1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
17 #include "proxmark3.h"
26 #include "lfsampling.h"
28 #include "mifareutil.h"
38 // Craig Young - 14a stand-alone code
40 #include "iso14443a.h"
43 //=============================================================================
44 // A buffer where we can queue things up to be sent through the FPGA, for
45 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
46 // is the order in which they go out on the wire.
47 //=============================================================================
49 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
50 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
53 struct common_area common_area
__attribute__((section(".commonarea")));
55 void ToSendReset(void)
61 void ToSendStuffBit(int b
)
65 ToSend
[ToSendMax
] = 0;
70 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
75 if(ToSendMax
>= sizeof(ToSend
)) {
77 DbpString("ToSendStuffBit overflowed!");
81 //=============================================================================
82 // Debug print functions, to go out over USB, to the usual PC-side client.
83 //=============================================================================
85 void DbpString(char *str
)
87 byte_t len
= strlen(str
);
88 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
92 void DbpIntegers(int x1
, int x2
, int x3
)
94 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
98 void Dbprintf(const char *fmt
, ...) {
99 // should probably limit size here; oh well, let's just use a big buffer
100 char output_string
[128];
104 kvsprintf(fmt
, output_string
, 10, ap
);
107 DbpString(output_string
);
110 // prints HEX & ASCII
111 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
124 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
127 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
129 Dbprintf("%*D",l
,d
," ");
137 //-----------------------------------------------------------------------------
138 // Read an ADC channel and block till it completes, then return the result
139 // in ADC units (0 to 1023). Also a routine to average 32 samples and
141 //-----------------------------------------------------------------------------
142 static int ReadAdc(int ch
)
144 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
145 // AMPL_HI is are high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
146 // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
149 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
151 // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
153 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
154 AT91C_BASE_ADC
->ADC_MR
=
155 ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
156 ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
157 ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
159 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
160 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
162 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) {};
164 return AT91C_BASE_ADC
->ADC_CDR
[ch
];
167 int AvgAdc(int ch
) // was static - merlok
172 for(i
= 0; i
< 32; i
++) {
176 return (a
+ 15) >> 5;
179 void MeasureAntennaTuningLfOnly(int *vLf125
, int *vLf134
, int *peakf
, int *peakv
, uint8_t LF_Results
[])
181 int i
, adcval
= 0, peak
= 0;
184 * Sweeps the useful LF range of the proxmark from
185 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
186 * read the voltage in the antenna, the result left
187 * in the buffer is a graph which should clearly show
188 * the resonating frequency of your LF antenna
189 * ( hopefully around 95 if it is tuned to 125kHz!)
192 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
193 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
196 for (i
=255; i
>=19; i
--) {
198 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
200 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
201 if (i
==95) *vLf125
= adcval
; // voltage at 125Khz
202 if (i
==89) *vLf134
= adcval
; // voltage at 134Khz
204 LF_Results
[i
] = adcval
>> 9; // scale int to fit in byte for graphing purposes
205 if(LF_Results
[i
] > peak
) {
207 peak
= LF_Results
[i
];
213 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
218 void MeasureAntennaTuningHfOnly(int *vHf
)
220 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
222 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
223 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
225 *vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
231 void MeasureAntennaTuning(int mode
)
233 uint8_t LF_Results
[256] = {0};
234 int peakv
= 0, peakf
= 0;
235 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
239 if (((mode
& FLAG_TUNE_ALL
) == FLAG_TUNE_ALL
) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF
)) {
240 // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
241 MeasureAntennaTuningHfOnly(&vHf
);
242 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
244 if (mode
& FLAG_TUNE_LF
) {
245 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
247 if (mode
& FLAG_TUNE_HF
) {
248 MeasureAntennaTuningHfOnly(&vHf
);
252 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
>>1 | (vLf134
>>1<<16), vHf
, peakf
| (peakv
>>1<<16), LF_Results
, 256);
253 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
258 void MeasureAntennaTuningHf(void)
260 int vHf
= 0; // in mV
262 DbpString("Measuring HF antenna, press button to exit");
264 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
265 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
266 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
270 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
272 Dbprintf("%d mV",vHf
);
273 if (BUTTON_PRESS()) break;
275 DbpString("cancelled");
277 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
282 void ReadMem(int addr
)
284 const uint8_t *data
= ((uint8_t *)addr
);
286 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
287 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
290 /* osimage version information is linked in */
291 extern struct version_information version_information
;
292 /* bootrom version information is pointed to from _bootphase1_version_pointer */
293 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
295 void SendVersion(void)
297 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
298 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
300 /* Try to find the bootrom version information. Expect to find a pointer at
301 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
302 * pointer, then use it.
