
347 // steal this pin from the SSP and use it to control the modulation
348 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
349 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
350
351 // writing algorithm:
352 // a high bit consists of a field off for 1ms and field on for 1ms
353 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
354 // initiate a charge time of 50ms (field on) then immediately start writing bits
355 // start by writing 0xBB (keyword) and 0xEB (password)
356 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
357 // finally end with 0x0300 (write frame)
358 // all data is sent lsb first
359 // finish with 15ms programming time
360
361 // modulate antenna
362 HIGH(GPIO_SSC_DOUT);
363 SpinDelay(50); // charge time
364
365 WriteTIbyte(0xbb); // keyword
366 WriteTIbyte(0xeb); // password
367 WriteTIbyte( (idlo )&0xff );
368 WriteTIbyte( (idlo>>8 )&0xff );
369 WriteTIbyte( (idlo>>16)&0xff );
370 WriteTIbyte( (idlo>>24)&0xff );
371 WriteTIbyte( (idhi )&0xff );
372 WriteTIbyte( (idhi>>8 )&0xff );
373 WriteTIbyte( (idhi>>16)&0xff );
374 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
375 WriteTIbyte( (crc )&0xff ); // crc lo
376 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
377 WriteTIbyte(0x00); // write frame lo
378 WriteTIbyte(0x03); // write frame hi
379 HIGH(GPIO_SSC_DOUT);
380 SpinDelay(50); // programming time
381
382 LED_A_OFF();
383
384 // get TI tag data into the buffer
385 AcquireTiType();
386
387 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
388 DbpString("Now use `lf ti read` to check");
389 }
390
391 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
392 {
393 int i = 0;
394 uint8_t *tab = BigBuf_get_addr();
395
396 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
397
398 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
399 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
400 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
401
402 for(;;) {
403 WDT_HIT();
404
405 if (ledcontrol) LED_D_ON();
406
407 //wait until SSC_CLK goes HIGH
408 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
409 WDT_HIT();
410 if ( usb_poll_validate_length() || BUTTON_PRESS() ) {
411 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
412 LED_D_OFF();
413 return;
414 }
415 }
416
417 if(tab[i])
418 OPEN_COIL();
419 else
420 SHORT_COIL();
421
422 if (ledcontrol) LED_D_OFF();
423
424 //wait until SSC_CLK goes LOW
425 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
426 WDT_HIT();
427 if ( usb_poll_validate_length() || BUTTON_PRESS() ) {
428 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
429 LED_D_OFF();
430 return;
431 }
432 }
433
434 i++;
435 if(i == period) {
436 i = 0;
437 if (gap) {
438 WDT_HIT();
439 SHORT_COIL();
440 WaitUS(gap);
441 }
442 }
443 }
444 }
445
446 #define DEBUG_FRAME_CONTENTS 1
447 void SimulateTagLowFrequencyBidir(int divisor, int t0)
448 {
449 }
450
451 // compose fc/8 fc/10 waveform (FSK2)
452 static void fc(int c, int *n)
453 {
454 uint8_t *dest = BigBuf_get_addr();
455 int idx;
456
457 // for when we want an fc8 pattern every 4 logical bits
458 if(c==0) {
459 dest[((*n)++)]=1;
460 dest[((*n)++)]=1;
461 dest[((*n)++)]=1;
462 dest[((*n)++)]=1;
463 dest[((*n)++)]=0;
464 dest[((*n)++)]=0;
465 dest[((*n)++)]=0;
466 dest[((*n)++)]=0;
467 }
468
469 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
470 if(c==8) {
471 for (idx=0; idx<6; idx++) {
472 dest[((*n)++)]=1;
473 dest[((*n)++)]=1;
474 dest[((*n)++)]=1;
475 dest[((*n)++)]=1;
476 dest[((*n)++)]=0;
477 dest[((*n)++)]=0;
478 dest[((*n)++)]=0;
479 dest[((*n)++)]=0;
480 }
481 }
482
483 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
484 if(c==10) {
485 for (idx=0; idx<5; idx++) {
486 dest[((*n)++)]=1;
487 dest[((*n)++)]=1;
488 dest[((*n)++)]=1;
489 dest[((*n)++)]=1;
490 dest[((*n)++)]=1;
491 dest[((*n)++)]=0;
492 dest[((*n)++)]=0;
493 dest[((*n)++)]=0;
494 dest[((*n)++)]=0;
495 dest[((*n)++)]=0;
496 }
497 }
498 }
499 // compose fc/X fc/Y waveform (FSKx)
500 static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
501 {
502 uint8_t *dest = BigBuf_get_addr();
503 uint8_t halfFC = fc/2;
504 uint8_t wavesPerClock = clock/fc;
505 uint8_t mod = clock % fc; //modifier
506 uint8_t modAdj = fc/mod; //how often to apply modifier
507 bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
508 // loop through clock - step field clock
509 for (uint8_t idx=0; idx < wavesPerClock; idx++){
510 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
511 memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
512 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
513 *n += fc;
514 }
515 if (mod>0) (*modCnt)++;
516 if ((mod>0) && modAdjOk){ //fsk2
517 if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
518 memset(dest+(*n), 0, fc-halfFC);
519 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
520 *n += fc;
521 }
522 }
523 if (mod>0 && !modAdjOk){ //fsk1
524 memset(dest+(*n), 0, mod-(mod/2));
525 memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
526 *n += mod;
527 }
528 }
529
