1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
18 #include "iso14443crc.h"
19 #include "iso14443a.h"
20 #include "iso14443b.h"
22 #include "mifareutil.h"
26 static uint32_t iso14a_timeout
;
29 // the block number for the ISO14443-4 PCB
30 static uint8_t iso14_pcb_blocknum
= 0;
32 static uint8_t* free_buffer_pointer
;
37 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
38 #define REQUEST_GUARD_TIME (7000/16 + 1)
39 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
40 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
41 // bool LastCommandWasRequest = FALSE;
44 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
46 // When the PM acts as reader and is receiving tag data, it takes
47 // 3 ticks delay in the AD converter
48 // 16 ticks until the modulation detector completes and sets curbit
49 // 8 ticks until bit_to_arm is assigned from curbit
50 // 8*16 ticks for the transfer from FPGA to ARM
51 // 4*16 ticks until we measure the time
52 // - 8*16 ticks because we measure the time of the previous transfer
53 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
55 // When the PM acts as a reader and is sending, it takes
56 // 4*16 ticks until we can write data to the sending hold register
57 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
58 // 8 ticks until the first transfer starts
59 // 8 ticks later the FPGA samples the data
60 // 1 tick to assign mod_sig_coil
61 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
63 // When the PM acts as tag and is receiving it takes
64 // 2 ticks delay in the RF part (for the first falling edge),
65 // 3 ticks for the A/D conversion,
66 // 8 ticks on average until the start of the SSC transfer,
67 // 8 ticks until the SSC samples the first data
68 // 7*16 ticks to complete the transfer from FPGA to ARM
69 // 8 ticks until the next ssp_clk rising edge
70 // 4*16 ticks until we measure the time
71 // - 8*16 ticks because we measure the time of the previous transfer
72 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
74 // The FPGA will report its internal sending delay in
75 uint16_t FpgaSendQueueDelay
;
76 // the 5 first bits are the number of bits buffered in mod_sig_buf
77 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
78 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
80 // When the PM acts as tag and is sending, it takes
81 // 4*16 ticks until we can write data to the sending hold register
82 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
83 // 8 ticks until the first transfer starts
84 // 8 ticks later the FPGA samples the data
85 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
86 // + 1 tick to assign mod_sig_coil
87 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
89 // When the PM acts as sniffer and is receiving tag data, it takes
90 // 3 ticks A/D conversion
91 // 14 ticks to complete the modulation detection
92 // 8 ticks (on average) until the result is stored in to_arm
93 // + the delays in transferring data - which is the same for
94 // sniffing reader and tag data and therefore not relevant
95 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
97 // When the PM acts as sniffer and is receiving reader data, it takes
98 // 2 ticks delay in analogue RF receiver (for the falling edge of the
99 // start bit, which marks the start of the communication)
100 // 3 ticks A/D conversion
101 // 8 ticks on average until the data is stored in to_arm.
102 // + the delays in transferring data - which is the same for
103 // sniffing reader and tag data and therefore not relevant
104 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
106 //variables used for timing purposes:
107 //these are in ssp_clk cycles:
108 static uint32_t NextTransferTime
;
109 static uint32_t LastTimeProxToAirStart
;
110 static uint32_t LastProxToAirDuration
;
112 // CARD TO READER - manchester
113 // Sequence D: 11110000 modulation with subcarrier during first half
114 // Sequence E: 00001111 modulation with subcarrier during second half
115 // Sequence F: 00000000 no modulation with subcarrier
116 // READER TO CARD - miller
117 // Sequence X: 00001100 drop after half a period
118 // Sequence Y: 00000000 no drop
119 // Sequence Z: 11000000 drop at start
127 void iso14a_set_trigger(bool enable
) {
131 void iso14a_set_timeout(uint32_t timeout
) {
132 iso14a_timeout
= timeout
;
133 if(MF_DBGLEVEL
>= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout
, iso14a_timeout
/ 106);
136 void iso14a_set_ATS_timeout(uint8_t *ats
) {
141 if (ats
[0] > 1) { // there is a format byte T0
142 if ((ats
[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
144 if ((ats
[1] & 0x10) == 0x10) // there is an interface byte TA(1) preceding TB(1)
149 fwi
= (tb1
& 0xf0) >> 4; // frame waiting indicator (FWI)
150 fwt
= 256 * 16 * (1 << fwi
); // frame waiting time (FWT) in 1/fc
151 //fwt = 4096 * (1 << fwi);
153 iso14a_set_timeout(fwt
/(8*16));
154 //iso14a_set_timeout(fwt/128);
159 //-----------------------------------------------------------------------------
160 // Generate the parity value for a byte sequence
162 //-----------------------------------------------------------------------------
163 void GetParity(const uint8_t *pbtCmd
, uint16_t iLen
, uint8_t *par
) {
164 uint16_t paritybit_cnt
= 0;
165 uint16_t paritybyte_cnt
= 0;
166 uint8_t parityBits
= 0;
168 for (uint16_t i
= 0; i
< iLen
; i
++) {
169 // Generate the parity bits
170 parityBits
|= ((oddparity8(pbtCmd
[i
])) << (7-paritybit_cnt
));
171 if (paritybit_cnt
== 7) {
172 par
[paritybyte_cnt
] = parityBits
; // save 8 Bits parity
173 parityBits
= 0; // and advance to next Parity Byte
181 // save remaining parity bits
182 par
[paritybyte_cnt
] = parityBits
;
185 void AppendCrc14443a(uint8_t* data
, int len
) {
186 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
189 //=============================================================================
190 // ISO 14443 Type A - Miller decoder
191 //=============================================================================
193 // This decoder is used when the PM3 acts as a tag.