304 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
305 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
306 strcat(VersionString
, "bootrom version information appears invalid\n");
308 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
309 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
312 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
313 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
315 for (int i
= 0; i
< fpga_bitstream_num
; i
++) {
316 strncat(VersionString
, fpga_version_information
[i
], sizeof(VersionString
) - strlen(VersionString
) - 1);
317 if (i
< fpga_bitstream_num
- 1) {
318 strncat(VersionString
, "\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
322 // Send Chip ID and used flash memory
323 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
324 uint32_t compressed_data_section_size
= common_area
.arg1
;
325 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
328 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
329 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
330 void printUSBSpeed(void)
332 Dbprintf("USB Speed:");
333 Dbprintf(" Sending USB packets to client...");
335 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
336 uint8_t *test_data
= BigBuf_get_addr();
339 uint32_t start_time
= end_time
= GetTickCount();
340 uint32_t bytes_transferred
= 0;
343 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
344 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
345 end_time
= GetTickCount();
346 bytes_transferred
+= USB_CMD_DATA_SIZE
;
350 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
351 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
352 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
353 1000 * bytes_transferred
/ (end_time
- start_time
));
358 * Prints runtime information about the PM3.
360 void SendStatus(void)
362 BigBuf_print_status();
364 #ifdef WITH_SMARTCARD
367 printConfig(); //LF Sampling config
370 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
371 Dbprintf(" ToSendMax..........%d", ToSendMax
);
372 Dbprintf(" ToSendBit..........%d", ToSendBit
);
374 cmd_send(CMD_ACK
,1,0,0,0,0);
377 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone)
381 void StandAloneMode()
383 DbpString("Stand-alone mode! No PC necessary.");
384 // Oooh pretty -- notify user we're in elite samy mode now
386 LED(LED_ORANGE
, 200);
388 LED(LED_ORANGE
, 200);
390 LED(LED_ORANGE
, 200);
392 LED(LED_ORANGE
, 200);
401 #ifdef WITH_ISO14443a_StandAlone
402 void StandAloneMode14a()
405 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
408 bool playing
= false, GotoRecord
= false, GotoClone
= false;
409 bool cardRead
[OPTS
] = {false};
410 uint8_t readUID
[10] = {0};
411 uint32_t uid_1st
[OPTS
]={0};
412 uint32_t uid_2nd
[OPTS
]={0};
413 uint32_t uid_tmp1
= 0;
414 uint32_t uid_tmp2
= 0;
415 iso14a_card_select_t hi14a_card
[OPTS
];
417 LED(selected
+ 1, 0);
425 if (GotoRecord
|| !cardRead
[selected
])
429 LED(selected
+ 1, 0);
433 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
434 /* need this delay to prevent catching some weird data */
436 /* Code for reading from 14a tag */
437 uint8_t uid
[10] ={0};
439 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
444 if (BUTTON_PRESS()) {
445 if (cardRead
[selected
]) {
446 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
449 else if (cardRead
[(selected
+1)%OPTS
]) {
450 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
451 selected
= (selected
+1)%OPTS
;
455 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
459 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0, true))
463 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
464 memcpy(readUID
,uid
,10*sizeof(uint8_t));
465 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
466 // Set UID byte order
467 for (int i
=0; i
<4; i
++)
469 dst
= (uint8_t *)&uid_tmp2
;
470 for (int i
=0; i
<4; i
++)
472 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
473 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
477 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
478 uid_1st
[selected
] = (uid_tmp1
)>>8;
479 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
482 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
483 uid_1st
[selected
] = uid_tmp1
;
484 uid_2nd
[selected
] = uid_tmp2
;
490 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
491 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
494 LED(LED_ORANGE
, 200);
496 LED(LED_ORANGE
, 200);
499 LED(selected
+ 1, 0);
501 // Next state is replay:
504 cardRead
[selected
] = true;
506 /* MF Classic UID clone */
511 LED(selected
+ 1, 0);
512 LED(LED_ORANGE
, 250);
516 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
518 // wait for button to be released
519 while(BUTTON_PRESS())
521 // Delay cloning until card is in place
524 Dbprintf("Starting clone. [Bank: %u]", selected
);
525 // need this delay to prevent catching some weird data
527 // Begin clone function here:
528 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
529 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
530 memcpy(c.d.asBytes, data, 16);