530 // prepare a waveform pattern in the buffer based on the ID given then
531 // simulate a HID tag until the button is pressed
532 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
533 {
534 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
535 set_tracing(FALSE);
536
537 int n = 0, i = 0;
538 /*
539 HID tag bitstream format
540 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
541 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
542 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
543 A fc8 is inserted before every 4 bits
544 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
545 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
546 */
547
548 if (hi > 0xFFF) {
549 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
550 return;
551 }
552 fc(0,&n);
553 // special start of frame marker containing invalid bit sequences
554 fc(8, &n); fc(8, &n); // invalid
555 fc(8, &n); fc(10, &n); // logical 0
556 fc(10, &n); fc(10, &n); // invalid
557 fc(8, &n); fc(10, &n); // logical 0
558
559 WDT_HIT();
560 // manchester encode bits 43 to 32
561 for (i=11; i>=0; i--) {
562 if ((i%4)==3) fc(0,&n);
563 if ((hi>>i)&1) {
564 fc(10, &n); fc(8, &n); // low-high transition
565 } else {
566 fc(8, &n); fc(10, &n); // high-low transition
567 }
568 }
569
570 WDT_HIT();
571 // manchester encode bits 31 to 0
572 for (i=31; i>=0; i--) {
573 if ((i%4)==3) fc(0,&n);
574 if ((lo>>i)&1) {
575 fc(10, &n); fc(8, &n); // low-high transition
576 } else {
577 fc(8, &n); fc(10, &n); // high-low transition
578 }
579 }
580 WDT_HIT();
581
582 if (ledcontrol) LED_A_ON();
583 SimulateTagLowFrequency(n, 0, ledcontrol);
584 if (ledcontrol) LED_A_OFF();
585 }
586
587 // prepare a waveform pattern in the buffer based on the ID given then
588 // simulate a FSK tag until the button is pressed
589 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
590 void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
591 {
592 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
593
594 // free eventually allocated BigBuf memory
595 BigBuf_free(); BigBuf_Clear_ext(false);
596 clear_trace();
597 set_tracing(FALSE);
598
599 int ledcontrol = 1, n = 0, i = 0;
600 uint8_t fcHigh = arg1 >> 8;
601 uint8_t fcLow = arg1 & 0xFF;
602 uint16_t modCnt = 0;
603 uint8_t clk = arg2 & 0xFF;
604 uint8_t invert = (arg2 >> 8) & 1;
605
606 for (i=0; i<size; i++){
607
608 if (BitStream[i] == invert)
609 fcAll(fcLow, &n, clk, &modCnt);
610 else
611 fcAll(fcHigh, &n, clk, &modCnt);
612 }
613 WDT_HIT();
614
615 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d", fcHigh, fcLow, clk, invert, n);
616
617 if (ledcontrol) LED_A_ON();
618 SimulateTagLowFrequency(n, 0, ledcontrol);
619 if (ledcontrol) LED_A_OFF();
620 }
621
622 // compose ask waveform for one bit(ASK)
623 static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
624 {
625 uint8_t *dest = BigBuf_get_addr();
626 uint8_t halfClk = clock/2;
627 // c = current bit 1 or 0
628 if (manchester==1){
629 memset(dest+(*n), c, halfClk);
630 memset(dest+(*n) + halfClk, c^1, halfClk);
631 } else {
632 memset(dest+(*n), c, clock);
633 }
634 *n += clock;
635 }
636
637 static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
638 {
639 uint8_t *dest = BigBuf_get_addr();
640 uint8_t halfClk = clock/2;
641 if (c){
642 memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
643 memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
644 } else {
645 memset(dest+(*n), c ^ *phase, clock);
646 *phase ^= 1;
647 }
648 *n += clock;
649 }
650
651 static void stAskSimBit(int *n, uint8_t clock) {
652 uint8_t *dest = BigBuf_get_addr();
653 uint8_t halfClk = clock/2;
654 //ST = .5 high .5 low 1.5 high .5 low 1 high
655 memset(dest+(*n), 1, halfClk);
656 memset(dest+(*n) + halfClk, 0, halfClk);
657 memset(dest+(*n) + clock, 1, clock + halfClk);
658 memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
659 memset(dest+(*n) + clock*3, 1, clock);
660 *n += clock*4;
661 }
662
663 // args clock, ask/man or askraw, invert, transmission separator
664 void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
665 {
666 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
667 set_tracing(FALSE);
668
669 int ledcontrol = 1, n = 0, i = 0;
670 uint8_t clk = (arg1 >> 8) & 0xFF;
671 uint8_t encoding = arg1 & 0xFF;
672 uint8_t separator = arg2 & 1;
673 uint8_t invert = (arg2 >> 8) & 1;
674
675 if (encoding == 2){ //biphase
676 uint8_t phase = 0;
677 for (i=0; i<size; i++){
678 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
679 }
680 if (phase == 1) { //run a second set inverted to keep phase in check
681 for (i=0; i<size; i++){
682 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
683 }
684 }
685 } else { // ask/manchester || ask/raw
686 for (i=0; i<size; i++){
687 askSimBit(BitStream[i]^invert, &n, clk, encoding);
688 }
689 if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
690 for (i=0; i<size; i++){
691 askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
692 }
693 }
694 }
695 if (separator==1 && encoding == 1)
696 stAskSimBit(&n, clk);
697 else if (separator==1)
