1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2015, 2016 by piwi
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Implements a card only attack based on crypto text (encrypted nonces
9 // received during a nested authentication) only. Unlike other card only
10 // attacks this doesn't rely on implementation errors but only on the
11 // inherent weaknesses of the crypto1 cypher. Described in
12 // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
13 // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
14 // Computer and Communications Security, 2015
15 //-----------------------------------------------------------------------------
17 #include "cmdhfmfhard.h"
27 #include "proxmark3.h"
31 #include "util_posix.h"
32 #include "crapto1/crapto1.h"
34 #include "hardnested/hardnested_bruteforce.h"
35 #include "hardnested/hardnested_bitarray_core.h"
37 #define NUM_CHECK_BITFLIPS_THREADS (num_CPUs())
38 #define NUM_REDUCTION_WORKING_THREADS (num_CPUs())
40 #define IGNORE_BITFLIP_THRESHOLD 0.99 // ignore bitflip arrays which have nearly only valid states
42 #define STATE_FILES_DIRECTORY "hardnested/tables/"
43 #define STATE_FILE_TEMPLATE "bitflip_%d_%03" PRIx16 "_states.bin"
45 #define DEBUG_KEY_ELIMINATION
46 // #define DEBUG_REDUCTION
48 static uint16_t sums
[NUM_SUMS
] = {0, 32, 56, 64, 80, 96, 104, 112, 120, 128, 136, 144, 152, 160, 176, 192, 200, 224, 256}; // possible sum property values
50 #define NUM_PART_SUMS 9 // number of possible partial sum property values
57 static uint32_t num_acquired_nonces
= 0;
58 static uint64_t start_time
= 0;
59 static uint16_t effective_bitflip
[2][0x400];
60 static uint16_t num_effective_bitflips
[2] = {0, 0};
61 static uint16_t all_effective_bitflip
[0x400];
62 static uint16_t num_all_effective_bitflips
= 0;
63 static uint16_t num_1st_byte_effective_bitflips
= 0;
64 #define CHECK_1ST_BYTES 0x01
65 #define CHECK_2ND_BYTES 0x02
66 static uint8_t hardnested_stage
= CHECK_1ST_BYTES
;
67 static uint64_t known_target_key
;
68 static uint32_t test_state
[2] = {0,0};
69 static float brute_force_per_second
;
72 static void get_SIMD_instruction_set(char* instruction_set
) {
73 #if defined (__i386__) || defined (__x86_64__)
74 #if !defined(__APPLE__) || (defined(__APPLE__) && (__clang_major__ > 8))
75 #if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
76 if (__builtin_cpu_supports("avx512f")) strcpy(instruction_set
, "AVX512F");
77 else if (__builtin_cpu_supports("avx2")) strcpy(instruction_set
, "AVX2");
79 if (__builtin_cpu_supports("avx2")) strcpy(instruction_set
, "AVX2");
81 else if (__builtin_cpu_supports("avx")) strcpy(instruction_set
, "AVX");
82 else if (__builtin_cpu_supports("sse2")) strcpy(instruction_set
, "SSE2");
83 else if (__builtin_cpu_supports("mmx")) strcpy(instruction_set
, "MMX");
87 strcpy(instruction_set
, "no");
91 static void print_progress_header(void) {
92 char progress_text
[80];
93 char instr_set
[12] = "";
94 get_SIMD_instruction_set(instr_set
);
95 sprintf(progress_text
, "Start using %d threads and %s SIMD core", num_CPUs(), instr_set
);
97 PrintAndLog(" time | #nonces | Activity | expected to brute force");
98 PrintAndLog(" | | | #states | time ");
99 PrintAndLog("------------------------------------------------------------------------------------------------------");
100 PrintAndLog(" 0 | 0 | %-55s | |", progress_text
);
104 void hardnested_print_progress(uint32_t nonces
, char *activity
, float brute_force
, uint64_t min_diff_print_time
) {
105 static uint64_t last_print_time
= 0;
106 if (msclock() - last_print_time
> min_diff_print_time
) {
107 last_print_time
= msclock();
108 uint64_t total_time
= msclock() - start_time
;
109 float brute_force_time
= brute_force
/ brute_force_per_second
;
110 char brute_force_time_string
[20];
111 if (brute_force_time
< 90) {
112 sprintf(brute_force_time_string
, "%2.0fs", brute_force_time
);
113 } else if (brute_force_time
< 60 * 90) {
114 sprintf(brute_force_time_string
, "%2.0fmin", brute_force_time
/60);
115 } else if (brute_force_time
< 60 * 60 * 36) {
116 sprintf(brute_force_time_string
, "%2.0fh", brute_force_time
/(60*60));
118 sprintf(brute_force_time_string
, "%2.0fd", brute_force_time
/(60*60*24));
120 PrintAndLog(" %7.0f | %7d | %-55s | %15.0f | %5s", (float)total_time
/1000.0, nonces
, activity
, brute_force
, brute_force_time_string
);
125 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
126 // bitarray functions
128 static inline void clear_bitarray24(uint32_t *bitarray
)
130 memset(bitarray
, 0x00, sizeof(uint32_t) * (1<<19));
134 static inline void set_bitarray24(uint32_t *bitarray
)
136 memset(bitarray
, 0xff, sizeof(uint32_t) * (1<<19));
140 static inline void set_bit24(uint32_t *bitarray
, uint32_t index
)
142 bitarray
[index
>>5] |= 0x80000000>>(index
&0x0000001f);
146 static inline void clear_bit24(uint32_t *bitarray
, uint32_t index
)
148 bitarray
[index
>>5] &= ~(0x80000000>>(index
&0x0000001f));
152 static inline uint32_t test_bit24(uint32_t *bitarray
, uint32_t index
)
154 return bitarray
[index
>>5] & (0x80000000>>(index
&0x0000001f));
158 static inline uint32_t next_state(uint32_t *bitarray
, uint32_t state
)
160 if (++state
== 1<<24) return 1<<24;
161 uint32_t index
= state
>> 5;
162 uint_fast8_t bit
= state
& 0x1f;
163 uint32_t line
= bitarray
[index
] << bit
;
164 while (bit
<= 0x1f) {
165 if (line
& 0x80000000) return state
;
171 while (bitarray
[index
] == 0x00000000 && state
< 1<<24) {
175 if (state
>= 1<<24) return 1<<24;
177 return state
+ __builtin_clz(bitarray
[index
]);
180 line
= bitarray
[index
];
181 while (bit
<= 0x1f) {
182 if (line
& 0x80000000) return state
;
192 static inline uint32_t next_not_state(uint32_t *bitarray
, uint32_t state
)
194 if (++state
== 1<<24) return 1<<24;
195 uint32_t index
= state
>> 5;
196 uint_fast8_t bit
= state
& 0x1f;
197 uint32_t line
= bitarray
[index
] << bit
;
198 while (bit
<= 0x1f) {
199 if ((line
& 0x80000000) == 0) return state
;
205 while (bitarray
[index
] == 0xffffffff && state
< 1<<24) {
209 if (state
>= 1<<24) return 1<<24;
211 return state
+ __builtin_clz(~bitarray
[index
]);
214 line
= bitarray
[index
];
215 while (bit
<= 0x1f) {
216 if ((line
& 0x80000000) == 0) return state
;
228 #define BITFLIP_2ND_BYTE 0x0200
231 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
232 // bitflip property bitarrays
234 static uint32_t *bitflip_bitarrays
[2][0x400];
235 static uint32_t count_bitflip_bitarrays
[2][0x400];
237 static int compare_count_bitflip_bitarrays(const void *b1
, const void *b2
)
239 uint64_t count1
= (uint64_t)count_bitflip_bitarrays
[ODD_STATE
][*(uint16_t *)b1
] * count_bitflip_bitarrays
[EVEN_STATE
][*(uint16_t *)b1
];
240 uint64_t count2
= (uint64_t)count_bitflip_bitarrays
[ODD_STATE
][*(uint16_t *)b2
] * count_bitflip_bitarrays
[EVEN_STATE
][*(uint16_t *)b2
];
241 return (count1
> count2
) - (count2
> count1
);
245 static void init_bitflip_bitarrays(void)
247 #if defined (DEBUG_REDUCTION)
251 char state_files_path
[strlen(get_my_executable_directory()) + strlen(STATE_FILES_DIRECTORY
) + strlen(STATE_FILE_TEMPLATE
) + 1];
252 char state_file_name
[strlen(STATE_FILE_TEMPLATE
)+1];
254 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
255 num_effective_bitflips
[odd_even
] = 0;
256 for (uint16_t bitflip
= 0x001; bitflip
< 0x400; bitflip
++) {
257 bitflip_bitarrays
[odd_even
][bitflip
] = NULL
;
258 count_bitflip_bitarrays
[odd_even
][bitflip
] = 1<<24;
259 sprintf(state_file_name
, STATE_FILE_TEMPLATE
, odd_even
, bitflip
);
260 strcpy(state_files_path
, get_my_executable_directory());
261 strcat(state_files_path
, STATE_FILES_DIRECTORY
);
262 strcat(state_files_path
, state_file_name
);
263 FILE *statesfile
= fopen(state_files_path
, "rb");
264 if (statesfile
== NULL
) {
267 uint32_t *bitset
= (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
268 if (bitset
== NULL
) {
269 printf("Out of memory error in init_bitflip_statelists(). Aborting...\n");
273 size_t bytesread
= fread(bitset
, 1, sizeof(uint32_t) * (1<<19), statesfile
);
274 if (bytesread
!= sizeof(uint32_t) * (1<<19)) {
275 printf("File read error with %s. Aborting...", state_file_name
);
277 free_bitarray(bitset
);
281 uint32_t count
= count_states(bitset
);
282 if ((float)count
/(1<<24) < IGNORE_BITFLIP_THRESHOLD
) {
283 effective_bitflip
[odd_even
][num_effective_bitflips
[odd_even
]++] = bitflip
;
284 bitflip_bitarrays
[odd_even
][bitflip
] = bitset
;
285 count_bitflip_bitarrays
[odd_even
][bitflip
] = count
;
286 #if defined (DEBUG_REDUCTION)
287 printf("(%03" PRIx16
" %s:%5.1f%%) ", bitflip
, odd_even
?"odd ":"even", (float)count
/(1<<24)*100.0);
295 free_bitarray(bitset
);
299 effective_bitflip
[odd_even
][num_effective_bitflips
[odd_even
]] = 0x400; // EndOfList marker
304 num_all_effective_bitflips
= 0;
305 num_1st_byte_effective_bitflips
= 0;
306 while (i
< num_effective_bitflips
[EVEN_STATE
] || j
< num_effective_bitflips
[ODD_STATE
]) {
307 if (effective_bitflip
[EVEN_STATE
][i
] < effective_bitflip
[ODD_STATE
][j
]) {
308 all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[EVEN_STATE
][i
];
310 } else if (effective_bitflip
[EVEN_STATE
][i
] > effective_bitflip
[ODD_STATE
][j
]) {
311 all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[ODD_STATE
][j
];
314 all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[EVEN_STATE
][i
];
317 if (!(all_effective_bitflip
[num_all_effective_bitflips
-1] & BITFLIP_2ND_BYTE
)) {
318 num_1st_byte_effective_bitflips
= num_all_effective_bitflips
;
321 qsort(all_effective_bitflip
, num_1st_byte_effective_bitflips
, sizeof(uint16_t), compare_count_bitflip_bitarrays
);
322 #if defined (DEBUG_REDUCTION)
323 printf("\n1st byte effective bitflips (%d): \n", num_1st_byte_effective_bitflips
);
324 for(uint16_t i
= 0; i
< num_1st_byte_effective_bitflips
; i
++) {
325 printf("%03x ", all_effective_bitflip
[i
]);
328 qsort(all_effective_bitflip
+num_1st_byte_effective_bitflips
, num_all_effective_bitflips
- num_1st_byte_effective_bitflips
, sizeof(uint16_t), compare_count_bitflip_bitarrays
);
329 #if defined (DEBUG_REDUCTION)
330 printf("\n2nd byte effective bitflips (%d): \n", num_all_effective_bitflips
- num_1st_byte_effective_bitflips
);
331 for(uint16_t i
= num_1st_byte_effective_bitflips
; i
< num_all_effective_bitflips
; i
++) {
332 printf("%03x ", all_effective_bitflip
[i
]);
335 char progress_text
[80];
336 sprintf(progress_text
, "Using %d precalculated bitflip state tables", num_all_effective_bitflips
);
337 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