533 Block read is similar:
534 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
535 We need to imitate that call with blockNo 0 to set a uid.
537 The get and set commands are handled in this file:
538 // Work with "magic Chinese" card
539 case CMD_MIFARE_CSETBLOCK:
540 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
542 case CMD_MIFARE_CGETBLOCK:
543 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
546 mfCSetUID provides example logic for UID set workflow:
547 -Read block0 from card in field with MifareCGetBlock()
548 -Configure new values without replacing reserved bytes
549 memcpy(block0, uid, 4); // Copy UID bytes from byte array
551 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
552 Bytes 5-7 are reserved SAK and ATQA for mifare classic
553 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
555 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
556 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
557 MifareCGetBlock(0x3F, 1, 0, oldBlock0
);
558 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
559 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
563 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
564 memcpy(newBlock0
,oldBlock0
,16);
565 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
567 newBlock0
[0] = uid_1st
[selected
]>>24;
568 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
569 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
570 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
571 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
572 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
573 MifareCSetBlock(0, 0xFF,0, newBlock0
);
574 MifareCGetBlock(0x3F, 1, 0, testBlock0
);
575 if (memcmp(testBlock0
,newBlock0
,16)==0)
577 DbpString("Cloned successfull!");
578 cardRead
[selected
] = false; // Only if the card was cloned successfully should we clear it
581 selected
= (selected
+1) % OPTS
;
584 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
589 LED(selected
+ 1, 0);
592 // Change where to record (or begin playing)
593 else if (playing
) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
596 LED(selected
+ 1, 0);
598 // Begin transmitting
600 DbpString("Playing");
603 int button_action
= BUTTON_HELD(1000);
604 if (button_action
== 0) { // No button action, proceed with sim
605 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
606 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
607 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
608 DbpString("Mifare Classic");
609 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
); // Mifare Classic
611 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
612 DbpString("Mifare Ultralight");
613 SimulateIso14443aTag(2,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare Ultralight
615 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
616 DbpString("Mifare DESFire");
617 SimulateIso14443aTag(3,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare DESFire
620 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
621 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
);
624 else if (button_action
== BUTTON_SINGLE_CLICK
) {
625 selected
= (selected
+ 1) % OPTS
;
626 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
630 else if (button_action
== BUTTON_HOLD
) {
631 Dbprintf("Playtime over. Begin cloning...");
638 /* We pressed a button so ignore it here with a delay */
641 LED(selected
+ 1, 0);
645 #elif WITH_LF_StandAlone
646 // samy's sniff and repeat routine
650 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
652 int tops
[OPTS
], high
[OPTS
], low
[OPTS
];
657 // Turn on selected LED
658 LED(selected
+ 1, 0);
665 // Was our button held down or pressed?