698 Dbprintf("sorry but separator option not yet available");
699
700 WDT_HIT();
701
702 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
703
704 if (ledcontrol) LED_A_ON();
705 SimulateTagLowFrequency(n, 0, ledcontrol);
706 if (ledcontrol) LED_A_OFF();
707 }
708
709 //carrier can be 2,4 or 8
710 static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
711 {
712 uint8_t *dest = BigBuf_get_addr();
713 uint8_t halfWave = waveLen/2;
714 //uint8_t idx;
715 int i = 0;
716 if (phaseChg){
717 // write phase change
718 memset(dest+(*n), *curPhase^1, halfWave);
719 memset(dest+(*n) + halfWave, *curPhase, halfWave);
720 *n += waveLen;
721 *curPhase ^= 1;
722 i += waveLen;
723 }
724 //write each normal clock wave for the clock duration
725 for (; i < clk; i+=waveLen){
726 memset(dest+(*n), *curPhase, halfWave);
727 memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
728 *n += waveLen;
729 }
730 }
731
732 // args clock, carrier, invert,
733 void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
734 {
735 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
736 set_tracing(FALSE);
737
738 int ledcontrol = 1, n = 0, i = 0;
739 uint8_t clk = arg1 >> 8;
740 uint8_t carrier = arg1 & 0xFF;
741 uint8_t invert = arg2 & 0xFF;
742 uint8_t curPhase = 0;
743 for (i=0; i<size; i++){
744 if (BitStream[i] == curPhase){
745 pskSimBit(carrier, &n, clk, &curPhase, FALSE);
746 } else {
747 pskSimBit(carrier, &n, clk, &curPhase, TRUE);
748 }
749 }
750
751 WDT_HIT();
752
753 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
754
755 if (ledcontrol) LED_A_ON();
756 SimulateTagLowFrequency(n, 0, ledcontrol);
757 if (ledcontrol) LED_A_OFF();
758 }
759
760 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
761 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
762 {
763 uint8_t *dest = BigBuf_get_addr();
764 size_t size = 0;
765 uint32_t hi2=0, hi=0, lo=0;
766 int idx=0;
767 // Configure to go in 125Khz listen mode
768 LFSetupFPGAForADC(95, true);
769
770 //clear read buffer
771 BigBuf_Clear_keep_EM();
772
773 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
774
775 WDT_HIT();
776 if (ledcontrol) LED_A_ON();
777
778 DoAcquisition_default(-1,true);
779 // FSK demodulator
780 size = 50*128*2; //big enough to catch 2 sequences of largest format
781 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
782
783 if (idx>0 && lo>0 && (size==96 || size==192)){
784 // go over previously decoded manchester data and decode into usable tag ID
785 if (hi2 != 0){ //extra large HID tags 88/192 bits
786 Dbprintf("TAG ID: %x%08x%08x (%d)",
787 (unsigned int) hi2,
788 (unsigned int) hi,
789 (unsigned int) lo,
790 (unsigned int) (lo>>1) & 0xFFFF
791 );
792 } else { //standard HID tags 44/96 bits
793 uint8_t bitlen = 0;
794 uint32_t fc = 0;
795 uint32_t cardnum = 0;
796
797 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
798 uint32_t lo2=0;
799 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
800 uint8_t idx3 = 1;
801 while(lo2 > 1){ //find last bit set to 1 (format len bit)
802 lo2=lo2 >> 1;
803 idx3++;
804 }
805 bitlen = idx3+19;
806 fc =0;
807 cardnum=0;
808 if(bitlen == 26){
809 cardnum = (lo>>1)&0xFFFF;
810 fc = (lo>>17)&0xFF;
811 }
812 if(bitlen == 37){
813 cardnum = (lo>>1)&0x7FFFF;
814 fc = ((hi&0xF)<<12)|(lo>>20);
815 }
816 if(bitlen == 34){
817 cardnum = (lo>>1)&0xFFFF;
818 fc= ((hi&1)<<15)|(lo>>17);
819 }
820 if(bitlen == 35){
821 cardnum = (lo>>1)&0xFFFFF;
822 fc = ((hi&1)<<11)|(lo>>21);
823 }
824 }
825 else { //if bit 38 is not set then 37 bit format is used
826 bitlen= 37;
827 fc =0;
828 cardnum=0;
829 if(bitlen==37){
830 cardnum = (lo>>1)&0x7FFFF;
831 fc = ((hi&0xF)<<12)|(lo>>20);
832 }
833 }
834 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
835 (unsigned int) hi,
836 (unsigned int) lo,
837 (unsigned int) (lo>>1) & 0xFFFF,
838 (unsigned int) bitlen,
839 (unsigned int) fc,
840 (unsigned int) cardnum);
841 }
842 if (findone){
843 if (ledcontrol) LED_A_OFF();
844 *high = hi;
845 *low = lo;
846 return;
847 }
848 // reset
849 }
850 hi2 = hi = lo = idx = 0;
851 WDT_HIT();
852 }
853 DbpString("Stopped");
854 if (ledcontrol) LED_A_OFF();
855 }
856
857 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
858 void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
859 {
860 uint8_t *dest = BigBuf_get_addr();
861 size_t size;
862 int idx=0;
863 //clear read buffer
864 BigBuf_Clear_keep_EM();
865 // Configure to go in 125Khz listen mode
866 LFSetupFPGAForADC(95, true);
867
868 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
869
870 WDT_HIT();
871 if (ledcontrol) LED_A_ON();
872
873 DoAcquisition_default(-1,true);
874 // FSK demodulator
875 size = 50*128*2; //big enough to catch 2 sequences of largest format
876 idx = AWIDdemodFSK(dest, &size);
877
878 if (idx<=0 || size!=96) continue;
879 // Index map
880 // 0 10 20 30 40 50 60
881 // | | | | | | |
882 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
883 // -----------------------------------------------------------------------------
884 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