194 // The reader will generate "pauses" by temporarily switching of the field.
195 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
196 // The FPGA does a comparison with a threshold and would deliver e.g.:
197 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
198 // The Miller decoder needs to identify the following sequences:
199 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
200 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
201 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
202 // Note 1: the bitstream may start at any time. We therefore need to sync.
203 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
204 //-----------------------------------------------------------------------------
207 // Lookup-Table to decide if 4 raw bits are a modulation.
208 // We accept the following:
209 // 0001 - a 3 tick wide pause
210 // 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
211 // 0111 - a 2 tick wide pause shifted left
212 // 1001 - a 2 tick wide pause shifted right
213 const bool Mod_Miller_LUT
[] = {
214 FALSE
, TRUE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, TRUE
,
215 FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
217 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
218 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
221 Uart
.state
= STATE_UNSYNCD
;
223 Uart
.len
= 0; // number of decoded data bytes
224 Uart
.parityLen
= 0; // number of decoded parity bytes
225 Uart
.shiftReg
= 0; // shiftreg to hold decoded data bits
226 Uart
.parityBits
= 0; // holds 8 parity bits
235 void UartInit(uint8_t *data
, uint8_t *parity
) {
237 Uart
.parity
= parity
;
238 Uart
.fourBits
= 0x00000000; // clear the buffer for 4 Bits
242 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
243 static RAMFUNC
bool MillerDecoding(uint8_t bit
, uint32_t non_real_time
) {
244 Uart
.fourBits
= (Uart
.fourBits
<< 8) | bit
;
246 if (Uart
.state
== STATE_UNSYNCD
) { // not yet synced
247 Uart
.syncBit
= 9999; // not set
249 // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication")
250 // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information")
251 // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1")
253 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
254 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
255 // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
256 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
258 #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000
259 #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000
261 if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 0)) == ISO14443A_STARTBIT_PATTERN
>> 0) Uart
.syncBit
= 7;
262 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 1)) == ISO14443A_STARTBIT_PATTERN
>> 1) Uart
.syncBit
= 6;
263 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 2)) == ISO14443A_STARTBIT_PATTERN
>> 2) Uart
.syncBit
= 5;
264 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 3)) == ISO14443A_STARTBIT_PATTERN
>> 3) Uart
.syncBit
= 4;
265 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 4)) == ISO14443A_STARTBIT_PATTERN
>> 4) Uart
.syncBit
= 3;
266 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 5)) == ISO14443A_STARTBIT_PATTERN
>> 5) Uart
.syncBit
= 2;
267 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 6)) == ISO14443A_STARTBIT_PATTERN
>> 6) Uart
.syncBit
= 1;
268 else if ((Uart
.fourBits
& (ISO14443A_STARTBIT_MASK
>> 7)) == ISO14443A_STARTBIT_PATTERN
>> 7) Uart
.syncBit
= 0;
270 if (Uart
.syncBit
!= 9999) { // found a sync bit
271 Uart
.startTime
= non_real_time
? non_real_time
: (GetCountSspClk() & 0xfffffff8);
272 Uart
.startTime
-= Uart
.syncBit
;
273 Uart
.endTime
= Uart
.startTime
;
274 Uart
.state
= STATE_START_OF_COMMUNICATION
;
278 if (IsMillerModulationNibble1(Uart
.fourBits
>> Uart
.syncBit
)) {
279 if (IsMillerModulationNibble2(Uart
.fourBits
>> Uart
.syncBit
)) { // Modulation in both halves - error
281 } else { // Modulation in first half = Sequence Z = logic "0"
282 if (Uart
.state
== STATE_MILLER_X
) { // error - must not follow after X
286 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
287 Uart
.state
= STATE_MILLER_Z
;
288 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 6;
289 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
290 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
291 Uart
.parityBits
<<= 1; // make room for the parity bit
292 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
295 if((Uart
.len
&0x0007) == 0) { // every 8 data bytes
296 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
303 if (IsMillerModulationNibble2(Uart
.fourBits
>> Uart
.syncBit
)) { // Modulation second half = Sequence X = logic "1"
305 Uart
.shiftReg
= (Uart
.shiftReg
>> 1) | 0x100; // add a 1 to the shiftreg
306 Uart
.state
= STATE_MILLER_X
;
307 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 2;
308 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
309 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
310 Uart
.parityBits
<<= 1; // make room for the new parity bit
311 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
314 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
315 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
319 } else { // no modulation in both halves - Sequence Y
320 if (Uart
.state
== STATE_MILLER_Z
|| Uart
.state
== STATE_MILLER_Y
) { // Y after logic "0" - End of Communication
321 Uart
.state
= STATE_UNSYNCD
;
322 Uart
.bitCount
--; // last "0" was part of EOC sequence
323 Uart
.shiftReg
<<= 1; // drop it
324 if(Uart
.bitCount
> 0) { // if we decoded some bits
325 Uart
.shiftReg
>>= (9 - Uart
.bitCount
); // right align them
326 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff); // add last byte to the output
327 Uart
.parityBits
<<= 1; // add a (void) parity bit
328 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align parity bits
329 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store it
331 } else if (Uart
.len
& 0x0007) { // there are some parity bits to store
332 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align remaining parity bits
333 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store them
336 return TRUE
; // we are finished with decoding the raw data sequence
338 UartReset(); // Nothing received - start over
341 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) { // error - must not follow directly after SOC
343 } else { // a logic "0"
345 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
346 Uart
.state
= STATE_MILLER_Y
;
347 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
348 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
349 Uart
.parityBits
<<= 1; // make room for the parity bit
350 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
353 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
354 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
362 return FALSE
; // not finished yet, need more data
365 //=============================================================================
366 // ISO 14443 Type A - Manchester decoder
367 //=============================================================================
369 // This decoder is used when the PM3 acts as a reader.