666 int button_pressed
= BUTTON_HELD(1000);
669 // Button was held for a second, begin recording
670 if (button_pressed
> 0 && cardRead
== 0)
673 LED(selected
+ 1, 0);
677 DbpString("Starting recording");
679 // wait for button to be released
680 while(BUTTON_PRESS())
683 /* need this delay to prevent catching some weird data */
686 CmdHIDdemodFSK(1, &tops
[selected
], &high
[selected
], &low
[selected
], 0);
687 if (tops
[selected
] > 0)
688 Dbprintf("Recorded %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
690 Dbprintf("Recorded %x %x%08x", selected
, high
[selected
], low
[selected
]);
693 LED(selected
+ 1, 0);
694 // Finished recording
696 // If we were previously playing, set playing off
697 // so next button push begins playing what we recorded
704 else if (button_pressed
> 0 && cardRead
== 1)
707 LED(selected
+ 1, 0);
711 if (tops
[selected
] > 0)
712 Dbprintf("Cloning %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
714 Dbprintf("Cloning %x %x%08x", selected
, high
[selected
], low
[selected
]);
716 // wait for button to be released
717 while(BUTTON_PRESS())
720 /* need this delay to prevent catching some weird data */
723 CopyHIDtoT55x7(tops
[selected
] & 0x000FFFFF, high
[selected
], low
[selected
], (tops
[selected
] != 0 && ((high
[selected
]& 0xFFFFFFC0) != 0)));
724 if (tops
[selected
] > 0)
725 Dbprintf("Cloned %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
727 Dbprintf("Cloned %x %x%08x", selected
, high
[selected
], low
[selected
]);
730 LED(selected
+ 1, 0);
731 // Finished recording
733 // If we were previously playing, set playing off
734 // so next button push begins playing what we recorded
741 // Change where to record (or begin playing)
742 else if (button_pressed
)
744 // Next option if we were previously playing
746 selected
= (selected
+ 1) % OPTS
;
750 LED(selected
+ 1, 0);
752 // Begin transmitting
756 DbpString("Playing");
757 // wait for button to be released
758 while(BUTTON_PRESS())
760 if (tops
[selected
] > 0)
761 Dbprintf("%x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
763 Dbprintf("%x %x%08x", selected
, high
[selected
], low
[selected
]);
765 CmdHIDsimTAG(tops
[selected
], high
[selected
], low
[selected
], 0);
766 DbpString("Done playing");
767 if (BUTTON_HELD(1000) > 0)
769 DbpString("Exiting");
774 /* We pressed a button so ignore it here with a delay */
777 // when done, we're done playing, move to next option
778 selected
= (selected
+ 1) % OPTS
;
781 LED(selected
+ 1, 0);
784 while(BUTTON_PRESS())
793 Listen and detect an external reader. Determine the best location
797 Inside the ListenReaderField() function, there is two mode.
798 By default, when you call the function, you will enter mode 1.
799 If you press the PM3 button one time, you will enter mode 2.
800 If you press the PM3 button a second time, you will exit the function.
802 DESCRIPTION OF MODE 1:
803 This mode just listens for an external reader field and lights up green
804 for HF and/or red for LF. This is the original mode of the detectreader
807 DESCRIPTION OF MODE 2:
808 This mode will visually represent, using the LEDs, the actual strength of the
809 current compared to the maximum current detected. Basically, once you know
810 what kind of external reader is present, it will help you spot the best location to place
811 your antenna. You will probably not get some good results if there is a LF and a HF reader
812 at the same place! :-)
816 static const char LIGHT_SCHEME
[] = {
817 0x0, /* ---- | No field detected */
818 0x1, /* X--- | 14% of maximum current detected */
819 0x2, /* -X-- | 29% of maximum current detected */
820 0x4, /* --X- | 43% of maximum current detected */
821 0x8, /* ---X | 57% of maximum current detected */
822 0xC, /* --XX | 71% of maximum current detected */
823 0xE, /* -XXX | 86% of maximum current detected */
824 0xF, /* XXXX | 100% of maximum current detected */
826 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
828 void ListenReaderField(int limit
)
830 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
831 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
832 int mode
=1, display_val
, display_max
, i
;
836 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
839 // switch off FPGA - we don't want to measure our own signal
840 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
841 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
845 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
847 if(limit
!= HF_ONLY
) {
848 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
852 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
854 if (limit
!= LF_ONLY
) {
855 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
860 if (BUTTON_PRESS()) {