885 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
886 // |---26 bit---| |-----117----||-------------142-------------|
887 // b = format bit len, o = odd parity of last 3 bits
888 // f = facility code, c = card number
889 // w = wiegand parity
890 // (26 bit format shown)
891
892 //get raw ID before removing parities
893 uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
894 uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
895 uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
896
897 size = removeParity(dest, idx+8, 4, 1, 88);
898 if (size != 66) continue;
899
900 // Index map
901 // 0 10 20 30 40 50 60
902 // | | | | | | |
903 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
904 // -----------------------------------------------------------------------------
905 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
906 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
907 // |26 bit| |-117--| |-----142------|
908 //
909 // 00110010 0 0000011111010000000000000001000100101000100001111 0 00000000
910 // bbbbbbbb w ffffffffffffffffccccccccccccccccccccccccccccccccc w xxxxxxxx
911 // |50 bit| |----4000------||-----------2248975-------------|
912 //
913 // b = format bit len, o = odd parity of last 3 bits
914 // f = facility code, c = card number
915 // w = wiegand parity
916
917 uint32_t fc = 0;
918 uint32_t cardnum = 0;
919 uint32_t code1 = 0;
920 uint32_t code2 = 0;
921 uint8_t fmtLen = bytebits_to_byte(dest,8);
922 switch(fmtLen) {
923 case 26:
924 fc = bytebits_to_byte(dest + 9, 8);
925 cardnum = bytebits_to_byte(dest + 17, 16);
926 code1 = bytebits_to_byte(dest + 8,fmtLen);
927 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
928 break;
929 case 50:
930 fc = bytebits_to_byte(dest + 9, 16);
931 cardnum = bytebits_to_byte(dest + 25, 32);
932 code1 = bytebits_to_byte(dest + 8, (fmtLen-32) );
933 code2 = bytebits_to_byte(dest + 8 + (fmtLen-32), 32);
934 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, code2, rawHi2, rawHi, rawLo);
935 break;
936 default:
937 if (fmtLen > 32 ) {
938 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
939 code1 = bytebits_to_byte(dest+8,fmtLen-32);
940 code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
941 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
942 } else {
943 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
944 code1 = bytebits_to_byte(dest+8,fmtLen);
945 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
946 }
947 break;
948 }
949 if (findone){
950 if (ledcontrol) LED_A_OFF();
951 return;
952 }
953 idx = 0;
954 WDT_HIT();
955 }
956 DbpString("Stopped");
957 if (ledcontrol) LED_A_OFF();
958 }
959
960 void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
961 {
962 uint8_t *dest = BigBuf_get_addr();
963
964 size_t size=0, idx=0;
965 int clk=0, invert=0, errCnt=0, maxErr=20;
966 uint32_t hi=0;
967 uint64_t lo=0;
968 //clear read buffer
969 BigBuf_Clear_keep_EM();
970 // Configure to go in 125Khz listen mode
971 LFSetupFPGAForADC(95, true);
972
973 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
974
975 WDT_HIT();
976 if (ledcontrol) LED_A_ON();
977
978 DoAcquisition_default(-1,true);
979 size = BigBuf_max_traceLen();
980 //askdemod and manchester decode
981 if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
982 errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
983 WDT_HIT();
984
985 if (errCnt<0) continue;
986
987 errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
988 if (errCnt){
989 if (size>64){
990 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
991 hi,
992 (uint32_t)(lo>>32),
993 (uint32_t)lo,
994 (uint32_t)(lo&0xFFFF),
995 (uint32_t)((lo>>16LL) & 0xFF),
996 (uint32_t)(lo & 0xFFFFFF));
997 } else {
998 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
999 (uint32_t)(lo>>32),
1000 (uint32_t)lo,
1001 (uint32_t)(lo&0xFFFF),
1002 (uint32_t)((lo>>16LL) & 0xFF),
1003 (uint32_t)(lo & 0xFFFFFF));
1004 }
1005
1006 if (findone){
1007 if (ledcontrol) LED_A_OFF();
1008 *high=lo>>32;
1009 *low=lo & 0xFFFFFFFF;
1010 return;
1011 }
1012 }
1013 WDT_HIT();
1014 hi = lo = size = idx = 0;
1015 clk = invert = errCnt = 0;
1016 }
1017 DbpString("Stopped");
1018 if (ledcontrol) LED_A_OFF();
1019 }
1020
1021 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
1022 {
1023 uint8_t *dest = BigBuf_get_addr();
1024 int idx=0;
1025 uint32_t code=0, code2=0;
1026 uint8_t version=0;
1027 uint8_t facilitycode=0;
1028 uint16_t number=0;
1029 uint8_t crc = 0;
1030 uint16_t calccrc = 0;
1031
1032 //clear read buffer
1033 BigBuf_Clear_keep_EM();
1034
1035 // Configure to go in 125Khz listen mode
1036 LFSetupFPGAForADC(95, true);
1037
1038 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1039 WDT_HIT();
1040 if (ledcontrol) LED_A_ON();
1041 DoAcquisition_default(-1,true);
1042 //fskdemod and get start index
1043 WDT_HIT();
1044 idx = IOdemodFSK(dest, BigBuf_max_traceLen());
1045 if (idx<0) continue;
1046 //valid tag found
1047
1048 //Index map
1049 //0 10 20 30 40 50 60
1050 //| | | | | | |