370 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
371 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
372 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
373 // The Manchester decoder needs to identify the following sequences:
374 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
375 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
376 // 8 ticks unmodulated: Sequence F = end of communication
377 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
378 // Note 1: the bitstream may start at any time. We therefore need to sync.
379 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
382 // Lookup-Table to decide if 4 raw bits are a modulation.
383 // We accept three or four "1" in any position
384 const bool Mod_Manchester_LUT
[] = {
385 FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, TRUE
,
386 FALSE
, FALSE
, FALSE
, TRUE
, FALSE
, TRUE
, TRUE
, TRUE
389 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
390 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
393 Demod
.state
= DEMOD_UNSYNCD
;
394 Demod
.len
= 0; // number of decoded data bytes
396 Demod
.shiftReg
= 0; // shiftreg to hold decoded data bits
397 Demod
.parityBits
= 0; //
398 Demod
.collisionPos
= 0; // Position of collision bit
399 Demod
.twoBits
= 0xffff; // buffer for 2 Bits
404 Demod
.syncBit
= 0xFFFF;
408 void DemodInit(uint8_t *data
, uint8_t *parity
) {
410 Demod
.parity
= parity
;
414 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
415 static RAMFUNC
int ManchesterDecoding(uint8_t bit
, uint16_t offset
, uint32_t non_real_time
) {
416 Demod
.twoBits
= (Demod
.twoBits
<< 8) | bit
;
418 if (Demod
.state
== DEMOD_UNSYNCD
) {
420 if (Demod
.highCnt
< 2) { // wait for a stable unmodulated signal
421 if (Demod
.twoBits
== 0x0000) {
427 Demod
.syncBit
= 0xFFFF; // not set
428 if ((Demod
.twoBits
& 0x7700) == 0x7000) Demod
.syncBit
= 7;
429 else if ((Demod
.twoBits
& 0x3B80) == 0x3800) Demod
.syncBit
= 6;
430 else if ((Demod
.twoBits
& 0x1DC0) == 0x1C00) Demod
.syncBit
= 5;
431 else if ((Demod
.twoBits
& 0x0EE0) == 0x0E00) Demod
.syncBit
= 4;
432 else if ((Demod
.twoBits
& 0x0770) == 0x0700) Demod
.syncBit
= 3;
433 else if ((Demod
.twoBits
& 0x03B8) == 0x0380) Demod
.syncBit
= 2;
434 else if ((Demod
.twoBits
& 0x01DC) == 0x01C0) Demod
.syncBit
= 1;
435 else if ((Demod
.twoBits
& 0x00EE) == 0x00E0) Demod
.syncBit
= 0;
436 if (Demod
.syncBit
!= 0xFFFF) {
437 Demod
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
438 Demod
.startTime
-= Demod
.syncBit
;
439 Demod
.bitCount
= offset
; // number of decoded data bits
440 Demod
.state
= DEMOD_MANCHESTER_DATA
;
445 if (IsManchesterModulationNibble1(Demod
.twoBits
>> Demod
.syncBit
)) { // modulation in first half
446 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // ... and in second half = collision
447 if (!Demod
.collisionPos
) {
448 Demod
.collisionPos
= (Demod
.len
<< 3) + Demod
.bitCount
;
450 } // modulation in first half only - Sequence D = 1
452 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) | 0x100; // in both cases, add a 1 to the shiftreg
453 if(Demod
.bitCount
== 9) { // if we decoded a full byte (including parity)
454 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
455 Demod
.parityBits
<<= 1; // make room for the parity bit
456 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
459 if((Demod
.len
&0x0007) == 0) { // every 8 data bytes
460 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits
461 Demod
.parityBits
= 0;
464 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1) - 4;
465 } else { // no modulation in first half
466 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // and modulation in second half = Sequence E = 0
468 Demod
.shiftReg
= (Demod
.shiftReg
>> 1); // add a 0 to the shiftreg
469 if(Demod
.bitCount
>= 9) { // if we decoded a full byte (including parity)
470 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
471 Demod
.parityBits
<<= 1; // make room for the new parity bit
472 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
475 if ((Demod
.len
&0x0007) == 0) { // every 8 data bytes
476 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits1
477 Demod
.parityBits
= 0;
480 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1);
481 } else { // no modulation in both halves - End of communication
482 if(Demod
.bitCount
> 0) { // there are some remaining data bits
483 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align the decoded bits
484 Demod
.output
[Demod
.len
++] = Demod
.shiftReg
& 0xff; // and add them to the output
485 Demod
.parityBits
<<= 1; // add a (void) parity bit
486 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
487 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
489 } else if (Demod
.len
& 0x0007) { // there are some parity bits to store
490 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
491 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
494 return TRUE
; // we are finished with decoding the raw data sequence
495 } else { // nothing received. Start over
501 return FALSE
; // not finished yet, need more data
504 //=============================================================================
505 // Finally, a `sniffer' for ISO 14443 Type A
506 // Both sides of communication!