341 static void free_bitflip_bitarrays(void)
343 for (int16_t bitflip
= 0x3ff; bitflip
> 0x000; bitflip
--) {
344 free_bitarray(bitflip_bitarrays
[ODD_STATE
][bitflip
]);
346 for (int16_t bitflip
= 0x3ff; bitflip
> 0x000; bitflip
--) {
347 free_bitarray(bitflip_bitarrays
[EVEN_STATE
][bitflip
]);
352 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
353 // sum property bitarrays
355 static uint32_t *part_sum_a0_bitarrays
[2][NUM_PART_SUMS
];
356 static uint32_t *part_sum_a8_bitarrays
[2][NUM_PART_SUMS
];
357 static uint32_t *sum_a0_bitarrays
[2][NUM_SUMS
];
359 static uint16_t PartialSumProperty(uint32_t state
, odd_even_t odd_even
)
362 for (uint16_t j
= 0; j
< 16; j
++) {
364 uint16_t part_sum
= 0;
365 if (odd_even
== ODD_STATE
) {
366 for (uint16_t i
= 0; i
< 5; i
++) {
367 part_sum
^= filter(st
);
368 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
370 part_sum
^= 1; // XOR 1 cancelled out for the other 8 bits
372 for (uint16_t i
= 0; i
< 4; i
++) {
373 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
374 part_sum
^= filter(st
);
383 static void init_part_sum_bitarrays(void)
385 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
386 for (uint16_t part_sum_a0
= 0; part_sum_a0
< NUM_PART_SUMS
; part_sum_a0
++) {
387 part_sum_a0_bitarrays
[odd_even
][part_sum_a0
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
388 if (part_sum_a0_bitarrays
[odd_even
][part_sum_a0
] == NULL
) {
389 printf("Out of memory error in init_part_suma0_statelists(). Aborting...\n");
392 clear_bitarray24(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
]);
395 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
396 //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a0);
397 for (uint32_t state
= 0; state
< (1<<20); state
++) {
398 uint16_t part_sum_a0
= PartialSumProperty(state
, odd_even
) / 2;
399 for (uint16_t low_bits
= 0; low_bits
< 1<<4; low_bits
++) {
400 set_bit24(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
], state
<<4 | low_bits
);
405 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
406 for (uint16_t part_sum_a8
= 0; part_sum_a8
< NUM_PART_SUMS
; part_sum_a8
++) {
407 part_sum_a8_bitarrays
[odd_even
][part_sum_a8
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
408 if (part_sum_a8_bitarrays
[odd_even
][part_sum_a8
] == NULL
) {
409 printf("Out of memory error in init_part_suma8_statelists(). Aborting...\n");
412 clear_bitarray24(part_sum_a8_bitarrays
[odd_even
][part_sum_a8
]);
415 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
416 //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a8);
417 for (uint32_t state
= 0; state
< (1<<20); state
++) {
418 uint16_t part_sum_a8
= PartialSumProperty(state
, odd_even
) / 2;
419 for (uint16_t high_bits
= 0; high_bits
< 1<<4; high_bits
++) {
420 set_bit24(part_sum_a8_bitarrays
[odd_even
][part_sum_a8
], state
| high_bits
<<20);
427 static void free_part_sum_bitarrays(void)
429 for (int16_t part_sum_a8
= (NUM_PART_SUMS
-1); part_sum_a8
>= 0; part_sum_a8
--) {
430 free_bitarray(part_sum_a8_bitarrays
[ODD_STATE
][part_sum_a8
]);
432 for (int16_t part_sum_a8
= (NUM_PART_SUMS
-1); part_sum_a8
>= 0; part_sum_a8
--) {
433 free_bitarray(part_sum_a8_bitarrays
[EVEN_STATE
][part_sum_a8
]);
435 for (int16_t part_sum_a0
= (NUM_PART_SUMS
-1); part_sum_a0
>= 0; part_sum_a0
--) {
436 free_bitarray(part_sum_a0_bitarrays
[ODD_STATE
][part_sum_a0
]);
438 for (int16_t part_sum_a0
= (NUM_PART_SUMS
-1); part_sum_a0
>= 0; part_sum_a0
--) {
439 free_bitarray(part_sum_a0_bitarrays
[EVEN_STATE
][part_sum_a0
]);
444 static void init_sum_bitarrays(void)
446 for (uint16_t sum_a0
= 0; sum_a0
< NUM_SUMS
; sum_a0
++) {
447 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
448 sum_a0_bitarrays
[odd_even
][sum_a0
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
449 if (sum_a0_bitarrays
[odd_even
][sum_a0
] == NULL
) {
450 printf("Out of memory error in init_sum_bitarrays(). Aborting...\n");
453 clear_bitarray24(sum_a0_bitarrays
[odd_even
][sum_a0
]);
456 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
457 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
458 uint16_t sum_a0
= 2*p
*(16-2*q
) + (16-2*p
)*2*q
;
459 uint16_t sum_a0_idx
= 0;
460 while (sums
[sum_a0_idx
] != sum_a0
) sum_a0_idx
++;
461 bitarray_OR(sum_a0_bitarrays
[EVEN_STATE
][sum_a0_idx
], part_sum_a0_bitarrays
[EVEN_STATE
][q
]);
462 bitarray_OR(sum_a0_bitarrays
[ODD_STATE
][sum_a0_idx
], part_sum_a0_bitarrays
[ODD_STATE
][p
]);
465 // for (uint16_t sum_a0 = 0; sum_a0 < NUM_SUMS; sum_a0++) {
466 // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
467 // uint32_t count = count_states(sum_a0_bitarrays[odd_even][sum_a0]);
468 // printf("sum_a0_bitarray[%s][%d] has %d states (%5.2f%%)\n", odd_even==EVEN_STATE?"even":"odd ", sums[sum_a0], count, (float)count/(1<<24)*100.0);
474 static void free_sum_bitarrays(void)
476 for (int8_t sum_a0
= NUM_SUMS
-1; sum_a0
>= 0; sum_a0
--) {
477 free_bitarray(sum_a0_bitarrays
[ODD_STATE
][sum_a0
]);
478 free_bitarray(sum_a0_bitarrays
[EVEN_STATE
][sum_a0
]);
483 #ifdef DEBUG_KEY_ELIMINATION
484 char failstr
[250] = "";
487 static const float p_K0
[NUM_SUMS
] = { // the probability that a random nonce has a Sum Property K
488 0.0290, 0.0083, 0.0006, 0.0339, 0.0048, 0.0934, 0.0119, 0.0489, 0.0602, 0.4180, 0.0602, 0.0489, 0.0119, 0.0934, 0.0048, 0.0339, 0.0006, 0.0083, 0.0290
491 static float my_p_K
[NUM_SUMS
];
493 static const float *p_K
;
495 static uint32_t cuid
;
496 static noncelist_t nonces
[256];
497 static uint8_t best_first_bytes
[256];
498 static uint64_t maximum_states
= 0;
499 static uint8_t best_first_byte_smallest_bitarray
= 0;
500 static uint16_t first_byte_Sum
= 0;
501 static uint16_t first_byte_num
= 0;
502 static bool write_stats
= false;
503 static FILE *fstats
= NULL
;
504 static uint32_t *all_bitflips_bitarray
[2];
505 static uint32_t num_all_bitflips_bitarray
[2];
506 static bool all_bitflips_bitarray_dirty
[2];
507 static uint64_t last_sample_clock
= 0;
508 static uint64_t sample_period
= 0;
509 static uint64_t num_keys_tested
= 0;
510 static statelist_t
*candidates
= NULL
;
513 static int add_nonce(uint32_t nonce_enc
, uint8_t par_enc
)
515 uint8_t first_byte
= nonce_enc
>> 24;
516 noncelistentry_t
*p1
= nonces
[first_byte
].first
;
517 noncelistentry_t
*p2
= NULL
;
519 if (p1
== NULL
) { // first nonce with this 1st byte
521 first_byte_Sum
+= evenparity32((nonce_enc
& 0xff000000) | (par_enc
& 0x08));
524 while (p1
!= NULL
&& (p1
->nonce_enc
& 0x00ff0000) < (nonce_enc
& 0x00ff0000)) {
529 if (p1
== NULL
) { // need to add at the end of the list
530 if (p2
== NULL
) { // list is empty yet. Add first entry.
531 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
532 } else { // add new entry at end of existing list.
533 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
535 } else if ((p1
->nonce_enc
& 0x00ff0000) != (nonce_enc
& 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
536 if (p2
== NULL
) { // need to insert at start of list
537 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
539 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
541 } else { // we have seen this 2nd byte before. Nothing to add or insert.
545 // add or insert new data
547 p2
->nonce_enc
= nonce_enc
;
548 p2
->par_enc
= par_enc
;
550 nonces
[first_byte
].num
++;
551 nonces
[first_byte
].Sum
+= evenparity32((nonce_enc
& 0x00ff0000) | (par_enc
& 0x04));
552 nonces
[first_byte
].sum_a8_guess_dirty
= true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
553 return (1); // new nonce added
557 static void init_nonce_memory(void)
559 for (uint16_t i
= 0; i
< 256; i
++) {
562 nonces
[i
].first
= NULL
;
563 for (uint16_t j
= 0; j
< NUM_SUMS
; j
++) {
564 nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
= j
;
565 nonces
[i
].sum_a8_guess
[j
].prob
= 0.0;
567 nonces
[i
].sum_a8_guess_dirty
= false;
568 for (uint16_t bitflip
= 0x000; bitflip
< 0x400; bitflip
++) {
569 nonces
[i
].BitFlips
[bitflip
] = 0;
571 nonces
[i
].states_bitarray
[EVEN_STATE
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
572 if (nonces
[i
].states_bitarray
[EVEN_STATE
] == NULL
) {
573 printf("Out of memory error in init_nonce_memory(). Aborting...\n");
576 set_bitarray24(nonces
[i
].states_bitarray
[EVEN_STATE
]);
577 nonces
[i
].num_states_bitarray
[EVEN_STATE
] = 1 << 24;
578 nonces
[i
].states_bitarray
[ODD_STATE
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
579 if (nonces
[i
].states_bitarray
[ODD_STATE
] == NULL
) {
580 printf("Out of memory error in init_nonce_memory(). Aborting...\n");
583 set_bitarray24(nonces
[i
].states_bitarray
[ODD_STATE
]);
584 nonces
[i
].num_states_bitarray
[ODD_STATE
] = 1 << 24;
585 nonces
[i
].all_bitflips_dirty
[EVEN_STATE
] = false;
586 nonces
[i
].all_bitflips_dirty
[ODD_STATE
] = false;
593 static void free_nonce_list(noncelistentry_t
*p
)
598 free_nonce_list(p
->next
);
604 static void free_nonces_memory(void)
606 for (uint16_t i
= 0; i
< 256; i
++) {
607 free_nonce_list(nonces
[i
].first
);
609 for (int i
= 255; i
>= 0; i
--) {
610 free_bitarray(nonces
[i
].states_bitarray
[ODD_STATE
]);
611 free_bitarray(nonces
[i
].states_bitarray
[EVEN_STATE
]);
616 // static double p_hypergeometric_cache[257][NUM_SUMS][257];
618 // #define CACHE_INVALID -1.0
619 // static void init_p_hypergeometric_cache(void)
621 // for (uint16_t n = 0; n <= 256; n++) {
622 // for (uint16_t i_K = 0; i_K < NUM_SUMS; i_K++) {
623 // for (uint16_t k = 0; k <= 256; k++) {
624 // p_hypergeometric_cache[n][i_K][k] = CACHE_INVALID;
631 static double p_hypergeometric(uint16_t i_K
, uint16_t n
, uint16_t k
)
633 // for efficient computation we are using the recursive definition
635 // P(X=k) = P(X=k-1) * --------------------
638 // (N-K)*(N-K-1)*...*(N-K-n+1)
639 // P(X=0) = -----------------------------
640 // N*(N-1)*...*(N-n+1)
643 uint16_t const N
= 256;
644 uint16_t K
= sums
[i_K
];
646 // if (p_hypergeometric_cache[n][i_K][k] != CACHE_INVALID) {
647 // return p_hypergeometric_cache[n][i_K][k];
650 if (n
-k
> N
-K
|| k
> K
) return 0.0; // avoids log(x<=0) in calculation below
652 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
653 double log_result
= 0.0;
654 for (int16_t i
= N
-K
; i
>= N
-K
-n
+1; i
--) {
655 log_result
+= log(i
);
657 for (int16_t i
= N
; i
>= N
-n
+1; i
--) {
658 log_result
-= log(i
);
660 // p_hypergeometric_cache[n][i_K][k] = exp(log_result);
661 return exp(log_result
);
663 if (n
-k
== N
-K
) { // special case. The published recursion below would fail with a divide by zero exception