1051 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1052 //-----------------------------------------------------------------------------
1053 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
1054 //
1055 //Checksum:
1056 //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
1057 //preamble F0 E0 01 03 B6 75
1058 // How to calc checksum,
1059 // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
1060 // F0 + E0 + 01 + 03 + B6 = 28A
1061 // 28A & FF = 8A
1062 // FF - 8A = 75
1063 // Checksum: 0x75
1064 //XSF(version)facility:codeone+codetwo
1065 //Handle the data
1066 if(findone){ //only print binary if we are doing one
1067 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1068 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1069 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1070 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1071 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1072 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1073 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1074 }
1075 code = bytebits_to_byte(dest+idx,32);
1076 code2 = bytebits_to_byte(dest+idx+32,32);
1077 version = bytebits_to_byte(dest+idx+27,8); //14,4
1078 facilitycode = bytebits_to_byte(dest+idx+18,8);
1079 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1080
1081 crc = bytebits_to_byte(dest+idx+54,8);
1082 for (uint8_t i=1; i<6; ++i)
1083 calccrc += bytebits_to_byte(dest+idx+9*i,8);
1084 calccrc &= 0xff;
1085 calccrc = 0xff - calccrc;
1086
1087 char *crcStr = (crc == calccrc) ? "ok":"!crc";
1088
1089 Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr);
1090 // if we're only looking for one tag
1091 if (findone){
1092 if (ledcontrol) LED_A_OFF();
1093 *high=code;
1094 *low=code2;
1095 return;
1096 }
1097 code=code2=0;
1098 version=facilitycode=0;
1099 number=0;
1100 idx=0;
1101
1102 WDT_HIT();
1103 }
1104 DbpString("Stopped");
1105 if (ledcontrol) LED_A_OFF();
1106 }
1107
1108 /*------------------------------
1109 * T5555/T5557/T5567/T5577 routines
1110 *------------------------------
1111 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1112 *
1113 * Relevant communication times in microsecond
1114 * To compensate antenna falling times shorten the write times
1115 * and enlarge the gap ones.
1116 * Q5 tags seems to have issues when these values changes.
1117 */
1118
1119 #define START_GAP 50*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (15fc)
1120 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (10fc)
1121 #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (24fc)
1122 #define WRITE_1 54*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (56fc) 432 for T55x7; 448 for E5550
1123 #define READ_GAP 15*8
1124
1125 // VALUES TAKEN FROM EM4x function: SendForward
1126 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1127 // WRITE_GAP = 128; (16*8)
1128 // WRITE_1 = 256 32*8; (32*8)
1129
1130 // These timings work for 4469/4269/4305 (with the 55*8 above)
1131 // WRITE_0 = 23*8 , 9*8
1132
1133 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
1134 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
1135 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
1136 // T0 = TIMER_CLOCK1 / 125000 = 192
1137 // 1 Cycle = 8 microseconds(us) == 1 field clock
1138
1139 // new timer:
1140 // = 1us = 1.5ticks
1141 // 1fc = 8us = 12ticks
1142 void TurnReadLFOn(uint32_t delay) {
1143 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1144
1145 // measure antenna strength.
1146 //int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
1147
1148 // Give it a bit of time for the resonant antenna to settle.
1149 WaitUS(delay);
1150 }
1151
1152 // Write one bit to card
1153 void T55xxWriteBit(int bit) {
1154 if (!bit)
1155 TurnReadLFOn(WRITE_0);
1156 else
1157 TurnReadLFOn(WRITE_1);
1158 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1159 WaitUS(WRITE_GAP);
1160 }
1161
1162 // Send T5577 reset command then read stream (see if we can identify the start of the stream)
1163 void T55xxResetRead(void) {
1164 LED_A_ON();
1165 //clear buffer now so it does not interfere with timing later
1166 BigBuf_Clear_keep_EM();
1167
1168 // Set up FPGA, 125kHz
1169 LFSetupFPGAForADC(95, true);
1170
1171 // Trigger T55x7 in mode.
1172 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1173 WaitUS(START_GAP);
1174
1175 // reset tag - op code 00
1176 T55xxWriteBit(0);
1177 T55xxWriteBit(0);
1178
1179 // Turn field on to read the response
1180 TurnReadLFOn(READ_GAP);
1181
1182 // Acquisition
1183 doT55x7Acquisition(BigBuf_max_traceLen());
1184
1185 // Turn the field off
1186 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1187 cmd_send(CMD_ACK,0,0,0,0,0);
1188 LED_A_OFF();
1189 }
1190
1191 // Write one card block in page 0, no lock
1192 void T55xxWriteBlockExt(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
1193 LED_A_ON();
1194 bool PwdMode = arg & 0x1;
1195 uint8_t Page = (arg & 0x2)>>1;
1196 uint32_t i = 0;
1197
1198 // Set up FPGA, 125kHz
1199 LFSetupFPGAForADC(95, true);
1200
1201 // Trigger T55x7 in mode.