507 //=============================================================================
509 //-----------------------------------------------------------------------------
510 // Record the sequence of commands sent by the reader to the tag, with
511 // triggering so that we start recording at the point that the tag is moved
514 //-----------------------------------------------------------------------------
515 void RAMFUNC
SniffIso14443a(uint8_t param
) {
517 // bit 0 - trigger from first card answer
518 // bit 1 - trigger from first reader 7-bit request
521 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
523 // Allocate memory from BigBuf for some buffers
524 // free all previous allocations first
525 BigBuf_free(); BigBuf_Clear_ext(false);
529 // The command (reader -> tag) that we're receiving.
530 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
531 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
533 // The response (tag -> reader) that we're receiving.
534 uint8_t *receivedResponse
= BigBuf_malloc(MAX_FRAME_SIZE
);
535 uint8_t *receivedResponsePar
= BigBuf_malloc(MAX_PARITY_SIZE
);
537 // The DMA buffer, used to stream samples from the FPGA
538 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
540 uint8_t *data
= dmaBuf
;
541 uint8_t previous_data
= 0;
544 bool TagIsActive
= FALSE
;
545 bool ReaderIsActive
= FALSE
;
547 // Set up the demodulator for tag -> reader responses.
548 DemodInit(receivedResponse
, receivedResponsePar
);
550 // Set up the demodulator for the reader -> tag commands
551 UartInit(receivedCmd
, receivedCmdPar
);
553 // Setup and start DMA.
554 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf
, DMA_BUFFER_SIZE
) ){
555 if (MF_DBGLEVEL
> 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
559 // We won't start recording the frames that we acquire until we trigger;
560 // a good trigger condition to get started is probably when we see a
561 // response from the tag.
562 // triggered == FALSE -- to wait first for card
563 bool triggered
= !(param
& 0x03);
565 // And now we loop, receiving samples.
566 for(uint32_t rsamples
= 0; TRUE
; ) {
569 DbpString("cancelled by button");
576 int register readBufDataP
= data
- dmaBuf
;
577 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
578 if (readBufDataP
<= dmaBufDataP
){
579 dataLen
= dmaBufDataP
- readBufDataP
;
581 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
;
583 // test for length of buffer
584 if(dataLen
> maxDataLen
) {
585 maxDataLen
= dataLen
;
586 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
587 Dbprintf("blew circular buffer! dataLen=%d", dataLen
);
591 if(dataLen
< 1) continue;
593 // primary buffer was stopped( <-- we lost data!
594 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
595 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
596 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
597 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
599 // secondary buffer sets as primary, secondary buffer was stopped
600 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
601 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
602 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
607 if (rsamples
& 0x01) { // Need two samples to feed Miller and Manchester-Decoder
609 if(!TagIsActive
) { // no need to try decoding reader data if the tag is sending
610 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
611 if (MillerDecoding(readerdata
, (rsamples
-1)*4)) {
614 // check - if there is a short 7bit request from reader
615 if ((!triggered
) && (param
& 0x02) && (Uart
.len
== 1) && (Uart
.bitCount
== 7)) triggered
= TRUE
;
618 if (!LogTrace(receivedCmd
,
620 Uart
.startTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
621 Uart
.endTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
625 /* And ready to receive another command. */
627 /* And also reset the demod code, which might have been */
628 /* false-triggered by the commands from the reader. */
632 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
635 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
636 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
637 if(ManchesterDecoding(tagdata
, 0, (rsamples
-1)*4)) {
640 if (!LogTrace(receivedResponse
,
642 Demod
.startTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
643 Demod
.endTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
647 if ((!triggered
) && (param
& 0x01)) triggered
= TRUE
;
649 // And ready to receive another response.
651 // And reset the Miller decoder including itS (now outdated) input buffer
652 UartInit(receivedCmd
, receivedCmdPar
);
655 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
659 previous_data
= *data
;
662 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
667 if (MF_DBGLEVEL
>= 1) {
668 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen
, Uart
.state
, Uart
.len
);
669 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart
.output
[0]);
672 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
677 //-----------------------------------------------------------------------------
678 // Prepare tag messages
679 //-----------------------------------------------------------------------------
680 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, uint16_t len
, uint8_t *parity
) {
683 // Correction bit, might be removed when not needed
688 ToSendStuffBit(1); // 1
694 ToSend
[++ToSendMax
] = SEC_D
;
695 LastProxToAirDuration
= 8 * ToSendMax
- 4;
697 for(uint16_t i
= 0; i
< len
; i
++) {
701 for(uint16_t j
= 0; j
< 8; j
++) {
703 ToSend
[++ToSendMax
] = SEC_D
;
705 ToSend
[++ToSendMax
] = SEC_E
;
710 // Get the parity bit
711 if (parity
[i
>>3] & (0x80>>(i
&0x0007))) {
712 ToSend
[++ToSendMax
] = SEC_D
;
713 LastProxToAirDuration
= 8 * ToSendMax
- 4;
715 ToSend
[++ToSendMax
] = SEC_E
;
716 LastProxToAirDuration
= 8 * ToSendMax
;
721 ToSend
[++ToSendMax
] = SEC_F
;
723 // Convert from last byte pos to length
727 static void CodeIso14443aAsTag(const uint8_t *cmd
, uint16_t len
) {
728 uint8_t par
[MAX_PARITY_SIZE
] = {0};
729 GetParity(cmd
, len
, par
);
730 CodeIso14443aAsTagPar(cmd
, len
, par
);
733 static void Code4bitAnswerAsTag(uint8_t cmd
) {
738 // Correction bit, might be removed when not needed
743 ToSendStuffBit(1); // 1
749 ToSend
[++ToSendMax
] = SEC_D
;
751 for(uint8_t i
= 0; i
< 4; i
++) {
753 ToSend
[++ToSendMax
] = SEC_D
;
754 LastProxToAirDuration
= 8 * ToSendMax
- 4;
756 ToSend
[++ToSendMax
] = SEC_E
;
757 LastProxToAirDuration
= 8 * ToSendMax
;
763 ToSend
[++ToSendMax
] = SEC_F
;
765 // Convert from last byte pos to length
769 //-----------------------------------------------------------------------------
770 // Wait for commands from reader
771 // Stop when button is pressed
772 // Or return TRUE when command is captured
773 //-----------------------------------------------------------------------------
774 static int GetIso14443aCommandFromReader(uint8_t *received
, uint8_t *parity
, int *len
) {
775 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
776 // only, since we are receiving, not transmitting).