664 double log_result
= 0.0;
665 for (int16_t i
= k
+1; i
<= n
; i
++) {
666 log_result
+= log(i
);
668 for (int16_t i
= K
+1; i
<= N
; i
++) {
669 log_result
-= log(i
);
671 // p_hypergeometric_cache[n][i_K][k] = exp(log_result);
672 return exp(log_result
);
673 } else { // recursion
674 return (p_hypergeometric(i_K
, n
, k
-1) * (K
-k
+1) * (n
-k
+1) / (k
* (N
-K
-n
+k
)));
680 static float sum_probability(uint16_t i_K
, uint16_t n
, uint16_t k
)
682 if (k
> sums
[i_K
]) return 0.0;
684 double p_T_is_k_when_S_is_K
= p_hypergeometric(i_K
, n
, k
);
685 double p_S_is_K
= p_K
[i_K
];
687 for (uint16_t i
= 0; i
< NUM_SUMS
; i
++) {
688 p_T_is_k
+= p_K
[i
] * p_hypergeometric(i
, n
, k
);
690 return(p_T_is_k_when_S_is_K
* p_S_is_K
/ p_T_is_k
);
694 static uint32_t part_sum_count
[2][NUM_PART_SUMS
][NUM_PART_SUMS
];
696 static void init_allbitflips_array(void)
698 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
699 uint32_t *bitset
= all_bitflips_bitarray
[odd_even
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
700 if (bitset
== NULL
) {
701 printf("Out of memory in init_allbitflips_array(). Aborting...");
704 set_bitarray24(bitset
);
705 all_bitflips_bitarray_dirty
[odd_even
] = false;
706 num_all_bitflips_bitarray
[odd_even
] = 1<<24;
711 static void update_allbitflips_array(void)
713 if (hardnested_stage
& CHECK_2ND_BYTES
) {
714 for (uint16_t i
= 0; i
< 256; i
++) {
715 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
716 if (nonces
[i
].all_bitflips_dirty
[odd_even
]) {
717 uint32_t old_count
= num_all_bitflips_bitarray
[odd_even
];
718 num_all_bitflips_bitarray
[odd_even
] = count_bitarray_low20_AND(all_bitflips_bitarray
[odd_even
], nonces
[i
].states_bitarray
[odd_even
]);
719 nonces
[i
].all_bitflips_dirty
[odd_even
] = false;
720 if (num_all_bitflips_bitarray
[odd_even
] != old_count
) {
721 all_bitflips_bitarray_dirty
[odd_even
] = true;
730 static uint32_t estimated_num_states_part_sum_coarse(uint16_t part_sum_a0_idx
, uint16_t part_sum_a8_idx
, odd_even_t odd_even
)
732 return part_sum_count
[odd_even
][part_sum_a0_idx
][part_sum_a8_idx
];
736 static uint32_t estimated_num_states_part_sum(uint8_t first_byte
, uint16_t part_sum_a0_idx
, uint16_t part_sum_a8_idx
, odd_even_t odd_even
)
738 if (odd_even
== ODD_STATE
) {
739 return count_bitarray_AND3(part_sum_a0_bitarrays
[odd_even
][part_sum_a0_idx
],
740 part_sum_a8_bitarrays
[odd_even
][part_sum_a8_idx
],
741 nonces
[first_byte
].states_bitarray
[odd_even
]);
743 return count_bitarray_AND4(part_sum_a0_bitarrays
[odd_even
][part_sum_a0_idx
],
744 part_sum_a8_bitarrays
[odd_even
][part_sum_a8_idx
],
745 nonces
[first_byte
].states_bitarray
[odd_even
],
746 nonces
[first_byte
^0x80].states_bitarray
[odd_even
]);
749 // estimate reduction by all_bitflips_match()
751 // float p_bitflip = (float)nonces[first_byte ^ 0x80].num_states_bitarray[ODD_STATE] / num_all_bitflips_bitarray[ODD_STATE];
752 // return (float)count * p_bitflip; //(p_bitflip - 0.25*p_bitflip*p_bitflip);
759 static uint64_t estimated_num_states(uint8_t first_byte
, uint16_t sum_a0
, uint16_t sum_a8
)
761 uint64_t num_states
= 0;
762 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
763 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
764 if (2*p
*(16-2*q
) + (16-2*p
)*2*q
== sum_a0
) {
765 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
766 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
767 if (2*r
*(16-2*s
) + (16-2*r
)*2*s
== sum_a8
) {
768 num_states
+= (uint64_t)estimated_num_states_part_sum(first_byte
, p
, r
, ODD_STATE
)
769 * estimated_num_states_part_sum(first_byte
, q
, s
, EVEN_STATE
);
780 static uint64_t estimated_num_states_coarse(uint16_t sum_a0
, uint16_t sum_a8
)
782 uint64_t num_states
= 0;
783 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
784 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
785 if (2*p
*(16-2*q
) + (16-2*p
)*2*q
== sum_a0
) {
786 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
787 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
788 if (2*r
*(16-2*s
) + (16-2*r
)*2*s
== sum_a8
) {
789 num_states
+= (uint64_t)estimated_num_states_part_sum_coarse(p
, r
, ODD_STATE
)
790 * estimated_num_states_part_sum_coarse(q
, s
, EVEN_STATE
);
801 static void update_p_K(void)
803 if (hardnested_stage
& CHECK_2ND_BYTES
) {
804 uint64_t total_count
= 0;
805 uint16_t sum_a0
= sums
[first_byte_Sum
];
806 for (uint8_t sum_a8_idx
= 0; sum_a8_idx
< NUM_SUMS
; sum_a8_idx
++) {
807 uint16_t sum_a8
= sums
[sum_a8_idx
];
808 total_count
+= estimated_num_states_coarse(sum_a0
, sum_a8
);
810 for (uint8_t sum_a8_idx
= 0; sum_a8_idx
< NUM_SUMS
; sum_a8_idx
++) {
811 uint16_t sum_a8
= sums
[sum_a8_idx
];
812 my_p_K
[sum_a8_idx
] = (float)estimated_num_states_coarse(sum_a0
, sum_a8
) / total_count
;
814 // printf("my_p_K = [");
815 // for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) {
816 // printf("%7.4f ", my_p_K[sum_a8_idx]);
823 static void update_sum_bitarrays(odd_even_t odd_even
)
825 if (all_bitflips_bitarray_dirty
[odd_even
]) {
826 for (uint8_t part_sum
= 0; part_sum
< NUM_PART_SUMS
; part_sum
++) {
827 bitarray_AND(part_sum_a0_bitarrays
[odd_even
][part_sum
], all_bitflips_bitarray
[odd_even
]);
828 bitarray_AND(part_sum_a8_bitarrays
[odd_even
][part_sum
], all_bitflips_bitarray
[odd_even
]);
830 for (uint16_t i
= 0; i
< 256; i
++) {
831 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], all_bitflips_bitarray
[odd_even
]);
833 for (uint8_t part_sum_a0
= 0; part_sum_a0
< NUM_PART_SUMS
; part_sum_a0
++) {
834 for (uint8_t part_sum_a8
= 0; part_sum_a8
< NUM_PART_SUMS
; part_sum_a8
++) {
835 part_sum_count
[odd_even
][part_sum_a0
][part_sum_a8
]
836 += count_bitarray_AND2(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
], part_sum_a8_bitarrays
[odd_even
][part_sum_a8
]);
839 all_bitflips_bitarray_dirty
[odd_even
] = false;
844 static int compare_expected_num_brute_force(const void *b1
, const void *b2
)
846 uint8_t index1
= *(uint8_t *)b1
;
847 uint8_t index2
= *(uint8_t *)b2
;
848 float score1
= nonces
[index1
].expected_num_brute_force
;
849 float score2
= nonces
[index2
].expected_num_brute_force
;
850 return (score1
> score2
) - (score1
< score2
);
854 static int compare_sum_a8_guess(const void *b1
, const void *b2
)
856 float prob1
= ((guess_sum_a8_t
*)b1
)->prob
;
857 float prob2
= ((guess_sum_a8_t
*)b2
)->prob
;
858 return (prob1
< prob2
) - (prob1
> prob2
);
863 static float check_smallest_bitflip_bitarrays(void)
865 uint32_t num_odd
, num_even
;
866 uint64_t smallest
= 1LL << 48;
867 // initialize best_first_bytes, do a rough estimation on remaining states
868 for (uint16_t i
= 0; i
< 256; i
++) {
869 num_odd
= nonces
[i
].num_states_bitarray
[ODD_STATE
];
870 num_even
= nonces
[i
].num_states_bitarray
[EVEN_STATE
]; // * (float)nonces[i^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE];
871 if ((uint64_t)num_odd
* num_even
< smallest
) {
872 smallest
= (uint64_t)num_odd
* num_even
;
873 best_first_byte_smallest_bitarray
= i
;
877 #if defined (DEBUG_REDUCTION)
878 num_odd
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
];
879 num_even
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
]; // * (float)nonces[best_first_byte_smallest_bitarray^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE];
880 printf("0x%02x: %8d * %8d = %12" PRIu64
" (2^%1.1f)\n", best_first_byte_smallest_bitarray
, num_odd
, num_even
, (uint64_t)num_odd
* num_even
, log((uint64_t)num_odd
* num_even
)/log(2.0));
882 return (float)smallest
/2.0;
886 static void update_expected_brute_force(uint8_t best_byte
) {
888 float total_prob
= 0.0;
889 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
890 total_prob
+= nonces
[best_byte
].sum_a8_guess
[i
].prob
;
892 // linear adjust probabilities to result in total_prob = 1.0;
893 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
894 nonces
[best_byte
].sum_a8_guess
[i
].prob
/= total_prob
;
896 float prob_all_failed
= 1.0;
897 nonces
[best_byte
].expected_num_brute_force
= 0.0;
898 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
899 nonces
[best_byte
].expected_num_brute_force
+= nonces
[best_byte
].sum_a8_guess
[i
].prob
* (float)nonces
[best_byte
].sum_a8_guess
[i
].num_states
/ 2.0;
900 prob_all_failed
-= nonces
[best_byte
].sum_a8_guess
[i
].prob
;
901 nonces
[best_byte
].expected_num_brute_force
+= prob_all_failed
* (float)nonces
[best_byte
].sum_a8_guess
[i
].num_states
/ 2.0;
907 static float sort_best_first_bytes(void)
910 // initialize best_first_bytes, do a rough estimation on remaining states for each Sum_a8 property
911 // and the expected number of states to brute force
912 for (uint16_t i
= 0; i
< 256; i
++) {
913 best_first_bytes
[i
] = i
;
914 float prob_all_failed
= 1.0;
915 nonces
[i
].expected_num_brute_force
= 0.0;
916 for (uint8_t j
= 0; j
< NUM_SUMS
; j
++) {
917 nonces
[i
].sum_a8_guess
[j
].num_states
= estimated_num_states_coarse(sums
[first_byte_Sum
], sums
[nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
]);
918 nonces
[i
].expected_num_brute_force
+= nonces
[i
].sum_a8_guess
[j
].prob
* (float)nonces
[i
].sum_a8_guess
[j
].num_states
/ 2.0;
919 prob_all_failed
-= nonces
[i
].sum_a8_guess
[j
].prob
;
920 nonces
[i
].expected_num_brute_force
+= prob_all_failed
* (float)nonces
[i
].sum_a8_guess
[j
].num_states
/ 2.0;
924 // sort based on expected number of states to brute force
925 qsort(best_first_bytes
, 256, 1, compare_expected_num_brute_force
);
927 // printf("refine estimations: ");
928 #define NUM_REFINES 1
929 // refine scores for the best:
930 for (uint16_t i
= 0; i
< NUM_REFINES
; i
++) {
931 // printf("%d...", i);
932 uint16_t first_byte
= best_first_bytes
[i
];
933 for (uint8_t j
= 0; j
< NUM_SUMS
&& nonces
[first_byte
].sum_a8_guess
[j
].prob
> 0.05; j
++) {
934 nonces
[first_byte
].sum_a8_guess
[j
].num_states
= estimated_num_states(first_byte
, sums
[first_byte_Sum
], sums
[nonces
[first_byte
].sum_a8_guess
[j
].sum_a8_idx
]);
936 // while (nonces[first_byte].sum_a8_guess[0].num_states == 0
937 // || nonces[first_byte].sum_a8_guess[1].num_states == 0
938 // || nonces[first_byte].sum_a8_guess[2].num_states == 0) {
939 // if (nonces[first_byte].sum_a8_guess[0].num_states == 0) {
940 // nonces[first_byte].sum_a8_guess[0].prob = 0.0;
941 // printf("(0x%02x,%d)", first_byte, 0);
943 // if (nonces[first_byte].sum_a8_guess[1].num_states == 0) {
944 // nonces[first_byte].sum_a8_guess[1].prob = 0.0;
945 // printf("(0x%02x,%d)", first_byte, 1);
947 // if (nonces[first_byte].sum_a8_guess[2].num_states == 0) {