865 DbpString("Signal Strength Mode");
869 DbpString("Stopped");
877 if (limit
!= HF_ONLY
) {
879 if (ABS(lf_av
- lf_baseline
) > REPORT_CHANGE
)
885 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
886 // see if there's a significant change
887 if(ABS(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
888 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
895 if (limit
!= LF_ONLY
) {
897 if (ABS(hf_av
- hf_baseline
) > REPORT_CHANGE
)
903 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
904 // see if there's a significant change
905 if(ABS(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
906 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
914 if (limit
== LF_ONLY
) {
916 display_max
= lf_max
;
917 } else if (limit
== HF_ONLY
) {
919 display_max
= hf_max
;
920 } else { /* Pick one at random */
921 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
923 display_max
= hf_max
;
926 display_max
= lf_max
;
929 for (i
=0; i
<LIGHT_LEN
; i
++) {
930 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
931 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
932 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
933 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
934 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
942 void UsbPacketReceived(uint8_t *packet
, int len
)
944 UsbCommand
*c
= (UsbCommand
*)packet
;
946 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
950 case CMD_SET_LF_SAMPLING_CONFIG
:
951 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
953 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
954 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0], c
->arg
[1]),0,0,0,0);
956 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
957 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
959 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
960 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
962 case CMD_HID_DEMOD_FSK
:
963 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 0, 1);
965 case CMD_HID_SIM_TAG
:
966 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], 1);
968 case CMD_FSK_SIM_TAG
:
969 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
971 case CMD_ASK_SIM_TAG
:
972 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
974 case CMD_PSK_SIM_TAG
:
975 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
977 case CMD_HID_CLONE_TAG
:
978 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
980 case CMD_IO_DEMOD_FSK
:
981 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
983 case CMD_IO_CLONE_TAG
:
984 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
986 case CMD_EM410X_DEMOD
:
987 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
989 case CMD_EM410X_WRITE_TAG
:
990 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
992 case CMD_READ_TI_TYPE
:
995 case CMD_WRITE_TI_TYPE
:
996 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
998 case CMD_SIMULATE_TAG_125K
:
1000 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
1003 case CMD_LF_SIMULATE_BIDIR
:
1004 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
1006 case CMD_INDALA_CLONE_TAG
:
1007 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
1009 case CMD_INDALA_CLONE_TAG_L
:
1010 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
1012 case CMD_T55XX_READ_BLOCK
:
1013 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1015 case CMD_T55XX_WRITE_BLOCK
:
1016 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
1018 case CMD_T55XX_WAKEUP
:
1019 T55xxWakeUp(c
->arg
[0]);
1021 case CMD_T55XX_RESET_READ
:
1024 case CMD_PCF7931_READ
:
1027 case CMD_PCF7931_WRITE
:
1028 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1030 case CMD_EM4X_READ_WORD
:
1031 EM4xReadWord(c
->arg
[0], c
->arg
[1],c
->arg
[2]);
1033 case CMD_EM4X_WRITE_WORD
:
1034 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1036 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1037 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1039 case CMD_VIKING_CLONE_TAG
:
1040 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1048 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1049 SnoopHitag(c
->arg
[0]);
1051 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1052 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1054 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1055 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1057 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1058 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1060 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1061 check_challenges((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1063 case CMD_READ_HITAG_S
://Reader for only Hitag S tags, args = key or challenge