777 // Signal field is off with the appropriate LED
779 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
781 // Now run a `software UART` on the stream of incoming samples.
782 UartInit(received
, parity
);
785 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
790 if(BUTTON_PRESS()) return FALSE
;
792 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
793 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
794 if(MillerDecoding(b
, 0)) {
802 bool prepare_tag_modulation(tag_response_info_t
* response_info
, size_t max_buffer_size
) {
803 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
804 // This will need the following byte array for a modulation sequence
805 // 144 data bits (18 * 8)
808 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
809 // 1 just for the case
811 // 166 bytes, since every bit that needs to be send costs us a byte
813 // Prepare the tag modulation bits from the message
814 CodeIso14443aAsTag(response_info
->response
,response_info
->response_n
);
816 // Make sure we do not exceed the free buffer space
817 if (ToSendMax
> max_buffer_size
) {
818 Dbprintf("Out of memory, when modulating bits for tag answer:");
819 Dbhexdump(response_info
->response_n
,response_info
->response
,false);
823 // Copy the byte array, used for this modulation to the buffer position
824 memcpy(response_info
->modulation
,ToSend
,ToSendMax
);
826 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
827 response_info
->modulation_n
= ToSendMax
;
828 response_info
->ProxToAirDuration
= LastProxToAirDuration
;
832 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
833 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
834 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
835 // -> need 273 bytes buffer
836 // 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits --370
837 // 47 * 8 data bits, 47 * 1 parity bits, 10 start bits, 10 stop bits, 10 correction bits
838 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453
840 bool prepare_allocated_tag_modulation(tag_response_info_t
* response_info
) {
841 // Retrieve and store the current buffer index
842 response_info
->modulation
= free_buffer_pointer
;
844 // Determine the maximum size we can use from our buffer
845 size_t max_buffer_size
= ALLOCATED_TAG_MODULATION_BUFFER_SIZE
;
847 // Forward the prepare tag modulation function to the inner function
848 if (prepare_tag_modulation(response_info
, max_buffer_size
)) {
849 // Update the free buffer offset
850 free_buffer_pointer
+= ToSendMax
;
857 //-----------------------------------------------------------------------------
858 // Main loop of simulated tag: receive commands from reader, decide what
859 // response to send, and send it.
860 //-----------------------------------------------------------------------------
861 void SimulateIso14443aTag(int tagType
, int flags
, byte_t
* data
) {
863 //Here, we collect CUID, NT, NR, AR, CUID, NT2, NR2, AR2
864 // This can be used in a reader-only attack.
865 uint32_t ar_nr_responses
[] = {0,0,0,0,0,0,0,0,0,0};
866 uint8_t ar_nr_collected
= 0;
871 // PACK response to PWD AUTH for EV1/NTAG
872 uint8_t response8
[4] = {0,0,0,0};
873 // Counter for EV1/NTAG
874 uint32_t counters
[] = {0,0,0};
876 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
877 uint8_t response1
[] = {0,0};
880 case 1: { // MIFARE Classic 1k
884 case 2: { // MIFARE Ultralight
888 case 3: { // MIFARE DESFire
893 case 4: { // ISO/IEC 14443-4 - javacard (JCOP)
897 case 5: { // MIFARE TNP3XXX
902 case 6: { // MIFARE Mini 320b
912 ComputeCrc14443(CRC_14443_A
, response8
, 2, &response8
[2], &response8
[3]);
913 // uid not supplied then get from emulator memory
915 uint16_t start
= 4 * (0+12);
917 emlGetMemBt( emdata
, start
, sizeof(emdata
));
918 memcpy(data
, emdata
, 3); //uid bytes 0-2
919 memcpy(data
+3, emdata
+4, 4); //uid bytes 3-7
920 flags
|= FLAG_7B_UID_IN_DATA
;
924 Dbprintf("Error: unkown tagtype (%d)",tagType
);
929 // The second response contains the (mandatory) first 24 bits of the UID
930 uint8_t response2
[5] = {0x00};
933 uint8_t response2a
[5] = {0x00};
935 if ( (flags
& FLAG_7B_UID_IN_DATA
) == FLAG_7B_UID_IN_DATA
) {
936 response2
[0] = 0x88; // Cascade Tag marker
937 response2
[1] = data
[0];
938 response2
[2] = data
[1];
939 response2
[3] = data
[2];
941 response2a
[0] = data
[3];
942 response2a
[1] = data
[4];
943 response2a
[2] = data
[5];
944 response2a
[3] = data
[6]; //??