948 // nonces[first_byte].sum_a8_guess[2].prob = 0.0;
949 // printf("(0x%02x,%d)", first_byte, 2);
952 // qsort(nonces[first_byte].sum_a8_guess, NUM_SUMS, sizeof(guess_sum_a8_t), compare_sum_a8_guess);
953 // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) {
954 // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]);
957 // float fix_probs = 0.0;
958 // for (uint8_t j = 0; j < NUM_SUMS; j++) {
959 // fix_probs += nonces[first_byte].sum_a8_guess[j].prob;
961 // for (uint8_t j = 0; j < NUM_SUMS; j++) {
962 // nonces[first_byte].sum_a8_guess[j].prob /= fix_probs;
964 // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) {
965 // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]);
967 float prob_all_failed
= 1.0;
968 nonces
[first_byte
].expected_num_brute_force
= 0.0;
969 for (uint8_t j
= 0; j
< NUM_SUMS
; j
++) {
970 nonces
[first_byte
].expected_num_brute_force
+= nonces
[first_byte
].sum_a8_guess
[j
].prob
* (float)nonces
[first_byte
].sum_a8_guess
[j
].num_states
/ 2.0;
971 prob_all_failed
-= nonces
[first_byte
].sum_a8_guess
[j
].prob
;
972 nonces
[first_byte
].expected_num_brute_force
+= prob_all_failed
* (float)nonces
[first_byte
].sum_a8_guess
[j
].num_states
/ 2.0;
976 // copy best byte to front:
977 float least_expected_brute_force
= (1LL << 48);
978 uint8_t best_byte
= 0;
979 for (uint16_t i
= 0; i
< 10; i
++) {
980 uint16_t first_byte
= best_first_bytes
[i
];
981 if (nonces
[first_byte
].expected_num_brute_force
< least_expected_brute_force
) {
982 least_expected_brute_force
= nonces
[first_byte
].expected_num_brute_force
;
986 if (best_byte
!= 0) {
987 // printf("0x%02x <-> 0x%02x", best_first_bytes[0], best_first_bytes[best_byte]);
988 uint8_t tmp
= best_first_bytes
[0];
989 best_first_bytes
[0] = best_first_bytes
[best_byte
];
990 best_first_bytes
[best_byte
] = tmp
;
993 return nonces
[best_first_bytes
[0]].expected_num_brute_force
;
997 static float update_reduction_rate(float last
, bool init
)
1000 static float queue
[QUEUE_LEN
];
1002 for (uint16_t i
= 0; i
< QUEUE_LEN
-1; i
++) {
1004 queue
[i
] = (float)(1LL << 48);
1006 queue
[i
] = queue
[i
+1];
1010 queue
[QUEUE_LEN
-1] = (float)(1LL << 48);
1012 queue
[QUEUE_LEN
-1] = last
;
1015 // linear regression
1018 for (uint16_t i
= 0; i
< QUEUE_LEN
; i
++) {
1027 for (uint16_t i
= 0; i
< QUEUE_LEN
; i
++) {
1028 dev_xy
+= (i
- avg_x
)*(queue
[i
] - avg_y
);
1029 dev_x2
+= (i
- avg_x
)*(i
- avg_x
);
1032 float reduction_rate
= -1.0 * dev_xy
/ dev_x2
; // the negative slope of the linear regression
1034 #if defined (DEBUG_REDUCTION)
1035 printf("update_reduction_rate(%1.0f) = %1.0f per sample, brute_force_per_sample = %1.0f\n", last
, reduction_rate
, brute_force_per_second
* (float)sample_period
/ 1000.0);
1037 return reduction_rate
;
1041 static bool shrink_key_space(float *brute_forces
)
1043 #if defined(DEBUG_REDUCTION)
1044 printf("shrink_key_space() with stage = 0x%02x\n", hardnested_stage
);
1046 float brute_forces1
= check_smallest_bitflip_bitarrays();
1047 float brute_forces2
= (float)(1LL << 47);
1048 if (hardnested_stage
& CHECK_2ND_BYTES
) {
1049 brute_forces2
= sort_best_first_bytes();
1051 *brute_forces
= MIN(brute_forces1
, brute_forces2
);
1052 float reduction_rate
= update_reduction_rate(*brute_forces
, false);
1053 return ((hardnested_stage
& CHECK_2ND_BYTES
)
1054 && reduction_rate
>= 0.0 && reduction_rate
< brute_force_per_second
* sample_period
/ 1000.0);
1058 static void estimate_sum_a8(void)
1060 if (first_byte_num
== 256) {
1061 for (uint16_t i
= 0; i
< 256; i
++) {
1062 if (nonces
[i
].sum_a8_guess_dirty
) {
1063 for (uint16_t j
= 0; j
< NUM_SUMS
; j
++ ) {
1064 uint16_t sum_a8_idx
= nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
;
1065 nonces
[i
].sum_a8_guess
[j
].prob
= sum_probability(sum_a8_idx
, nonces
[i
].num
, nonces
[i
].Sum
);
1067 qsort(nonces
[i
].sum_a8_guess
, NUM_SUMS
, sizeof(guess_sum_a8_t
), compare_sum_a8_guess
);
1068 nonces
[i
].sum_a8_guess_dirty
= false;
1075 static int read_nonce_file(void)
1077 FILE *fnonces
= NULL
;
1081 uint8_t read_buf
[9];
1082 uint32_t nt_enc1
, nt_enc2
;
1085 num_acquired_nonces
= 0;
1086 if ((fnonces
= fopen("nonces.bin","rb")) == NULL
) {
1087 PrintAndLog("Could not open file nonces.bin");
1091 hardnested_print_progress(0, "Reading nonces from file nonces.bin...", (float)(1LL<<47), 0);
1092 bytes_read
= fread(read_buf
, 1, 6, fnonces
);
1093 if (bytes_read
!= 6) {
1094 PrintAndLog("File reading error.");
1098 cuid
= bytes_to_num(read_buf
, 4);
1099 trgBlockNo
= bytes_to_num(read_buf
+4, 1);
1100 trgKeyType
= bytes_to_num(read_buf
+5, 1);
1102 bytes_read
= fread(read_buf
, 1, 9, fnonces
);
1103 while (bytes_read
== 9) {
1104 nt_enc1
= bytes_to_num(read_buf
, 4);
1105 nt_enc2
= bytes_to_num(read_buf
+4, 4);
1106 par_enc
= bytes_to_num(read_buf
+8, 1);
1107 add_nonce(nt_enc1
, par_enc
>> 4);
1108 add_nonce(nt_enc2
, par_enc
& 0x0f);
1109 num_acquired_nonces
+= 2;
1110 bytes_read
= fread(read_buf
, 1, 9, fnonces
);
1114 char progress_string
[80];
1115 sprintf(progress_string
, "Read %d nonces from file. cuid=%08x", num_acquired_nonces
, cuid
);
1116 hardnested_print_progress(num_acquired_nonces
, progress_string
, (float)(1LL<<47), 0);
1117 sprintf(progress_string
, "Target Block=%d, Keytype=%c", trgBlockNo
, trgKeyType
==0?'A':'B');
1118 hardnested_print_progress(num_acquired_nonces
, progress_string
, (float)(1LL<<47), 0);
1120 for (uint16_t i
= 0; i
< NUM_SUMS
; i
++) {
1121 if (first_byte_Sum
== sums
[i
]) {
1131 noncelistentry_t
*SearchFor2ndByte(uint8_t b1
, uint8_t b2
)
1133 noncelistentry_t
*p
= nonces
[b1
].first
;
1135 if ((p
->nonce_enc
>> 16 & 0xff) == b2
) {
1144 static bool timeout(void)
1146 return (msclock() > last_sample_clock
+ sample_period
);
1150 static void *check_for_BitFlipProperties_thread(void *args
)
1152 uint8_t first_byte
= ((uint8_t *)args
)[0];
1153 uint8_t last_byte
= ((uint8_t *)args
)[1];
1154 uint8_t time_budget
= ((uint8_t *)args
)[2];
1156 if (hardnested_stage
& CHECK_1ST_BYTES
) {
1157 // for (uint16_t bitflip = 0x001; bitflip < 0x200; bitflip++) {
1158 for (uint16_t bitflip_idx
= 0; bitflip_idx
< num_1st_byte_effective_bitflips
; bitflip_idx
++) {
1159 uint16_t bitflip
= all_effective_bitflip
[bitflip_idx
];
1160 if (time_budget
& timeout()) {
1161 #if defined (DEBUG_REDUCTION)
1162 printf("break at bitflip_idx %d...", bitflip_idx
);
1166 for (uint16_t i
= first_byte
; i
<= last_byte
; i
++) {
1167 if (nonces
[i
].BitFlips
[bitflip
] == 0 && nonces
[i
].BitFlips
[bitflip
^ 0x100] == 0
1168 && nonces
[i
].first
!= NULL
&& nonces
[i
^(bitflip
&0xff)].first
!= NULL
) {
1169 uint8_t parity1
= (nonces
[i
].first
->par_enc
) >> 3; // parity of first byte
1170 uint8_t parity2
= (nonces
[i
^(bitflip
&0xff)].first
->par_enc
) >> 3; // parity of nonce with bits flipped
1171 if ((parity1
== parity2
&& !(bitflip
& 0x100)) // bitflip
1172 || (parity1
!= parity2
&& (bitflip
& 0x100))) { // not bitflip
1173 nonces
[i
].BitFlips
[bitflip
] = 1;
1174 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
1175 if (bitflip_bitarrays
[odd_even
][bitflip
] != NULL
) {
1176 uint32_t old_count
= nonces
[i
].num_states_bitarray
[odd_even
];
1177 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], bitflip_bitarrays
[odd_even
][bitflip
]);
1178 if (nonces
[i
].num_states_bitarray
[odd_even
] != old_count
) {
1179 nonces
[i
].all_bitflips_dirty
[odd_even
] = true;
1181 // printf("bitflip: %d old: %d, new: %d ", bitflip, old_count, nonces[i].num_states_bitarray[odd_even]);
1187 ((uint8_t *)args
)[1] = num_1st_byte_effective_bitflips
- bitflip_idx
- 1; // bitflips still to go in stage 1
1191 ((uint8_t *)args
)[1] = 0; // stage 1 definitely completed
1193 if (hardnested_stage
& CHECK_2ND_BYTES
) {
1194 for (uint16_t bitflip_idx
= num_1st_byte_effective_bitflips
; bitflip_idx
< num_all_effective_bitflips
; bitflip_idx
++) {
1195 uint16_t bitflip
= all_effective_bitflip
[bitflip_idx
];
1196 if (time_budget
& timeout()) {
1197 #if defined (DEBUG_REDUCTION)
1198 printf("break at bitflip_idx %d...", bitflip_idx
);
1202 for (uint16_t i
= first_byte
; i
<= last_byte
; i
++) {
1203 // Check for Bit Flip Property of 2nd bytes
1204 if (nonces
[i
].BitFlips
[bitflip
] == 0) {
1205 for (uint16_t j
= 0; j
< 256; j
++) { // for each 2nd Byte
1206 noncelistentry_t
*byte1
= SearchFor2ndByte(i
, j
);
1207 noncelistentry_t
*byte2
= SearchFor2ndByte(i
, j
^(bitflip
&0xff));
1208 if (byte1
!= NULL
&& byte2
!= NULL
) {
1209 uint8_t parity1
= byte1
->par_enc
>> 2 & 0x01; // parity of 2nd byte
1210 uint8_t parity2
= byte2
->par_enc
>> 2 & 0x01; // parity of 2nd byte with bits flipped
1211 if ((parity1
== parity2
&& !(bitflip
&0x100)) // bitflip
1212 || (parity1
!= parity2
&& (bitflip
&0x100))) { // not bitflip
1213 nonces
[i
].BitFlips
[bitflip
] = 1;
1214 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
1215 if (bitflip_bitarrays
[odd_even
][bitflip
] != NULL
) {
1216 uint32_t old_count
= nonces
[i
].num_states_bitarray
[odd_even
];
1217 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], bitflip_bitarrays
[odd_even
][bitflip
]);
1218 if (nonces
[i
].num_states_bitarray
[odd_even
] != old_count
) {
1219 nonces
[i
].all_bitflips_dirty
[odd_even
] = true;
1228 // printf("states_bitarray[0][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[EVEN_STATE]));
1229 // printf("states_bitarray[1][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[ODD_STATE]));
1238 static void check_for_BitFlipProperties(bool time_budget
)
1240 // create and run worker threads
1241 pthread_t thread_id
[NUM_CHECK_BITFLIPS_THREADS
];
1243 uint8_t args
[NUM_CHECK_BITFLIPS_THREADS
][3];
1244 uint16_t bytes_per_thread
= (256 + (NUM_CHECK_BITFLIPS_THREADS
/2)) / NUM_CHECK_BITFLIPS_THREADS
;
1245 for (uint8_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1246 args
[i
][0] = i
* bytes_per_thread
;
1247 args
[i
][1] = MIN(args
[i
][0]+bytes_per_thread
-1, 255);
1248 args
[i
][2] = time_budget
;
1250 args
[NUM_CHECK_BITFLIPS_THREADS
-1][1] = MAX(args
[NUM_CHECK_BITFLIPS_THREADS
-1][1], 255);
1253 for (uint8_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1254 pthread_create(&thread_id
[i
], NULL
, check_for_BitFlipProperties_thread
, args
[i
]);
1257 // wait for threads to terminate:
1258 for (uint8_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1259 pthread_join(thread_id
[i
], NULL
);
1262 if (hardnested_stage
& CHECK_2ND_BYTES
) {
1263 hardnested_stage
&= ~CHECK_1ST_BYTES
; // we are done with 1st stage, except...