1202 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1203 WaitUS(START_GAP);
1204
1205 // Opcode 10
1206 T55xxWriteBit(1);
1207 T55xxWriteBit(Page); //Page 0
1208 if (PwdMode){
1209 // Send Pwd
1210 for (i = 0x80000000; i != 0; i >>= 1)
1211 T55xxWriteBit(Pwd & i);
1212 }
1213 // Send Lock bit
1214 T55xxWriteBit(0);
1215
1216 // Send Data
1217 for (i = 0x80000000; i != 0; i >>= 1)
1218 T55xxWriteBit(Data & i);
1219
1220 // Send Block number
1221 for (i = 0x04; i != 0; i >>= 1)
1222 T55xxWriteBit(Block & i);
1223
1224 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1225 // so wait a little more)
1226 TurnReadLFOn(20 * 1000);
1227
1228 //could attempt to do a read to confirm write took
1229 // as the tag should repeat back the new block
1230 // until it is reset, but to confirm it we would
1231 // need to know the current block 0 config mode
1232
1233 // turn field off
1234 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1235 LED_A_OFF();
1236 }
1237
1238 // Write one card block in page 0, no lock
1239 void T55xxWriteBlock(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
1240 T55xxWriteBlockExt(Data, Block, Pwd, arg);
1241 cmd_send(CMD_ACK,0,0,0,0,0);
1242 }
1243
1244 // Read one card block in page [page]
1245 void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
1246 LED_A_ON();
1247 bool PwdMode = arg0 & 0x1;
1248 uint8_t Page = (arg0 & 0x2) >> 1;
1249 uint32_t i = 0;
1250 bool RegReadMode = (Block == 0xFF);
1251
1252 //clear buffer now so it does not interfere with timing later
1253 BigBuf_Clear_keep_EM();
1254
1255 //make sure block is at max 7
1256 Block &= 0x7;
1257
1258 // Set up FPGA, 125kHz to power up the tag
1259 LFSetupFPGAForADC(95, true);
1260 SpinDelay(3);
1261
1262 // Trigger T55x7 Direct Access Mode with start gap
1263 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1264 WaitUS(START_GAP);
1265
1266 // Opcode 1[page]
1267 T55xxWriteBit(1);
1268 T55xxWriteBit(Page); //Page 0
1269
1270 if (PwdMode){
1271 // Send Pwd
1272 for (i = 0x80000000; i != 0; i >>= 1)
1273 T55xxWriteBit(Pwd & i);
1274 }
1275 // Send a zero bit separation
1276 T55xxWriteBit(0);
1277
1278 // Send Block number (if direct access mode)
1279 if (!RegReadMode)
1280 for (i = 0x04; i != 0; i >>= 1)
1281 T55xxWriteBit(Block & i);
1282
1283 // Turn field on to read the response
1284 TurnReadLFOn(READ_GAP);
1285
1286 // Acquisition
1287 doT55x7Acquisition(12000);
1288
1289 // Turn the field off
1290 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1291 cmd_send(CMD_ACK,0,0,0,0,0);
1292 LED_A_OFF();
1293 }
1294
1295 void T55xxWakeUp(uint32_t Pwd){
1296 LED_B_ON();
1297 uint32_t i = 0;
1298
1299 // Set up FPGA, 125kHz
1300 LFSetupFPGAForADC(95, true);
1301
1302 // Trigger T55x7 Direct Access Mode
1303 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1304 WaitUS(START_GAP);
1305
1306 // Opcode 10
1307 T55xxWriteBit(1);
1308 T55xxWriteBit(0); //Page 0
1309
1310 // Send Pwd
1311 for (i = 0x80000000; i != 0; i >>= 1)
1312 T55xxWriteBit(Pwd & i);
1313
1314 // Turn and leave field on to let the begin repeating transmission
1315 TurnReadLFOn(20*1000);
1316 }
1317
1318 /*-------------- Cloning routines -----------*/
1319 void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
1320 // write last block first and config block last (if included)
1321 for (uint8_t i = numblocks+startblock; i > startblock; i--)
1322 T55xxWriteBlockExt(blockdata[i-1], i-1, 0, 0);
1323 }
1324
1325 // Copy HID id to card and setup block 0 config
1326 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
1327 uint32_t data[] = {0,0,0,0,0,0,0};
1328 uint8_t last_block = 0;
1329
1330 if (longFMT){
1331 // Ensure no more than 84 bits supplied
1332 if (hi2 > 0xFFFFF) {
1333 DbpString("Tags can only have 84 bits.");
1334 return;
1335 }
1336 // Build the 6 data blocks for supplied 84bit ID
1337 last_block = 6;
1338 // load preamble (1D) & long format identifier (9E manchester encoded)
1339 data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
1340 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1341 data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
1342 data[3] = manchesterEncode2Bytes(hi >> 16);
1343 data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
1344 data[5] = manchesterEncode2Bytes(lo >> 16);
1345 data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
1346 } else {
1347 // Ensure no more than 44 bits supplied
1348 if (hi > 0xFFF) {
1349 DbpString("Tags can only have 44 bits.");
1350 return;
1351 }
1352 // Build the 3 data blocks for supplied 44bit ID
1353 last_block = 3;
1354 // load preamble
1355 data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
1356 data[2] = manchesterEncode2Bytes(lo >> 16);
1357 data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
1358 }
1359 // load chip config block
1360 data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
1361
1362 //TODO add selection of chip for Q5 or T55x7
1363 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1364
1365 LED_D_ON();
1366 // Program the data blocks for supplied ID
1367 // and the block 0 for HID format
1368 WriteT55xx(data, 0, last_block+1);
1369
1370 LED_D_OFF();
1371
1372 DbpString("DONE!");
1373 }
1374
1375 void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
1376 uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1377 //TODO add selection of chip for Q5 or T55x7
1378 //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