945 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
947 // Configure the ATQA and SAK accordingly
948 response1
[0] |= 0x40;
951 cuid
= bytes_to_num(data
+3, 4);
953 memcpy(response2
, data
, 4);
954 // Configure the ATQA and SAK accordingly
955 response1
[0] &= 0xBF;
957 cuid
= bytes_to_num(data
, 4);
960 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
961 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
963 // Prepare the mandatory SAK (for 4 and 7 byte UID)
964 uint8_t response3
[3] = {sak
, 0x00, 0x00};
965 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
967 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
968 uint8_t response3a
[3] = {0x00};
969 response3a
[0] = sak
& 0xFB;
970 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
972 uint8_t response5
[] = { 0x01, 0x01, 0x01, 0x01 }; // Very random tag nonce
973 uint8_t response6
[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
974 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
975 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
976 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
977 // TC(1) = 0x02: CID supported, NAD not supported
978 ComputeCrc14443(CRC_14443_A
, response6
, 4, &response6
[4], &response6
[5]);
981 nonce
= bytes_to_num(response5
, 4);
983 // Prepare GET_VERSION (different for UL EV-1 / NTAG)
984 //uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
985 //uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
986 // Prepare CHK_TEARING
987 //uint8_t response9[] = {0xBD,0x90,0x3f};
989 #define TAG_RESPONSE_COUNT 10
990 tag_response_info_t responses
[TAG_RESPONSE_COUNT
] = {
991 { .response
= response1
, .response_n
= sizeof(response1
) }, // Answer to request - respond with card type
992 { .response
= response2
, .response_n
= sizeof(response2
) }, // Anticollision cascade1 - respond with uid
993 { .response
= response2a
, .response_n
= sizeof(response2a
) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
994 { .response
= response3
, .response_n
= sizeof(response3
) }, // Acknowledge select - cascade 1
995 { .response
= response3a
, .response_n
= sizeof(response3a
) }, // Acknowledge select - cascade 2
996 { .response
= response5
, .response_n
= sizeof(response5
) }, // Authentication answer (random nonce)
997 { .response
= response6
, .response_n
= sizeof(response6
) }, // dummy ATS (pseudo-ATR), answer to RATS
999 { .response
= response8
, .response_n
= sizeof(response8
) } // EV1/NTAG PACK response
1001 //{ .response = response7_NTAG, .response_n = sizeof(response7_NTAG)}, // EV1/NTAG GET_VERSION response
1002 //{ .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response
1005 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1006 // Such a response is less time critical, so we can prepare them on the fly
1007 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1008 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1009 uint8_t dynamic_response_buffer
[DYNAMIC_RESPONSE_BUFFER_SIZE
];
1010 uint8_t dynamic_modulation_buffer
[DYNAMIC_MODULATION_BUFFER_SIZE
];
1011 tag_response_info_t dynamic_response_info
= {
1012 .response
= dynamic_response_buffer
,
1014 .modulation
= dynamic_modulation_buffer
,
1018 // We need to listen to the high-frequency, peak-detected path.
1019 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1021 BigBuf_free_keep_EM();
1025 // allocate buffers:
1026 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
1027 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
1028 free_buffer_pointer
= BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE
);
1030 // Prepare the responses of the anticollision phase
1031 // there will be not enough time to do this at the moment the reader sends it REQA
1032 for (size_t i
=0; i
<TAG_RESPONSE_COUNT
; i
++)
1033 prepare_allocated_tag_modulation(&responses
[i
]);
1037 // To control where we are in the protocol
1041 // Just to allow some checks
1045 tag_response_info_t
* p_response
;
1051 // Clean receive command buffer
1052 if(!GetIso14443aCommandFromReader(receivedCmd
, receivedCmdPar
, &len
)) {
1053 DbpString("Button press");
1057 // incease nonce at every command recieved
1059 num_to_bytes(nonce
, 4, response5
);
1063 // Okay, look at the command now.
1065 if(receivedCmd
[0] == ISO14443A_CMD_REQA
) { // Received a REQUEST
1066 p_response
= &responses
[0]; order
= 1;
1067 } else if(receivedCmd
[0] == ISO14443A_CMD_WUPA
) { // Received a WAKEUP
1068 p_response
= &responses
[0]; order
= 6;
1069 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT
) { // Received request for UID (cascade 1)
1070 p_response
= &responses
[1]; order
= 2;
1071 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2
) { // Received request for UID (cascade 2)
1072 p_response
= &responses
[2]; order
= 20;
1073 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT
) { // Received a SELECT (cascade 1)
1074 p_response
= &responses
[3]; order
= 3;
1075 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2
) { // Received a SELECT (cascade 2)
1076 p_response
= &responses
[4]; order
= 30;
1077 } else if(receivedCmd
[0] == ISO14443A_CMD_READBLOCK
) { // Received a (plain) READ
1078 uint8_t block
= receivedCmd
[1];
1079 // if Ultralight or NTAG (4 byte blocks)