1264 for (uint16_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1265 if (args
[i
][1] != 0) {
1266 hardnested_stage
|= CHECK_1ST_BYTES
; // ... when any of the threads didn't complete in time
1271 #if defined (DEBUG_REDUCTION)
1272 if (hardnested_stage
& CHECK_1ST_BYTES
) printf("stage 1 not completed yet\n");
1277 static void update_nonce_data(bool time_budget
)
1279 check_for_BitFlipProperties(time_budget
);
1280 update_allbitflips_array();
1281 update_sum_bitarrays(EVEN_STATE
);
1282 update_sum_bitarrays(ODD_STATE
);
1288 static void apply_sum_a0(void)
1290 uint32_t old_count
= num_all_bitflips_bitarray
[EVEN_STATE
];
1291 num_all_bitflips_bitarray
[EVEN_STATE
] = count_bitarray_AND(all_bitflips_bitarray
[EVEN_STATE
], sum_a0_bitarrays
[EVEN_STATE
][first_byte_Sum
]);
1292 if (num_all_bitflips_bitarray
[EVEN_STATE
] != old_count
) {
1293 all_bitflips_bitarray_dirty
[EVEN_STATE
] = true;
1295 old_count
= num_all_bitflips_bitarray
[ODD_STATE
];
1296 num_all_bitflips_bitarray
[ODD_STATE
] = count_bitarray_AND(all_bitflips_bitarray
[ODD_STATE
], sum_a0_bitarrays
[ODD_STATE
][first_byte_Sum
]);
1297 if (num_all_bitflips_bitarray
[ODD_STATE
] != old_count
) {
1298 all_bitflips_bitarray_dirty
[ODD_STATE
] = true;
1303 static void simulate_MFplus_RNG(uint32_t test_cuid
, uint64_t test_key
, uint32_t *nt_enc
, uint8_t *par_enc
)
1305 struct Crypto1State sim_cs
= {0, 0};
1307 // init cryptostate with key:
1308 for(int8_t i
= 47; i
> 0; i
-= 2) {
1309 sim_cs
.odd
= sim_cs
.odd
<< 1 | BIT(test_key
, (i
- 1) ^ 7);
1310 sim_cs
.even
= sim_cs
.even
<< 1 | BIT(test_key
, i
^ 7);
1314 uint32_t nt
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
1315 for (int8_t byte_pos
= 3; byte_pos
>= 0; byte_pos
--) {
1316 uint8_t nt_byte_dec
= (nt
>> (8*byte_pos
)) & 0xff;
1317 uint8_t nt_byte_enc
= crypto1_byte(&sim_cs
, nt_byte_dec
^ (test_cuid
>> (8*byte_pos
)), false) ^ nt_byte_dec
; // encode the nonce byte
1318 *nt_enc
= (*nt_enc
<< 8) | nt_byte_enc
;
1319 uint8_t ks_par
= filter(sim_cs
.odd
); // the keystream bit to encode/decode the parity bit
1320 uint8_t nt_byte_par_enc
= ks_par
^ oddparity8(nt_byte_dec
); // determine the nt byte's parity and encode it
1321 *par_enc
= (*par_enc
<< 1) | nt_byte_par_enc
;
1327 static void simulate_acquire_nonces()
1329 time_t time1
= time(NULL
);
1330 last_sample_clock
= 0;
1331 sample_period
= 1000; // for simulation
1332 hardnested_stage
= CHECK_1ST_BYTES
;
1333 bool acquisition_completed
= false;
1334 uint32_t total_num_nonces
= 0;
1336 bool reported_suma8
= false;
1338 cuid
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
1339 if (known_target_key
== -1) {
1340 known_target_key
= ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
1343 char progress_text
[80];
1344 sprintf(progress_text
, "Simulating key %012" PRIx64
", cuid %08" PRIx32
" ...", known_target_key
, cuid
);
1345 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
1346 fprintf(fstats
, "%012" PRIx64
";%" PRIx32
";", known_target_key
, cuid
);
1348 num_acquired_nonces
= 0;
1351 uint32_t nt_enc
= 0;
1352 uint8_t par_enc
= 0;
1354 for (uint16_t i
= 0; i
< 113; i
++) {
1355 simulate_MFplus_RNG(cuid
, known_target_key
, &nt_enc
, &par_enc
);
1356 num_acquired_nonces
+= add_nonce(nt_enc
, par_enc
);
1360 last_sample_clock
= msclock();
1362 if (first_byte_num
== 256 ) {
1363 if (hardnested_stage
== CHECK_1ST_BYTES
) {
1364 for (uint16_t i
= 0; i
< NUM_SUMS
; i
++) {
1365 if (first_byte_Sum
== sums
[i
]) {
1370 hardnested_stage
|= CHECK_2ND_BYTES
;
1373 update_nonce_data(true);
1374 acquisition_completed
= shrink_key_space(&brute_force
);
1375 if (!reported_suma8
) {
1376 char progress_string
[80];
1377 sprintf(progress_string
, "Apply Sum property. Sum(a0) = %d", sums
[first_byte_Sum
]);
1378 hardnested_print_progress(num_acquired_nonces
, progress_string
, brute_force
, 0);
1379 reported_suma8
= true;
1381 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0);
1384 update_nonce_data(true);
1385 acquisition_completed
= shrink_key_space(&brute_force
);
1386 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0);
1388 } while (!acquisition_completed
);
1390 time_t end_time
= time(NULL
);
1391 // PrintAndLog("Acquired a total of %" PRId32" nonces in %1.0f seconds (%1.0f nonces/minute)",
1392 // num_acquired_nonces,
1393 // difftime(end_time, time1),
1394 // difftime(end_time, time1)!=0.0?(float)total_num_nonces*60.0/difftime(end_time, time1):INFINITY
1397 fprintf(fstats
, "%" PRId32
";%" PRId32
";%1.0f;", total_num_nonces
, num_acquired_nonces
, difftime(end_time
,time1
));
1402 static int acquire_nonces(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, bool nonce_file_write
, bool slow
)
1404 last_sample_clock
= msclock();
1405 sample_period
= 2000; // initial rough estimate. Will be refined.
1406 bool initialize
= true;
1407 bool field_off
= false;
1408 hardnested_stage
= CHECK_1ST_BYTES
;
1409 bool acquisition_completed
= false;
1411 uint8_t write_buf
[9];
1412 uint32_t total_num_nonces
= 0;
1414 bool reported_suma8
= false;
1415 FILE *fnonces
= NULL
;
1418 num_acquired_nonces
= 0;
1420 clearCommandBuffer();
1424 flags
|= initialize
? 0x0001 : 0;
1425 flags
|= slow
? 0x0002 : 0;
1426 flags
|= field_off
? 0x0004 : 0;
1427 UsbCommand c
= {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
, {blockNo
+ keyType
* 0x100, trgBlockNo
+ trgKeyType
* 0x100, flags
}};
1428 memcpy(c
.d
.asBytes
, key
, 6);
1432 if (field_off
) break;
1435 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) return 1;
1437 if (resp
.arg
[0]) return resp
.arg
[0]; // error during nested_hard
1440 // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
1441 if (nonce_file_write
&& fnonces
== NULL
) {
1442 if ((fnonces
= fopen("nonces.bin","wb")) == NULL
) {
1443 PrintAndLog("Could not create file nonces.bin");
1446 hardnested_print_progress(0, "Writing acquired nonces to binary file nonces.bin", (float)(1LL<<47), 0);
1447 num_to_bytes(cuid
, 4, write_buf
);
1448 fwrite(write_buf
, 1, 4, fnonces
);
1449 fwrite(&trgBlockNo
, 1, 1, fnonces
);
1450 fwrite(&trgKeyType
, 1, 1, fnonces
);
1455 uint32_t nt_enc1
, nt_enc2
;
1457 uint16_t num_sampled_nonces
= resp
.arg
[2];
1458 uint8_t *bufp
= resp
.d
.asBytes
;
1459 for (uint16_t i
= 0; i
< num_sampled_nonces
; i
+=2) {
1460 nt_enc1
= bytes_to_num(bufp
, 4);
1461 nt_enc2
= bytes_to_num(bufp
+4, 4);
1462 par_enc
= bytes_to_num(bufp
+8, 1);
1464 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
1465 num_acquired_nonces
+= add_nonce(nt_enc1
, par_enc
>> 4);
1466 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
1467 num_acquired_nonces
+= add_nonce(nt_enc2
, par_enc
& 0x0f);
1469 if (nonce_file_write
) {
1470 fwrite(bufp
, 1, 9, fnonces
);
1474 total_num_nonces
+= num_sampled_nonces
;
1476 if (first_byte_num
== 256 ) {
1477 if (hardnested_stage
== CHECK_1ST_BYTES
) {
1478 for (uint16_t i
= 0; i
< NUM_SUMS
; i
++) {
1479 if (first_byte_Sum
== sums
[i
]) {
1484 hardnested_stage
|= CHECK_2ND_BYTES
;
1487 update_nonce_data(true);
1488 acquisition_completed
= shrink_key_space(&brute_force
);
1489 if (!reported_suma8
) {
1490 char progress_string
[80];
1491 sprintf(progress_string
, "Apply Sum property. Sum(a0) = %d", sums
[first_byte_Sum
]);
1492 hardnested_print_progress(num_acquired_nonces
, progress_string
, brute_force
, 0);
1493 reported_suma8
= true;
1495 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0);
1498 update_nonce_data(true);
1499 acquisition_completed
= shrink_key_space(&brute_force
);
1500 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0);
1504 if (acquisition_completed
) {
1505 field_off
= true; // switch off field with next SendCommand and then finish
1509 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) {
1510 if (nonce_file_write
) {
1516 if (nonce_file_write
) {
1519 return resp
.arg
[0]; // error during nested_hard
1525 if (msclock() - last_sample_clock
< sample_period
) {
1526 sample_period
= msclock() - last_sample_clock
;
1528 last_sample_clock
= msclock();
1530 } while (!acquisition_completed
|| field_off
);
1532 if (nonce_file_write
) {
1536 // PrintAndLog("Sampled a total of %d nonces in %d seconds (%0.0f nonces/minute)",
1537 // total_num_nonces,
1538 // time(NULL)-time1,
1539 // (float)total_num_nonces*60.0/(time(NULL)-time1));
1545 static inline bool invariant_holds(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
1547 uint_fast8_t j_1_bit_mask
= 0x01 << (bit
-1);
1548 uint_fast8_t bit_diff
= byte_diff
& j_1_bit_mask
; // difference of (j-1)th bit
1549 uint_fast8_t filter_diff
= filter(state1
>> (4-state_bit
)) ^ filter(state2
>> (4-state_bit
)); // difference in filter function
1550 uint_fast8_t mask_y12_y13
= 0xc0 >> state_bit
;
1551 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y12_y13
; // difference in state bits 12 and 13
1552 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
^ filter_diff
); // use parity function to XOR all bits
1557 static inline bool invalid_state(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
1559 uint_fast8_t j_bit_mask
= 0x01 << bit
;
1560 uint_fast8_t bit_diff
= byte_diff
& j_bit_mask
; // difference of jth bit
1561 uint_fast8_t mask_y13_y16
= 0x48 >> state_bit
;
1562 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y13_y16
; // difference in state bits 13 and 16
1563 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
); // use parity function to XOR all bits
1568 static inline bool remaining_bits_match(uint_fast8_t num_common_bits
, uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, odd_even_t odd_even
)
1572 switch (num_common_bits
) {
1573 case 0: if (!invariant_holds(byte_diff
, state1
, state2
, 1, 0)) return true;
1574 case 1: if (invalid_state(byte_diff
, state1
, state2
, 1, 0)) return false;
1575 case 2: if (!invariant_holds(byte_diff
, state1
, state2
, 3, 1)) return true;
1576 case 3: if (invalid_state(byte_diff
, state1
, state2
, 3, 1)) return false;
1577 case 4: if (!invariant_holds(byte_diff
, state1
, state2
, 5, 2)) return true;
1578 case 5: if (invalid_state(byte_diff
, state1
, state2
, 5, 2)) return false;
1579 case 6: if (!invariant_holds(byte_diff
, state1
, state2
, 7, 3)) return true;
1580 case 7: if (invalid_state(byte_diff
, state1
, state2
, 7, 3)) return false;
1584 switch (num_common_bits
) {
1585 case 0: if (invalid_state(byte_diff
, state1
, state2
, 0, 0)) return false;
1586 case 1: if (!invariant_holds(byte_diff
, state1
, state2
, 2, 1)) return true;
1587 case 2: if (invalid_state(byte_diff
, state1
, state2
, 2, 1)) return false;
1588 case 3: if (!invariant_holds(byte_diff
, state1
, state2
, 4, 2)) return true;