1379 // data[0] = (64 << T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1380
1381 LED_D_ON();
1382 // Program the data blocks for supplied ID
1383 // and the block 0 config
1384 WriteT55xx(data, 0, 3);
1385 LED_D_OFF();
1386 DbpString("DONE!");
1387 }
1388
1389 // Clone Indala 64-bit tag by UID to T55x7
1390 void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
1391 //Program the 2 data blocks for supplied 64bit UID
1392 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1393 uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1394 //TODO add selection of chip for Q5 or T55x7
1395 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1396
1397 WriteT55xx(data, 0, 3);
1398 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1399 // T5567WriteBlock(0x603E1042,0);
1400 DbpString("DONE!");
1401 }
1402 // Clone Indala 224-bit tag by UID to T55x7
1403 void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
1404 //Program the 7 data blocks for supplied 224bit UID
1405 uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
1406 // and the block 0 for Indala224 format
1407 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1408 data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT);
1409 //TODO add selection of chip for Q5 or T55x7
1410 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
1411 WriteT55xx(data, 0, 8);
1412 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1413 // T5567WriteBlock(0x603E10E2,0);
1414 DbpString("DONE!");
1415 }
1416 // clone viking tag to T55xx
1417 void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
1418 uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
1419 //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
1420 if (Q5) data[0] = (32 << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
1421 // Program the data blocks for supplied ID and the block 0 config
1422 WriteT55xx(data, 0, 3);
1423 LED_D_OFF();
1424 cmd_send(CMD_ACK,0,0,0,0,0);
1425 }
1426
1427 // Define 9bit header for EM410x tags
1428 #define EM410X_HEADER 0x1FF
1429 #define EM410X_ID_LENGTH 40
1430
1431 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
1432 int i, id_bit;
1433 uint64_t id = EM410X_HEADER;
1434 uint64_t rev_id = 0; // reversed ID
1435 int c_parity[4]; // column parity
1436 int r_parity = 0; // row parity
1437 uint32_t clock = 0;
1438
1439 // Reverse ID bits given as parameter (for simpler operations)
1440 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1441 if (i < 32) {
1442 rev_id = (rev_id << 1) | (id_lo & 1);
1443 id_lo >>= 1;
1444 } else {
1445 rev_id = (rev_id << 1) | (id_hi & 1);
1446 id_hi >>= 1;
1447 }
1448 }
1449
1450 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1451 id_bit = rev_id & 1;
1452
1453 if (i % 4 == 0) {
1454 // Don't write row parity bit at start of parsing
1455 if (i)
1456 id = (id << 1) | r_parity;
1457 // Start counting parity for new row
1458 r_parity = id_bit;
1459 } else {
1460 // Count row parity
1461 r_parity ^= id_bit;
1462 }
1463
1464 // First elements in column?
1465 if (i < 4)
1466 // Fill out first elements
1467 c_parity[i] = id_bit;
1468 else
1469 // Count column parity
1470 c_parity[i % 4] ^= id_bit;
1471
1472 // Insert ID bit
1473 id = (id << 1) | id_bit;
1474 rev_id >>= 1;
1475 }
1476
1477 // Insert parity bit of last row
1478 id = (id << 1) | r_parity;
1479
1480 // Fill out column parity at the end of tag
1481 for (i = 0; i < 4; ++i)
1482 id = (id << 1) | c_parity[i];
1483
1484 // Add stop bit
1485 id <<= 1;
1486
1487 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1488 LED_D_ON();
1489
1490 // Write EM410x ID
1491 uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
1492
1493 clock = (card & 0xFF00) >> 8;
1494 clock = (clock == 0) ? 64 : clock;
1495 Dbprintf("Clock rate: %d", clock);
1496 if (card & 0xFF) { //t55x7
1497 clock = GetT55xxClockBit(clock);
1498 if (clock == 0) {
1499 Dbprintf("Invalid clock rate: %d", clock);
1500 return;
1501 }
1502 data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
1503 } else { //t5555 (Q5)
1504 clock = (clock-2)>>1; //n = (RF-2)/2
1505 data[0] = (clock << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
1506 }
1507
1508 WriteT55xx(data, 0, 3);
1509
1510 LED_D_OFF();
1511 Dbprintf("Tag %s written with 0x%08x%08x\n",
1512 card ? "T55x7":"T5555",
1513 (uint32_t)(id >> 32),
1514 (uint32_t)id);
1515 }
1516
1517 //-----------------------------------
1518 // EM4469 / EM4305 routines
1519 //-----------------------------------
1520 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1521 #define FWD_CMD_WRITE 0xA
1522 #define FWD_CMD_READ 0x9
1523 #define FWD_CMD_DISABLE 0x5
1524
1525 uint8_t forwardLink_data[64]; //array of forwarded bits
1526 uint8_t * forward_ptr; //ptr for forward message preparation
1527 uint8_t fwd_bit_sz; //forwardlink bit counter
1528 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1529
1530 //====================================================================
1531 // prepares command bits
1532 // see EM4469 spec
1533 //====================================================================
1534 //--------------------------------------------------------------------
1535 // VALUES TAKEN FROM EM4x function: SendForward
1536 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1537 // WRITE_GAP = 128; (16*8)
1538 // WRITE_1 = 256 32*8; (32*8)
1539
1540 // These timings work for 4469/4269/4305 (with the 55*8 above)
1541 // WRITE_0 = 23*8 , 9*8
1542
1543 uint8_t Prepare_Cmd( uint8_t cmd ) {