1080 if ( tagType
== 7 || tagType
== 2 ) {
1081 //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
1082 uint16_t start
= 4 * (block
+12);
1083 uint8_t emdata
[MAX_MIFARE_FRAME_SIZE
];
1084 emlGetMemBt( emdata
, start
, 16);
1085 AppendCrc14443a(emdata
, 16);
1086 EmSendCmdEx(emdata
, sizeof(emdata
), false);
1087 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1089 } else { // all other tags (16 byte block tags)
1090 EmSendCmdEx(data
+(4*receivedCmd
[1]),16,false);
1091 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1092 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1095 } else if(receivedCmd
[0] == MIFARE_ULEV1_FASTREAD
) { // Received a FAST READ (ranged read)
1096 uint8_t emdata
[MAX_FRAME_SIZE
];
1097 //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
1098 int start
= (receivedCmd
[1]+12) * 4;
1099 int len
= (receivedCmd
[2] - receivedCmd
[1] + 1) * 4;
1100 emlGetMemBt( emdata
, start
, len
);
1101 AppendCrc14443a(emdata
, len
);
1102 EmSendCmdEx(emdata
, len
+2, false);
1104 } else if(receivedCmd
[0] == MIFARE_ULEV1_READSIG
&& tagType
== 7) { // Received a READ SIGNATURE --
1105 //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
1106 uint16_t start
= 4 * 4;
1108 emlGetMemBt( emdata
, start
, 32);
1109 AppendCrc14443a(emdata
, 32);
1110 EmSendCmdEx(emdata
, sizeof(emdata
), false);
1112 } else if (receivedCmd
[0] == MIFARE_ULEV1_READ_CNT
&& tagType
== 7) { // Received a READ COUNTER --
1113 uint8_t index
= receivedCmd
[1];
1114 uint8_t data
[] = {0x00,0x00,0x00,0x14,0xa5};
1115 if ( counters
[index
] > 0) {
1116 num_to_bytes(counters
[index
], 3, data
);
1117 AppendCrc14443a(data
, sizeof(data
)-2);
1119 EmSendCmdEx(data
,sizeof(data
),false);
1121 } else if (receivedCmd
[0] == MIFARE_ULEV1_INCR_CNT
&& tagType
== 7) { // Received a INC COUNTER --
1122 // number of counter
1123 uint8_t counter
= receivedCmd
[1];
1124 uint32_t val
= bytes_to_num(receivedCmd
+2,4);
1125 counters
[counter
] = val
;
1128 uint8_t ack
[] = {0x0a};
1129 EmSendCmdEx(ack
,sizeof(ack
),false);
1131 } else if(receivedCmd
[0] == MIFARE_ULEV1_CHECKTEAR
&& tagType
== 7) { // Received a CHECK_TEARING_EVENT --
1132 //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature]
1135 if (receivedCmd
[1]<3) counter
= receivedCmd
[1];
1136 emlGetMemBt( emdata
, 10+counter
, 1);
1137 AppendCrc14443a(emdata
, sizeof(emdata
)-2);
1138 EmSendCmdEx(emdata
, sizeof(emdata
), false);
1140 } else if(receivedCmd
[0] == ISO14443A_CMD_HALT
) { // Received a HALT
1141 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1143 } else if(receivedCmd
[0] == MIFARE_AUTH_KEYA
|| receivedCmd
[0] == MIFARE_AUTH_KEYB
) { // Received an authentication request
1144 if ( tagType
== 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request.
1146 emlGetMemBt( emdata
, 0, 8 );
1147 AppendCrc14443a(emdata
, sizeof(emdata
)-2);
1148 EmSendCmdEx(emdata
, sizeof(emdata
), false);
1151 p_response
= &responses
[5]; order
= 7;
1153 } else if(receivedCmd
[0] == ISO14443A_CMD_RATS
) { // Received a RATS request
1154 if (tagType
== 1 || tagType
== 2) { // RATS not supported
1155 EmSend4bit(CARD_NACK_NA
);
1158 p_response
= &responses
[6]; order
= 70;
1160 } else if (order
== 7 && len
== 8) { // Received {nr] and {ar} (part of authentication)
1161 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1162 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1163 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1165 if ( (flags
& FLAG_NR_AR_ATTACK
) == FLAG_NR_AR_ATTACK
) {
1166 if(ar_nr_collected
< 2){
1167 ar_nr_responses
[ar_nr_collected
*4] = cuid
;
1168 ar_nr_responses
[ar_nr_collected
*4+1] = nonce
;
1169 ar_nr_responses
[ar_nr_collected
*4+2] = nr
;
1170 ar_nr_responses
[ar_nr_collected
*4+3] = ar
;
1173 if(ar_nr_collected
> 1 ) {
1174 if (MF_DBGLEVEL
>= 2 && !(flags
& FLAG_INTERACTIVE
)) {
1175 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
1176 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
1177 ar_nr_responses
[0], // CUID
1178 ar_nr_responses
[1], // NT
1179 ar_nr_responses
[2], // AR1
1180 ar_nr_responses
[3], // NR1
1181 ar_nr_responses
[6], // AR2
1182 ar_nr_responses
[7] // NR2
1185 uint8_t len
= ar_nr_collected
*4*4;
1186 cmd_send(CMD_ACK
, CMD_SIMULATE_MIFARE_CARD
, len
, 0, &ar_nr_responses
, len
);
1187 ar_nr_collected
= 0;
1188 memset(ar_nr_responses
, 0x00, len
);
1192 } else if (receivedCmd
[0] == MIFARE_ULC_AUTH_1
) { // ULC authentication, or Desfire Authentication
1193 } else if (receivedCmd
[0] == MIFARE_ULEV1_AUTH
) { // NTAG / EV-1 authentication
1194 if ( tagType
== 7 ) {
1195 uint16_t start
= 13; //first 4 blocks of emu are [getversion answer - check tearing - pack - 0x00]
1197 emlGetMemBt( emdata
, start
, 2);
1198 AppendCrc14443a(emdata
, 2);
1199 EmSendCmdEx(emdata
, sizeof(emdata
), false);
1201 uint32_t pwd
= bytes_to_num(receivedCmd
+1,4);
1203 if ( MF_DBGLEVEL
>= 3) Dbprintf("Auth attempt: %08x", pwd
);
1206 // Check for ISO 14443A-4 compliant commands, look at left nibble
1207 switch (receivedCmd
[0]) {
1209 case 0x03: { // IBlock (command no CID)
1210 dynamic_response_info
.response
[0] = receivedCmd
[0];
1211 dynamic_response_info
.response
[1] = 0x90;
1212 dynamic_response_info