1589 case 4: if (invalid_state(byte_diff
, state1
, state2
, 4, 2)) return false;
1590 case 5: if (!invariant_holds(byte_diff
, state1
, state2
, 6, 3)) return true;
1591 case 6: if (invalid_state(byte_diff
, state1
, state2
, 6, 3)) return false;
1595 return true; // valid state
1599 static pthread_mutex_t statelist_cache_mutex
;
1600 static pthread_mutex_t book_of_work_mutex
;
1609 static struct sl_cache_entry
{
1612 work_status_t cache_status
;
1613 } sl_cache
[NUM_PART_SUMS
][NUM_PART_SUMS
][2];
1616 static void init_statelist_cache(void)
1618 pthread_mutex_lock(&statelist_cache_mutex
);
1619 for (uint16_t i
= 0; i
< NUM_PART_SUMS
; i
++) {
1620 for (uint16_t j
= 0; j
< NUM_PART_SUMS
; j
++) {
1621 for (uint16_t k
= 0; k
< 2; k
++) {
1622 sl_cache
[i
][j
][k
].sl
= NULL
;
1623 sl_cache
[i
][j
][k
].len
= 0;
1624 sl_cache
[i
][j
][k
].cache_status
= TO_BE_DONE
;
1628 pthread_mutex_unlock(&statelist_cache_mutex
);
1632 static void free_statelist_cache(void)
1634 pthread_mutex_lock(&statelist_cache_mutex
);
1635 for (uint16_t i
= 0; i
< NUM_PART_SUMS
; i
++) {
1636 for (uint16_t j
= 0; j
< NUM_PART_SUMS
; j
++) {
1637 for (uint16_t k
= 0; k
< 2; k
++) {
1638 free(sl_cache
[i
][j
][k
].sl
);
1642 pthread_mutex_unlock(&statelist_cache_mutex
);
1646 #ifdef DEBUG_KEY_ELIMINATION
1647 static inline bool bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
, bool quiet
)
1649 static inline bool bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
)
1652 uint32_t *bitset
= nonces
[byte
].states_bitarray
[odd_even
];
1653 bool possible
= test_bit24(bitset
, state
);
1655 #ifdef DEBUG_KEY_ELIMINATION
1656 if (!quiet
&& known_target_key
!= -1 && state
== test_state
[odd_even
]) {
1657 printf("Initial state lists: %s test state eliminated by bitflip property.\n", odd_even
==EVEN_STATE
?"even":"odd");
1658 sprintf(failstr
, "Initial %s Byte Bitflip property", odd_even
==EVEN_STATE
?"even":"odd");
1668 static uint_fast8_t reverse(uint_fast8_t byte
)
1670 uint_fast8_t rev_byte
= 0;
1672 for (uint8_t i
= 0; i
< 8; i
++) {
1674 rev_byte
|= (byte
>> i
) & 0x01;
1681 static bool all_bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
)
1683 uint32_t masks
[2][8] = {{0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe, 0x00ffffff},
1684 {0x00fffff0, 0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe} };
1686 for (uint16_t i
= 1; i
< 256; i
++) {
1687 uint_fast8_t bytes_diff
= reverse(i
); // start with most common bits
1688 uint_fast8_t byte2
= byte
^ bytes_diff
;
1689 uint_fast8_t num_common
= trailing_zeros(bytes_diff
);
1690 uint32_t mask
= masks
[odd_even
][num_common
];
1691 bool found_match
= false;
1692 for (uint8_t remaining_bits
= 0; remaining_bits
<= (~mask
& 0xff); remaining_bits
++) {
1693 if (remaining_bits_match(num_common
, bytes_diff
, state
, (state
& mask
) | remaining_bits
, odd_even
)) {
1694 #ifdef DEBUG_KEY_ELIMINATION
1695 if (bitflips_match(byte2
, (state
& mask
) | remaining_bits
, odd_even
, true)) {
1697 if (bitflips_match(byte2
, (state
& mask
) | remaining_bits
, odd_even
)) {
1705 #ifdef DEBUG_KEY_ELIMINATION
1706 if (known_target_key
!= -1 && state
== test_state
[odd_even
]) {
1707 printf("all_bitflips_match() 1st Byte: %s test state (0x%06x): Eliminated. Bytes = %02x, %02x, Common Bits = %d\n",
1708 odd_even
==ODD_STATE
?"odd":"even",
1709 test_state
[odd_even
],
1710 byte
, byte2
, num_common
);
1711 if (failstr
[0] == '\0') {
1712 sprintf(failstr
, "Other 1st Byte %s, all_bitflips_match(), no match", odd_even
?"odd":"even");
1724 static void bitarray_to_list(uint8_t byte
, uint32_t *bitarray
, uint32_t *state_list
, uint32_t *len
, odd_even_t odd_even
)
1726 uint32_t *p
= state_list
;
1727 for (uint32_t state
= next_state(bitarray
, -1L); state
< (1<<24); state
= next_state(bitarray
, state
)) {
1728 if (all_bitflips_match(byte
, state
, odd_even
)) {
1732 // add End Of List marker
1734 *len
= p
- state_list
;
1738 static void add_cached_states(statelist_t
*candidates
, uint16_t part_sum_a0
, uint16_t part_sum_a8
, odd_even_t odd_even
)
1740 candidates
->states
[odd_even
] = sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].sl
;
1741 candidates
->len
[odd_even
] = sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].len
;
1746 static void add_matching_states(statelist_t
*candidates
, uint8_t part_sum_a0
, uint8_t part_sum_a8
, odd_even_t odd_even
)
1748 uint32_t worstcase_size
= 1<<20;
1749 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1750 if (candidates
->states
[odd_even
] == NULL
) {
1751 PrintAndLog("Out of memory error in add_matching_states() - statelist.\n");
1754 uint32_t *candidates_bitarray
= (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
1755 if (candidates_bitarray
== NULL
) {
1756 PrintAndLog("Out of memory error in add_matching_states() - bitarray.\n");
1757 free(candidates
->states
[odd_even
]);
1761 uint32_t *bitarray_a0
= part_sum_a0_bitarrays
[odd_even
][part_sum_a0
/2];
1762 uint32_t *bitarray_a8
= part_sum_a8_bitarrays
[odd_even
][part_sum_a8
/2];
1763 uint32_t *bitarray_bitflips
= nonces
[best_first_bytes
[0]].states_bitarray
[odd_even
];
1765 // for (uint32_t i = 0; i < (1<<19); i++) {
1766 // candidates_bitarray[i] = bitarray_a0[i] & bitarray_a8[i] & bitarray_bitflips[i];
1768 bitarray_AND4(candidates_bitarray
, bitarray_a0
, bitarray_a8
, bitarray_bitflips
);
1770 bitarray_to_list(best_first_bytes
[0], candidates_bitarray
, candidates
->states
[odd_even
], &(candidates
->len
[odd_even
]), odd_even
);
1771 if (candidates
->len
[odd_even
] == 0) {
1772 free(candidates
->states
[odd_even
]);
1773 candidates
->states
[odd_even
] = NULL
;
1774 } else if (candidates
->len
[odd_even
] + 1 < worstcase_size
) {
1775 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
1777 free_bitarray(candidates_bitarray
);
1780 pthread_mutex_lock(&statelist_cache_mutex
);
1781 sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].sl
= candidates
->states
[odd_even
];
1782 sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].len
= candidates
->len
[odd_even
];
1783 sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].cache_status
= COMPLETED
;
1784 pthread_mutex_unlock(&statelist_cache_mutex
);
1790 static statelist_t
*add_more_candidates(void)
1792 statelist_t
*new_candidates
= candidates
;
1793 if (candidates
== NULL
) {
1794 candidates
= (statelist_t
*)malloc(sizeof(statelist_t
));
1795 new_candidates
= candidates
;
1797 new_candidates
= candidates
;
1798 while (new_candidates
->next
!= NULL
) {
1799 new_candidates
= new_candidates
->next
;
1801 new_candidates
= new_candidates
->next
= (statelist_t
*)malloc(sizeof(statelist_t
));
1803 new_candidates
->next
= NULL
;
1804 new_candidates
->len
[ODD_STATE
] = 0;
1805 new_candidates
->len
[EVEN_STATE
] = 0;
1806 new_candidates
->states
[ODD_STATE
] = NULL
;
1807 new_candidates
->states
[EVEN_STATE
] = NULL
;
1808 return new_candidates
;
1812 static void add_bitflip_candidates(uint8_t byte
)
1814 statelist_t
*candidates
= add_more_candidates();
1816 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
1817 uint32_t worstcase_size
= nonces
[byte
].num_states_bitarray
[odd_even
] + 1;
1818 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1819 if (candidates
->states
[odd_even
] == NULL
) {
1820 PrintAndLog("Out of memory error in add_bitflip_candidates().\n");
1824 bitarray_to_list(byte
, nonces
[byte
].states_bitarray
[odd_even
], candidates
->states
[odd_even
], &(candidates
->len
[odd_even
]), odd_even
);
1826 if (candidates
->len
[odd_even
] + 1 < worstcase_size
) {
1827 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
1834 static bool TestIfKeyExists(uint64_t key
)
1836 struct Crypto1State
*pcs
;
1837 pcs
= crypto1_create(key
);
1838 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
1840 uint32_t state_odd
= pcs
->odd
& 0x00ffffff;
1841 uint32_t state_even
= pcs
->even
& 0x00ffffff;
1844 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1845 bool found_odd
= false;
1846 bool found_even
= false;
1847 uint32_t *p_odd
= p
->states
[ODD_STATE
];
1848 uint32_t *p_even
= p
->states
[EVEN_STATE
];
1849 if (p_odd
!= NULL
&& p_even
!= NULL
) {
1850 while (*p_odd
!= 0xffffffff) {
1851 if ((*p_odd
& 0x00ffffff) == state_odd
) {
1857 while (*p_even
!= 0xffffffff) {
1858 if ((*p_even
& 0x00ffffff) == state_even
) {
1863 count
+= (uint64_t)(p_odd
- p
->states
[ODD_STATE
]) * (uint64_t)(p_even
- p
->states
[EVEN_STATE
]);
1865 if (found_odd
&& found_even
) {
1866 num_keys_tested
+= count
;
1867 hardnested_print_progress(num_acquired_nonces
, "(Test: Key found)", 0.0, 0);
1868 crypto1_destroy(pcs
);
1873 num_keys_tested
+= count
;
1874 hardnested_print_progress(num_acquired_nonces
, "(Test: Key NOT found)", 0.0, 0);
1876 crypto1_destroy(pcs
);
1881 static work_status_t book_of_work
[NUM_PART_SUMS
][NUM_PART_SUMS
][NUM_PART_SUMS
][NUM_PART_SUMS
];
1884 static void init_book_of_work(void)
1886 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
1887 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
1888 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
1889 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
1890 book_of_work
[p
][q
][r
][s
] = TO_BE_DONE
;
1898 static void *generate_candidates_worker_thread(void *args
)
1900 uint16_t *sum_args
= (uint16_t *)args
;
1901 uint16_t sum_a0
= sums
[sum_args
[0]];
1902 uint16_t sum_a8
= sums
[sum_args
[1]];
1903 // uint16_t my_thread_number = sums[2];
1905 bool there_might_be_more_work
= true;
1907 there_might_be_more_work
= false;
1908 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
1909 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
1910 if (2*p
*(16-2*q
) + (16-2*p
)*2*q
== sum_a0
) {
1911 // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1912 // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
1913 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
1914 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
1915 if (2*r
*(16-2*s
) + (16-2*r
)*2*s
== sum_a8
) {
1916 pthread_mutex_lock(&book_of_work_mutex
);
1917 if (book_of_work
[p
][q
][r
][s
] != TO_BE_DONE
) { // this has been done or is currently been done by another thread. Look for some other work.
1918 pthread_mutex_unlock(&book_of_work_mutex
);
1922 pthread_mutex_lock(&statelist_cache_mutex
);
1923 if (sl_cache
[p
][r
][ODD_STATE
].cache_status
== WORK_IN_PROGRESS
1924 || sl_cache
[q
][s
][EVEN_STATE
].cache_status
== WORK_IN_PROGRESS
) { // defer until not blocked by another thread.
1925 pthread_mutex_unlock(&statelist_cache_mutex
);
1926 pthread_mutex_unlock(&book_of_work_mutex
);
1927 there_might_be_more_work
= true;
1931 // we finally can do some work.