1544
1545 *forward_ptr++ = 0; //start bit
1546 *forward_ptr++ = 0; //second pause for 4050 code
1547
1548 *forward_ptr++ = cmd;
1549 cmd >>= 1;
1550 *forward_ptr++ = cmd;
1551 cmd >>= 1;
1552 *forward_ptr++ = cmd;
1553 cmd >>= 1;
1554 *forward_ptr++ = cmd;
1555
1556 return 6; //return number of emited bits
1557 }
1558
1559 //====================================================================
1560 // prepares address bits
1561 // see EM4469 spec
1562 //====================================================================
1563 uint8_t Prepare_Addr( uint8_t addr ) {
1564
1565 register uint8_t line_parity;
1566
1567 uint8_t i;
1568 line_parity = 0;
1569 for(i=0;i<6;i++) {
1570 *forward_ptr++ = addr;
1571 line_parity ^= addr;
1572 addr >>= 1;
1573 }
1574
1575 *forward_ptr++ = (line_parity & 1);
1576
1577 return 7; //return number of emited bits
1578 }
1579
1580 //====================================================================
1581 // prepares data bits intreleaved with parity bits
1582 // see EM4469 spec
1583 //====================================================================
1584 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1585
1586 register uint8_t line_parity;
1587 register uint8_t column_parity;
1588 register uint8_t i, j;
1589 register uint16_t data;
1590
1591 data = data_low;
1592 column_parity = 0;
1593
1594 for(i=0; i<4; i++) {
1595 line_parity = 0;
1596 for(j=0; j<8; j++) {
1597 line_parity ^= data;
1598 column_parity ^= (data & 1) << j;
1599 *forward_ptr++ = data;
1600 data >>= 1;
1601 }
1602 *forward_ptr++ = line_parity;
1603 if(i == 1)
1604 data = data_hi;
1605 }
1606
1607 for(j=0; j<8; j++) {
1608 *forward_ptr++ = column_parity;
1609 column_parity >>= 1;
1610 }
1611 *forward_ptr = 0;
1612
1613 return 45; //return number of emited bits
1614 }
1615
1616 //====================================================================
1617 // Forward Link send function
1618 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1619 // fwd_bit_count set with number of bits to be sent
1620 //====================================================================
1621 void SendForward(uint8_t fwd_bit_count) {
1622
1623 fwd_write_ptr = forwardLink_data;
1624 fwd_bit_sz = fwd_bit_count;
1625
1626 LED_D_ON();
1627
1628 // Set up FPGA, 125kHz
1629 LFSetupFPGAForADC(95, true);
1630
1631 // force 1st mod pulse (start gap must be longer for 4305)
1632 fwd_bit_sz--; //prepare next bit modulation
1633 fwd_write_ptr++;
1634 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1635 WaitUS(55*8); //55 cycles off (8us each)for 4305 // ICEMAN: problem with (us) clock is 21.3us increments
1636 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1637 WaitUS(16*8); //16 cycles on (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
1638
1639 // now start writting
1640 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1641 if(((*fwd_write_ptr++) & 1) == 1)
1642 WaitUS(32*8); //32 cycles at 125Khz (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
1643 else {
1644 //These timings work for 4469/4269/4305 (with the 55*8 above)
1645 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1646 WaitUS(16*8); //16-4 cycles off (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
1647 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1648 WaitUS(16*8); //16 cycles on (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
1649 }
1650 }
1651 }
1652
1653 void EM4xLogin(uint32_t Password) {
1654
1655 uint8_t fwd_bit_count;
1656 forward_ptr = forwardLink_data;
1657 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1658 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1659 SendForward(fwd_bit_count);
1660
1661 //Wait for command to complete
1662 WaitMS(20);
1663 }
1664
1665 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1666
1667 uint8_t fwd_bit_count;
1668 uint8_t *dest = BigBuf_get_addr();
1669 uint16_t bufsize = BigBuf_max_traceLen(); // ICEMAN: this tries to fill up all tracelog space
1670 uint32_t i = 0;
1671
1672 // Clear destination buffer before sending the command
1673 BigBuf_Clear_ext(false);
1674
1675 //If password mode do login
1676 if (PwdMode == 1) EM4xLogin(Pwd);
1677
1678 forward_ptr = forwardLink_data;
1679 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1680 fwd_bit_count += Prepare_Addr( Address );
1681
1682 SendForward(fwd_bit_count);
1683
1684 // Now do the acquisition
1685 // ICEMAN, change to the one in lfsampling.c
1686 i = 0;
1687 for(;;) {
1688 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1689 AT91C_BASE_SSC->SSC_THR = 0x43;
1690 }
1691 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1692 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1693 ++i;
1694 if (i >= bufsize) break;
1695 }
1696 }
1697
1698 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1699 cmd_send(CMD_ACK,0,0,0,0,0);
1700 LED_D_OFF();
1701 }
1702
1703 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1704
1705 uint8_t fwd_bit_count;
1706
1707 //If password mode do login
1708 if (PwdMode == 1) EM4xLogin(Pwd);
1709
1710 forward_ptr = forwardLink_data;
1711 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1712 fwd_bit_count += Prepare_Addr( Address );
1713 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1714
1715 SendForward(fwd_bit_count);
1716
1717 //Wait for write to complete
1718 WaitMS(20);
1719 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1720 LED_D_OFF();
1721 }
Impressum, Datenschutz