1064 ReadHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1066 case CMD_WR_HITAG_S
://writer for Hitag tags args=data to write,page and key or challenge
1067 if ((hitag_function
)c
->arg
[0] < 10) {
1068 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1070 else if ((hitag_function
)c
->arg
[0] >= 10) {
1071 WriterHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
, c
->arg
[2]);
1076 #ifdef WITH_ISO15693
1077 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1078 AcquireRawAdcSamplesIso15693();
1080 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1081 RecordRawAdcSamplesIso15693();
1084 case CMD_ISO_15693_COMMAND
:
1085 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1088 case CMD_ISO_15693_FIND_AFI
:
1089 BruteforceIso15693Afi(c
->arg
[0]);
1092 case CMD_ISO_15693_DEBUG
:
1093 SetDebugIso15693(c
->arg
[0]);
1096 case CMD_READER_ISO_15693
:
1097 ReaderIso15693(c
->arg
[0]);
1099 case CMD_SIMTAG_ISO_15693
:
1100 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1105 case CMD_SIMULATE_TAG_LEGIC_RF
:
1106 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1109 case CMD_WRITER_LEGIC_RF
:
1110 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1113 case CMD_READER_LEGIC_RF
:
1114 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1118 #ifdef WITH_ISO14443b
1119 case CMD_READ_SRI512_TAG
:
1120 ReadSTMemoryIso14443b(0x0F);
1122 case CMD_READ_SRIX4K_TAG
:
1123 ReadSTMemoryIso14443b(0x7F);
1125 case CMD_SNOOP_ISO_14443B
:
1128 case CMD_SIMULATE_TAG_ISO_14443B
:
1129 SimulateIso14443bTag();
1131 case CMD_ISO_14443B_COMMAND
:
1132 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1136 #ifdef WITH_ISO14443a
1137 case CMD_SNOOP_ISO_14443a
:
1138 SnoopIso14443a(c
->arg
[0]);
1140 case CMD_READER_ISO_14443a
:
1143 case CMD_SIMULATE_TAG_ISO_14443a
:
1144 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1147 case CMD_EPA_PACE_COLLECT_NONCE
:
1148 EPA_PACE_Collect_Nonce(c
);
1150 case CMD_EPA_PACE_REPLAY
:
1154 case CMD_READER_MIFARE
:
1155 ReaderMifare(c
->arg
[0]);
1157 case CMD_MIFARE_READBL
:
1158 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1160 case CMD_MIFAREU_READBL
:
1161 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1163 case CMD_MIFAREUC_AUTH
:
1164 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1166 case CMD_MIFAREU_READCARD
:
1167 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1169 case CMD_MIFAREUC_SETPWD
:
1170 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1172 case CMD_MIFARE_READSC
:
1173 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1175 case CMD_MIFARE_WRITEBL
:
1176 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1178 //case CMD_MIFAREU_WRITEBL_COMPAT:
1179 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1181 case CMD_MIFAREU_WRITEBL
:
1182 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1184 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1185 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1187 case CMD_MIFARE_NESTED
:
1188 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1190 case CMD_MIFARE_CHKKEYS
:
1191 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1193 case CMD_SIMULATE_MIFARE_CARD
:
1194 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1198 case CMD_MIFARE_SET_DBGMODE
:
1199 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1201 case CMD_MIFARE_EML_MEMCLR
:
1202 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1204 case CMD_MIFARE_EML_MEMSET
:
1205 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1207 case CMD_MIFARE_EML_MEMGET
:
1208 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1210 case CMD_MIFARE_EML_CARDLOAD
:
1211 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1214 // Work with "magic Chinese" card
1215 case CMD_MIFARE_CWIPE
:
1216 MifareCWipe(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1218 case CMD_MIFARE_CSETBLOCK
:
1219 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1221 case CMD_MIFARE_CGETBLOCK
:
1222 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1224 case CMD_MIFARE_CIDENT
:
1229 case CMD_MIFARE_SNIFFER
:
1230 SniffMifare(c
->arg
[0]);
1236 // Makes use of ISO14443a FPGA Firmware
1237 case CMD_SNOOP_ICLASS
:
1240 case CMD_SIMULATE_TAG_ICLASS
:
1241 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1243 case CMD_READER_ICLASS
:
1244 ReaderIClass(c
->arg
[0]);
1246 case CMD_READER_ICLASS_REPLAY
:
1247 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1249 case CMD_ICLASS_EML_MEMSET
:
1250 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1252 case CMD_ICLASS_WRITEBLOCK
:
1253 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1255 case CMD_ICLASS_READCHECK
: // auth step 1
1256 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1258 case CMD_ICLASS_READBLOCK
:
1259 iClass_ReadBlk(c
->arg
[0]);
1261 case CMD_ICLASS_AUTHENTICATION
: //check
1262 iClass_Authentication(c
->d
.asBytes
);
1264 case CMD_ICLASS_DUMP
:
1265 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1267 case CMD_ICLASS_CLONE
:
1268 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1272 case CMD_HF_SNIFFER
:
1273 HfSnoop(c
->arg
[0], c
->arg
[1]);
1276 #ifdef WITH_SMARTCARD
1277 case CMD_SMART_ATR
: {
1281 case CMD_SMART_SETCLOCK
:{
1282 SmartCardSetClock(c
->arg
[0]);
1285 case CMD_SMART_RAW
: {
1286 SmartCardRaw(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1289 case CMD_SMART_UPLOAD
: {
1290 // upload file from client
1291 uint8_t *mem
= BigBuf_get_addr();
1292 memcpy( mem
+ c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1293 cmd_send(CMD_ACK
,1,0,0,0,0);
1296 case CMD_SMART_UPGRADE
: {
1297 SmartCardUpgrade(c
->arg
[0]);
1302 case CMD_BUFF_CLEAR
:
1306 case CMD_MEASURE_ANTENNA_TUNING
:
1307 MeasureAntennaTuning(c
->arg
[0]);
1310 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1311 MeasureAntennaTuningHf();
1314 case CMD_LISTEN_READER_FIELD
:
1315 ListenReaderField(c
->arg
[0]);
1318 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1319 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1321 LED_D_OFF(); // LED D indicates field ON or OFF
1324 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1327 uint8_t *BigBuf
= BigBuf_get_addr();
1328 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1329 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1330 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1332 // Trigger a finish downloading signal with an ACK frame
1333 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1337 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1338 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1339 // to be able to use this one for uploading data to device
1340 // arg1 = 0 upload for LF usage
1341 // 1 upload for HF usage
1343 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1345 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1347 uint8_t *b
= BigBuf_get_addr();
1348 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1349 cmd_send(CMD_ACK
,0,0,0,0,0);
1356 case CMD_SET_LF_DIVISOR
:
1357 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1358 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1361 case CMD_SET_ADC_MUX
:
1363 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1364 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1365 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1366 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1377 cmd_send(CMD_ACK
,0,0,0,0,0);
1387 case CMD_SETUP_WRITE
:
1388 case CMD_FINISH_WRITE
:
1389 case CMD_HARDWARE_RESET
:
1393 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1395 // We're going to reset, and the bootrom will take control.
1399 case CMD_START_FLASH
:
1400 if(common_area
.flags
.bootrom_present
) {
1401 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1404 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1408 case CMD_DEVICE_INFO
: {
1409 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1410 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1411 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1415 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1420 void __attribute__((noreturn
)) AppMain(void)
1424 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1425 /* Initialize common area */
1426 memset(&common_area
, 0, sizeof(common_area
));
1427 common_area
.magic
= COMMON_AREA_MAGIC
;
1428 common_area
.version
= 1;
1430 common_area
.flags
.osimage_present
= 1;
1440 // The FPGA gets its clock from us from PCK0 output, so set that up.
1441 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1442 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1443 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1444 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1445 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1446 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1447 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1450 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1452 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1454 // Load the FPGA image, which we have stored in our flash.
1455 // (the HF version by default)
1456 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1464 byte_t rx
[sizeof(UsbCommand
)];
1469 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1471 UsbPacketReceived(rx
,rx_len
);
1476 #ifdef WITH_LF_StandAlone
1477 #ifndef WITH_ISO14443a_StandAlone
1478 if (BUTTON_HELD(1000) > 0)
1482 #ifdef WITH_ISO14443a
1483 #ifdef WITH_ISO14443a_StandAlone
1484 if (BUTTON_HELD(1000) > 0)
1485 StandAloneMode14a();