1932 book_of_work
[p
][q
][r
][s
] = WORK_IN_PROGRESS
;
1933 statelist_t
*current_candidates
= add_more_candidates();
1935 // Check for cached results and add them first
1936 bool odd_completed
= false;
1937 if (sl_cache
[p
][r
][ODD_STATE
].cache_status
== COMPLETED
) {
1938 add_cached_states(current_candidates
, 2*p
, 2*r
, ODD_STATE
);
1939 odd_completed
= true;
1941 bool even_completed
= false;
1942 if (sl_cache
[q
][s
][EVEN_STATE
].cache_status
== COMPLETED
) {
1943 add_cached_states(current_candidates
, 2*q
, 2*s
, EVEN_STATE
);
1944 even_completed
= true;
1947 bool work_required
= true;
1949 // if there had been two cached results, there is no more work to do
1950 if (even_completed
&& odd_completed
) {
1951 work_required
= false;
1954 // if there had been one cached empty result, there is no need to calculate the other part:
1955 if (work_required
) {
1956 if (even_completed
&& !current_candidates
->len
[EVEN_STATE
]) {
1957 current_candidates
->len
[ODD_STATE
] = 0;
1958 current_candidates
->states
[ODD_STATE
] = NULL
;
1959 work_required
= false;
1961 if (odd_completed
&& !current_candidates
->len
[ODD_STATE
]) {
1962 current_candidates
->len
[EVEN_STATE
] = 0;
1963 current_candidates
->states
[EVEN_STATE
] = NULL
;
1964 work_required
= false;
1968 if (!work_required
) {
1969 pthread_mutex_unlock(&statelist_cache_mutex
);
1970 pthread_mutex_unlock(&book_of_work_mutex
);
1972 // we really need to calculate something
1973 if (even_completed
) { // we had one cache hit with non-zero even states
1974 // printf("Thread #%u: start working on odd states p=%2d, r=%2d...\n", my_thread_number, p, r);
1975 sl_cache
[p
][r
][ODD_STATE
].cache_status
= WORK_IN_PROGRESS
;
1976 pthread_mutex_unlock(&statelist_cache_mutex
);
1977 pthread_mutex_unlock(&book_of_work_mutex
);
1978 add_matching_states(current_candidates
, 2*p
, 2*r
, ODD_STATE
);
1979 work_required
= false;
1980 } else if (odd_completed
) { // we had one cache hit with non-zero odd_states
1981 // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s);
1982 sl_cache
[q
][s
][EVEN_STATE
].cache_status
= WORK_IN_PROGRESS
;
1983 pthread_mutex_unlock(&statelist_cache_mutex
);
1984 pthread_mutex_unlock(&book_of_work_mutex
);
1985 add_matching_states(current_candidates
, 2*q
, 2*s
, EVEN_STATE
);
1986 work_required
= false;
1990 if (work_required
) { // we had no cached result. Need to calculate both odd and even
1991 sl_cache
[p
][r
][ODD_STATE
].cache_status
= WORK_IN_PROGRESS
;
1992 sl_cache
[q
][s
][EVEN_STATE
].cache_status
= WORK_IN_PROGRESS
;
1993 pthread_mutex_unlock(&statelist_cache_mutex
);
1994 pthread_mutex_unlock(&book_of_work_mutex
);
1996 add_matching_states(current_candidates
, 2*p
, 2*r
, ODD_STATE
);
1997 if(current_candidates
->len
[ODD_STATE
]) {
1998 // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s);
1999 add_matching_states(current_candidates
, 2*q
, 2*s
, EVEN_STATE
);
2000 } else { // no need to calculate even states yet
2001 pthread_mutex_lock(&statelist_cache_mutex
);
2002 sl_cache
[q
][s
][EVEN_STATE
].cache_status
= TO_BE_DONE
;
2003 pthread_mutex_unlock(&statelist_cache_mutex
);
2004 current_candidates
->len
[EVEN_STATE
] = 0;
2005 current_candidates
->states
[EVEN_STATE
] = NULL
;
2009 // update book of work
2010 pthread_mutex_lock(&book_of_work_mutex
);
2011 book_of_work
[p
][q
][r
][s
] = COMPLETED
;
2012 pthread_mutex_unlock(&book_of_work_mutex
);
2014 // if ((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE]) {
2015 // printf("Candidates for p=%2u, q=%2u, r=%2u, s=%2u: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n",
2016 // 2*p, 2*q, 2*r, 2*s, current_candidates->len[ODD_STATE], current_candidates->len[EVEN_STATE],
2017 // (uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE],
2018 // log((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE])/log(2));
2019 // uint32_t estimated_odd = estimated_num_states_part_sum(best_first_bytes[0], p, r, ODD_STATE);
2020 // uint32_t estimated_even= estimated_num_states_part_sum(best_first_bytes[0], q, s, EVEN_STATE);
2021 // uint64_t estimated_total = (uint64_t)estimated_odd * estimated_even;
2022 // printf("Estimated: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n", estimated_odd, estimated_even, estimated_total, log(estimated_total) / log(2));
2023 // if (estimated_odd < current_candidates->len[ODD_STATE] || estimated_even < current_candidates->len[EVEN_STATE]) {
2024 // printf("############################################################################ERROR! ESTIMATED < REAL !!!\n");
2034 } while (there_might_be_more_work
);
2040 static void generate_candidates(uint8_t sum_a0_idx
, uint8_t sum_a8_idx
)
2042 // printf("Generating crypto1 state candidates... \n");
2044 // estimate maximum candidate states
2045 // maximum_states = 0;
2046 // for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) {
2047 // for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) {
2048 // if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) {
2049 // maximum_states += (uint64_t)count_states(part_sum_a0_bitarrays[EVEN_STATE][sum_even/2])
2050 // * count_states(part_sum_a0_bitarrays[ODD_STATE][sum_odd/2]);
2054 // printf("Number of possible keys with Sum(a0) = %d: %" PRIu64 " (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0));
2056 init_statelist_cache();
2057 init_book_of_work();
2059 // create mutexes for accessing the statelist cache and our "book of work"
2060 pthread_mutex_init(&statelist_cache_mutex
, NULL
);
2061 pthread_mutex_init(&book_of_work_mutex
, NULL
);
2063 // create and run worker threads
2064 pthread_t thread_id
[NUM_REDUCTION_WORKING_THREADS
];
2066 uint16_t sums
[NUM_REDUCTION_WORKING_THREADS
][3];
2067 for (uint16_t i
= 0; i
< NUM_REDUCTION_WORKING_THREADS
; i
++) {
2068 sums
[i
][0] = sum_a0_idx
;
2069 sums
[i
][1] = sum_a8_idx
;
2071 pthread_create(thread_id
+ i
, NULL
, generate_candidates_worker_thread
, sums
[i
]);
2074 // wait for threads to terminate:
2075 for (uint16_t i
= 0; i
< NUM_REDUCTION_WORKING_THREADS
; i
++) {
2076 pthread_join(thread_id
[i
], NULL
);
2080 pthread_mutex_destroy(&statelist_cache_mutex
);
2083 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
2084 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
2087 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
2088 if (nonces
[best_first_bytes
[0]].sum_a8_guess
[i
].sum_a8_idx
== sum_a8_idx
) {
2089 nonces
[best_first_bytes
[0]].sum_a8_guess
[i
].num_states
= maximum_states
;
2093 update_expected_brute_force(best_first_bytes
[0]);
2095 hardnested_print_progress(num_acquired_nonces
, "Apply Sum(a8) and all bytes bitflip properties", nonces
[best_first_bytes
[0]].expected_num_brute_force
, 0);
2099 static void free_candidates_memory(statelist_t
*sl
)
2104 free_candidates_memory(sl
->next
);
2110 static void pre_XOR_nonces(void)
2112 // prepare acquired nonces for faster brute forcing.
2114 // XOR the cryptoUID and its parity
2115 for (uint16_t i
= 0; i
< 256; i
++) {
2116 noncelistentry_t
*test_nonce
= nonces
[i
].first
;
2117 while (test_nonce
!= NULL
) {
2118 test_nonce
->nonce_enc
^= cuid
;
2119 test_nonce
->par_enc
^= oddparity8(cuid
>> 0 & 0xff) << 0;
2120 test_nonce
->par_enc
^= oddparity8(cuid
>> 8 & 0xff) << 1;
2121 test_nonce
->par_enc
^= oddparity8(cuid
>> 16 & 0xff) << 2;
2122 test_nonce
->par_enc
^= oddparity8(cuid
>> 24 & 0xff) << 3;
2123 test_nonce
= test_nonce
->next
;
2129 static bool brute_force(void)
2131 if (known_target_key
!= -1) {
2132 TestIfKeyExists(known_target_key
);
2134 return brute_force_bs(NULL
, candidates
, cuid
, num_acquired_nonces
, maximum_states
, nonces
, best_first_bytes
);
2138 static uint16_t SumProperty(struct Crypto1State
*s
)
2140 uint16_t sum_odd
= PartialSumProperty(s
->odd
, ODD_STATE
);
2141 uint16_t sum_even
= PartialSumProperty(s
->even
, EVEN_STATE
);
2142 return (sum_odd
*(16-sum_even
) + (16-sum_odd
)*sum_even
);
2149 /* #define NUM_STATISTICS 100000
2150 uint32_t statistics_odd[17];
2151 uint64_t statistics[257];
2152 uint32_t statistics_even[17];
2153 struct Crypto1State cs;
2154 uint64_t time1 = msclock();
2156 for (uint16_t i = 0; i < 257; i++) {
2159 for (uint16_t i = 0; i < 17; i++) {
2160 statistics_odd[i] = 0;
2161 statistics_even[i] = 0;
2164 for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
2165 cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2166 cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2167 uint16_t sum_property = SumProperty(&cs);
2168 statistics[sum_property] += 1;
2169 sum_property = PartialSumProperty(cs.even, EVEN_STATE);
2170 statistics_even[sum_property]++;
2171 sum_property = PartialSumProperty(cs.odd, ODD_STATE);
2172 statistics_odd[sum_property]++;
2173 if (i%(NUM_STATISTICS/100) == 0) printf(".");
2176 printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0);
2177 for (uint16_t i = 0; i < 257; i++) {
2178 if (statistics[i] != 0) {
2179 printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
2182 for (uint16_t i = 0; i <= 16; i++) {
2183 if (statistics_odd[i] != 0) {
2184 printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
2187 for (uint16_t i = 0; i <= 16; i++) {
2188 if (statistics_odd[i] != 0) {
2189 printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
2194 /* #define NUM_STATISTICS 100000000LL
2195 uint64_t statistics_a0[257];
2196 uint64_t statistics_a8[257][257];
2197 struct Crypto1State cs;
2198 uint64_t time1 = msclock();
2200 for (uint16_t i = 0; i < 257; i++) {
2201 statistics_a0[i] = 0;
2202 for (uint16_t j = 0; j < 257; j++) {
2203 statistics_a8[i][j] = 0;
2207 for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
2208 cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2209 cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2210 uint16_t sum_property_a0 = SumProperty(&cs);
2211 statistics_a0[sum_property_a0]++;
2212 uint8_t first_byte = rand() & 0xff;
2213 crypto1_byte(&cs, first_byte, true);
2214 uint16_t sum_property_a8 = SumProperty(&cs);
2215 statistics_a8[sum_property_a0][sum_property_a8] += 1;
2216 if (i%(NUM_STATISTICS/100) == 0) printf(".");
2219 printf("\nTests: Probability Distribution of a8 depending on a0:\n");
2221 for (uint16_t i = 0; i < NUM_SUMS; i++) {
2222 printf("%7d ", sums[i]);
2224 printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n");
2226 for (uint16_t i = 0; i < NUM_SUMS; i++) {
2227 printf("%7.5f ", (float)statistics_a0[sums[i]] / NUM_STATISTICS);
2230 for (uint16_t i = 0; i < NUM_SUMS; i++) {
2231 printf("%3d ", sums[i]);
2232 for (uint16_t j = 0; j < NUM_SUMS; j++) {
2233 printf("%7.5f ", (float)statistics_a8[sums[i]][sums[j]] / statistics_a0[sums[i]]);
2237 printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0);
2240 /* #define NUM_STATISTICS 100000LL
2241 uint64_t statistics_a8[257];
2242 struct Crypto1State cs;
2243 uint64_t time1 = msclock();
2245 printf("\nTests: Probability Distribution of a8 depending on first byte:\n");
2247 for (uint16_t i = 0; i < NUM_SUMS; i++) {
2248 printf("%7d ", sums[i]);
2250 printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n");
2251 for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
2252 for (uint16_t i = 0; i < 257; i++) {
2253 statistics_a8[i] = 0;
2255 for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
2256 cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2257 cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2258 crypto1_byte(&cs, first_byte, true);
2259 uint16_t sum_property_a8 = SumProperty(&cs);
2260 statistics_a8[sum_property_a8] += 1;
2262 printf("%03x ", first_byte);
2263 for (uint16_t j = 0; j < NUM_SUMS; j++) {
2264 printf("%7.5f ", (float)statistics_a8[sums[j]] / NUM_STATISTICS);
2268 printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0);
2271 /* printf("Tests: Sum Probabilities based on Partial Sums\n");
2272 for (uint16_t i = 0; i < 257; i++) {
2275 uint64_t num_states = 0;
2276 for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
2277 for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
2278 uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
2279 statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
2280 num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
2283 printf("num_states = %"lld", expected %"lld"\n", num_states, (1LL<<48));
2284 for (uint16_t i = 0; i < 257; i++) {
2285 if (statistics[i] != 0) {
2286 printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
2291 /* struct Crypto1State *pcs;
2292 pcs = crypto1_create(0xffffffffffff);
2293 printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2294 SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2295 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
2296 printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2297 best_first_bytes[0],
2299 pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2300 //test_state_odd = pcs->odd & 0x00ffffff;
2301 //test_state_even = pcs->even & 0x00ffffff;
2302 crypto1_destroy(pcs);
2303 pcs = crypto1_create(0xa0a1a2a3a4a5);
2304 printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2305 SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2306 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
2307 printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2308 best_first_bytes[0],
2310 pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2311 //test_state_odd = pcs->odd & 0x00ffffff;
2312 //test_state_even = pcs->even & 0x00ffffff;
2313 crypto1_destroy(pcs);
2314 pcs = crypto1_create(0xa6b9aa97b955);
2315 printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2316 SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2317 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
2318 printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2319 best_first_bytes[0],
2321 pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2322 test_state_odd = pcs->odd & 0x00ffffff;
2323 test_state_even = pcs->even & 0x00ffffff;
2324 crypto1_destroy(pcs);
2327 // printf("\nTests: Sorted First Bytes:\n");
2328 // for (uint16_t i = 0; i < 20; i++) {
2329 // uint8_t best_byte = best_first_bytes[i];
2330 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%\n",
2331 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8) = ", i, best_byte, nonces[best_byte].num, nonces[best_byte].Sum);
2332 // for (uint16_t j = 0; j < 3; j++) {
2333 // printf("%3d @ %4.1f%%, ", sums[nonces[best_byte].sum_a8_guess[j].sum_a8_idx], nonces[best_byte].sum_a8_guess[j].prob * 100.0);
2335 // printf(" %12" PRIu64 ", %12" PRIu64 ", %12" PRIu64 ", exp_brute: %12.0f\n",
2336 // nonces[best_byte].sum_a8_guess[0].num_states,
2337 // nonces[best_byte].sum_a8_guess[1].num_states,
2338 // nonces[best_byte].sum_a8_guess[2].num_states,
2339 // nonces[best_byte].expected_num_brute_force);
2342 // printf("\nTests: Actual BitFlipProperties of best byte:\n");
2343 // printf("[%02x]:", best_first_bytes[0]);
2344 // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) {
2345 // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx];
2346 // if (nonces[best_first_bytes[0]].BitFlips[bitflip_prop]) {
2347 // printf(" %03" PRIx16 , bitflip_prop);
2352 // printf("\nTests2: Actual BitFlipProperties of first_byte_smallest_bitarray:\n");
2353 // printf("[%02x]:", best_first_byte_smallest_bitarray);
2354 // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) {
2355 // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx];
2356 // if (nonces[best_first_byte_smallest_bitarray].BitFlips[bitflip_prop]) {
2357 // printf(" %03" PRIx16 , bitflip_prop);
2362 if (known_target_key
!= -1) {
2363 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2364 uint32_t *bitset
= nonces
[best_first_bytes
[0]].states_bitarray
[odd_even
];
2365 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2366 printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n",
2367 odd_even
==EVEN_STATE
?"even":"odd ",
2368 best_first_bytes
[0]);
2373 if (known_target_key
!= -1) {
2374 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2375 uint32_t *bitset
= all_bitflips_bitarray
[odd_even
];
2376 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2377 printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n",
2378 odd_even
==EVEN_STATE
?"even":"odd ");
2383 // if (known_target_key != -1) {
2384 // int16_t p = -1, q = -1, r = -1, s = -1;
2386 // printf("\nTests: known target key is member of these partial sum_a0 bitsets:\n");
2387 // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
2388 // printf("%s", odd_even==EVEN_STATE?"even:":"odd: ");
2389 // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) {
2390 // uint32_t *bitset = part_sum_a0_bitarrays[odd_even][i];
2391 // if (test_bit24(bitset, test_state[odd_even])) {
2392 // printf("%d ", i);
2393 // if (odd_even == ODD_STATE) {
2403 // printf("\nTests: known target key is member of these partial sum_a8 bitsets:\n");
2404 // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
2405 // printf("%s", odd_even==EVEN_STATE?"even:":"odd: ");
2406 // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) {
2407 // uint32_t *bitset = part_sum_a8_bitarrays[odd_even][i];
2408 // if (test_bit24(bitset, test_state[odd_even])) {
2409 // printf("%d ", i);
2410 // if (odd_even == ODD_STATE) {
2420 // printf("Sum(a0) = p*(16-q) + (16-p)*q = %d*(16-%d) + (16-%d)*%d = %d\n", p, q, p, q, p*(16-q)+(16-p)*q);
2421 // printf("Sum(a8) = r*(16-s) + (16-r)*s = %d*(16-%d) + (16-%d)*%d = %d\n", r, s, r, s, r*(16-s)+(16-r)*s);
2424 /* printf("\nTests: parity performance\n");
2425 uint64_t time1p = msclock();
2426 uint32_t par_sum = 0;
2427 for (uint32_t i = 0; i < 100000000; i++) {
2428 par_sum += parity(i);
2430 printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0);
2434 for (uint32_t i = 0; i < 100000000; i++) {
2435 par_sum += evenparity32(i);
2437 printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0);
2443 static void Tests2(void)
2445 if (known_target_key
!= -1) {
2446 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2447 uint32_t *bitset
= nonces
[best_first_byte_smallest_bitarray
].states_bitarray
[odd_even
];
2448 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2449 printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n",
2450 odd_even
==EVEN_STATE
?"even":"odd ",
2451 best_first_byte_smallest_bitarray
);
2456 if (known_target_key
!= -1) {
2457 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2458 uint32_t *bitset
= all_bitflips_bitarray
[odd_even
];
2459 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2460 printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n",
2461 odd_even
==EVEN_STATE
?"even":"odd ");
2469 static uint16_t real_sum_a8
= 0;
2471 static void set_test_state(uint8_t byte
)
2473 struct Crypto1State
*pcs
;
2474 pcs
= crypto1_create(known_target_key
);
2475 crypto1_byte(pcs
, (cuid
>> 24) ^ byte
, true);
2476 test_state
[ODD_STATE
] = pcs
->odd
& 0x00ffffff;
2477 test_state
[EVEN_STATE
] = pcs
->even
& 0x00ffffff;
2478 real_sum_a8
= SumProperty(pcs
);
2479 crypto1_destroy(pcs
);
2483 int mfnestedhard(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, uint8_t *trgkey
, bool nonce_file_read
, bool nonce_file_write
, bool slow
, int tests
)
2485 char progress_text
[80];
2487 srand((unsigned) time(NULL
));
2488 brute_force_per_second
= brute_force_benchmark();
2489 write_stats
= false;
2492 // set the correct locale for the stats printing
2494 setlocale(LC_NUMERIC
, "");
2495 if ((fstats
= fopen("hardnested_stats.txt","a")) == NULL
) {
2496 PrintAndLog("Could not create/open file hardnested_stats.txt");
2499 for (uint32_t i
= 0; i
< tests
; i
++) {
2500 start_time
= msclock();
2501 print_progress_header();
2502 sprintf(progress_text
, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second
/1000000, log(brute_force_per_second
)/log(2.0));
2503 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
2504 sprintf(progress_text
, "Starting Test #%" PRIu32
" ...", i
+1);
2505 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
2506 if (trgkey
!= NULL
) {
2507 known_target_key
= bytes_to_num(trgkey
, 6);
2509 known_target_key
= -1;
2512 init_bitflip_bitarrays();
2513 init_part_sum_bitarrays();
2514 init_sum_bitarrays();
2515 init_allbitflips_array();
2516 init_nonce_memory();
2517 update_reduction_rate(0.0, true);
2519 simulate_acquire_nonces();
2521 set_test_state(best_first_bytes
[0]);
2524 free_bitflip_bitarrays();
2526 fprintf(fstats
, "%" PRIu16
";%1.1f;", sums
[first_byte_Sum
], log(p_K0
[first_byte_Sum
])/log(2.0));
2527 fprintf(fstats
, "%" PRIu16
";%1.1f;", sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[0].sum_a8_idx
], log(p_K
[nonces
[best_first_bytes
[0]].sum_a8_guess
[0].sum_a8_idx
])/log(2.0));
2528 fprintf(fstats
, "%" PRIu16
";", real_sum_a8
);
2530 #ifdef DEBUG_KEY_ELIMINATION
2533 bool key_found
= false;
2534 num_keys_tested
= 0;
2535 uint32_t num_odd
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
];
2536 uint32_t num_even
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
];
2537 float expected_brute_force1
= (float)num_odd
* num_even
/ 2.0;
2538 float expected_brute_force2
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2539 fprintf(fstats
, "%1.1f;%1.1f;", log(expected_brute_force1
)/log(2.0), log(expected_brute_force2
)/log(2.0));
2540 if (expected_brute_force1
< expected_brute_force2
) {
2541 hardnested_print_progress(num_acquired_nonces
, "(Ignoring Sum(a8) properties)", expected_brute_force1
, 0);
2542 set_test_state(best_first_byte_smallest_bitarray
);
2543 add_bitflip_candidates(best_first_byte_smallest_bitarray
);
2546 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
2547 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
2549 //printf("Number of remaining possible keys: %" PRIu64 " (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
2550 // fprintf("fstats, "%" PRIu64 ";", maximum_states);
2551 best_first_bytes
[0] = best_first_byte_smallest_bitarray
;
2553 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2554 key_found
= brute_force();
2555 free(candidates
->states
[ODD_STATE
]);
2556 free(candidates
->states
[EVEN_STATE
]);
2557 free_candidates_memory(candidates
);
2561 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2562 for (uint8_t j
= 0; j
< NUM_SUMS
&& !key_found
; j
++) {
2563 float expected_brute_force
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2564 sprintf(progress_text
, "(%d. guess: Sum(a8) = %" PRIu16
")", j
+1, sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
]);
2565 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2566 if (sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
] != real_sum_a8
) {
2567 sprintf(progress_text
, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16
")", real_sum_a8
);
2568 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2570 // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0));
2571 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
);
2572 // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0);
2573 key_found
= brute_force();
2574 free_statelist_cache();
2575 free_candidates_memory(candidates
);
2578 // update the statistics
2579 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].prob
= 0;
2580 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].num_states
= 0;
2581 // and calculate new expected number of brute forces
2582 update_expected_brute_force(best_first_bytes
[0]);
2586 #ifdef DEBUG_KEY_ELIMINATION
2587 fprintf(fstats
, "%1.1f;%1.0f;%d;%s\n", log(num_keys_tested
)/log(2.0), (float)num_keys_tested
/brute_force_per_second
, key_found
, failstr
);
2589 fprintf(fstats
, "%1.0f;%d\n", log(num_keys_tested
)/log(2.0), (float)num_keys_tested
/brute_force_per_second
, key_found
);
2592 free_nonces_memory();
2593 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]);
2594 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]);
2595 free_sum_bitarrays();
2596 free_part_sum_bitarrays();
2600 start_time
= msclock();
2601 print_progress_header();
2602 sprintf(progress_text
, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second
/1000000, log(brute_force_per_second
)/log(2.0));
2603 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
2604 init_bitflip_bitarrays();
2605 init_part_sum_bitarrays();
2606 init_sum_bitarrays();
2607 init_allbitflips_array();
2608 init_nonce_memory();
2609 update_reduction_rate(0.0, true);
2611 if (nonce_file_read
) { // use pre-acquired data from file nonces.bin
2612 if (read_nonce_file() != 0) {
2615 hardnested_stage
= CHECK_1ST_BYTES
| CHECK_2ND_BYTES
;
2616 update_nonce_data(false);
2618 shrink_key_space(&brute_force
);
2619 } else { // acquire nonces.
2620 uint16_t is_OK
= acquire_nonces(blockNo
, keyType
, key
, trgBlockNo
, trgKeyType
, nonce_file_write
, slow
);
2626 if (trgkey
!= NULL
) {
2627 known_target_key
= bytes_to_num(trgkey
, 6);
2628 set_test_state(best_first_bytes
[0]);
2630 known_target_key
= -1;
2635 free_bitflip_bitarrays();
2636 bool key_found
= false;
2637 num_keys_tested
= 0;
2638 uint32_t num_odd
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
];
2639 uint32_t num_even
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
];
2640 float expected_brute_force1
= (float)num_odd
* num_even
/ 2.0;
2641 float expected_brute_force2
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2642 if (expected_brute_force1
< expected_brute_force2
) {
2643 hardnested_print_progress(num_acquired_nonces
, "(Ignoring Sum(a8) properties)", expected_brute_force1
, 0);
2644 set_test_state(best_first_byte_smallest_bitarray
);
2645 add_bitflip_candidates(best_first_byte_smallest_bitarray
);
2648 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
2649 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
2651 printf("Number of remaining possible keys: %" PRIu64
" (2^%1.1f)\n", maximum_states
, log(maximum_states
)/log(2.0));
2652 best_first_bytes
[0] = best_first_byte_smallest_bitarray
;
2654 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2655 key_found
= brute_force();
2656 free(candidates
->states
[ODD_STATE
]);
2657 free(candidates
->states
[EVEN_STATE
]);
2658 free_candidates_memory(candidates
);
2662 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2663 for (uint8_t j
= 0; j
< NUM_SUMS
&& !key_found
; j
++) {
2664 float expected_brute_force
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2665 sprintf(progress_text
, "(%d. guess: Sum(a8) = %" PRIu16
")", j
+1, sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
]);
2666 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2667 if (trgkey
!= NULL
&& sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
] != real_sum_a8
) {
2668 sprintf(progress_text
, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16
")", real_sum_a8
);
2669 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2671 // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0));
2672 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
);
2673 // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0);
2674 key_found
= brute_force();
2675 free_statelist_cache();
2676 free_candidates_memory(candidates
);
2679 // update the statistics
2680 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].prob
= 0;
2681 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].num_states
= 0;
2682 // and calculate new expected number of brute forces
2683 update_expected_brute_force(best_first_bytes
[0]);
2689 free_nonces_memory();
2690 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]);
2691 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]);
2692 free_sum_bitarrays();
2693 free_part_sum_bitarrays();