.response
[2] = 0x00;
1213 dynamic_response_info
.response_n
= 3;
1216 case 0x0A: { // IBlock (command CID)
1217 dynamic_response_info
.response
[0] = receivedCmd
[0];
1218 dynamic_response_info
.response
[1] = 0x00;
1219 dynamic_response_info
.response
[2] = 0x90;
1220 dynamic_response_info
.response
[3] = 0x00;
1221 dynamic_response_info
.response_n
= 4;
1225 case 0x1B: { // Chaining command
1226 dynamic_response_info
.response
[0] = 0xaa | ((receivedCmd
[0]) & 1);
1227 dynamic_response_info
.response_n
= 2;
1232 dynamic_response_info
.response
[0] = receivedCmd
[0] ^ 0x11;
1233 dynamic_response_info
.response_n
= 2;
1236 case 0xBA: { // ping / pong
1237 dynamic_response_info
.response
[0] = 0xAB;
1238 dynamic_response_info
.response
[1] = 0x00;
1239 dynamic_response_info
.response_n
= 2;
1243 case 0xC2: { // Readers sends deselect command
1244 dynamic_response_info
.response
[0] = 0xCA;
1245 dynamic_response_info
.response
[1] = 0x00;
1246 dynamic_response_info
.response_n
= 2;
1250 // Never seen this command before
1251 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1252 Dbprintf("Received unknown command (len=%d):",len
);
1253 Dbhexdump(len
,receivedCmd
,false);
1255 dynamic_response_info
.response_n
= 0;
1259 if (dynamic_response_info
.response_n
> 0) {
1260 // Copy the CID from the reader query
1261 dynamic_response_info
.response
[1] = receivedCmd
[1];
1263 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1264 AppendCrc14443a(dynamic_response_info
.response
,dynamic_response_info
.response_n
);
1265 dynamic_response_info
.response_n
+= 2;
1267 if (prepare_tag_modulation(&dynamic_response_info
,DYNAMIC_MODULATION_BUFFER_SIZE
) == false) {
1268 Dbprintf("Error preparing tag response");
1269 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1272 p_response
= &dynamic_response_info
;
1276 // Count number of wakeups received after a halt
1277 if(order
== 6 && lastorder
== 5) { happened
++; }
1279 // Count number of other messages after a halt
1280 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1282 // comment this limit if you want to simulation longer
1284 Dbprintf("Trace Full. Simulation stopped.");
1287 // comment this limit if you want to simulation longer
1288 if(cmdsRecvd
> 999) {
1289 DbpString("1000 commands later...");
1294 if (p_response
!= NULL
) {
1295 EmSendCmd14443aRaw(p_response
->modulation
, p_response
->modulation_n
, receivedCmd
[0] == 0x52);
1296 // do the tracing for the previous reader request and this tag answer:
1297 uint8_t par
[MAX_PARITY_SIZE
] = {0x00};
1298 GetParity(p_response
->response
, p_response
->response_n
, par
);
1300 EmLogTrace(Uart
.output
,
1302 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1303 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1305 p_response
->response
,
1306 p_response
->response_n
,
1307 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1308 (LastTimeProxToAirStart
+ p_response
->ProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1313 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1315 BigBuf_free_keep_EM();
1318 if (MF_DBGLEVEL
>= 4){
1319 Dbprintf("-[ Wake ups after halt [%d]", happened
);
1320 Dbprintf("-[ Messages after halt [%d]", happened2
);
1321 Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd
);
1325 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1326 // of bits specified in the delay parameter.
1327 void PrepareDelayedTransfer(uint16_t delay
) {
1331 uint8_t bitmask
= 0;
1332 uint8_t bits_to_shift
= 0;
1333 uint8_t bits_shifted
= 0;
1336 for (i
= 0; i
< delay
; ++i
)
1337 bitmask
|= (0x01 << i
);
1339 ToSend
[++ToSendMax
] = 0x00;
1341 for (i
= 0; i
< ToSendMax
; ++i
) {
1342 bits_to_shift
= ToSend
[i
] & bitmask
;
1343 ToSend
[i
] = ToSend
[i
] >> delay
;
1344 ToSend
[i
] = ToSend
[i
] | (bits_shifted
<< (8 - delay
));
1345 bits_shifted
= bits_to_shift
;
1350 //-------------------------------------------------------------------------------------
1351 // Transmit the command (to the tag) that was placed in ToSend[].
1352 // Parameter timing:
1353 // if NULL: transfer at next possible time, taking into account
1354 // request guard time and frame delay time
1355 // if == 0: transfer immediately and return time of transfer
1356 // if != 0: delay transfer until time specified
1357 //-------------------------------------------------------------------------------------
1358 static void TransmitFor14443a(const uint8_t *cmd
, uint16_t len
, uint32_t *timing
) {
1359 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1361 uint32_t ThisTransferTime
= 0;
1364 if(*timing
== 0) { // Measure time
1365 *timing
= (GetCountSspClk() + 8) & 0xfffffff8;
1367 PrepareDelayedTransfer(*timing
& 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1369 if(MF_DBGLEVEL
>= 4 && GetCountSspClk() >= (*timing
& 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1370 while(GetCountSspClk() < (*timing
& 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1371 LastTimeProxToAirStart
= *timing
;
1373 ThisTransferTime
= ((MAX(NextTransferTime
, GetCountSspClk()) & 0xfffffff8) + 8);
1375 while(GetCountSspClk() < ThisTransferTime
);
1377 LastTimeProxToAirStart
= ThisTransferTime
;
1381 AT91C_BASE_SSC
->SSC_THR
= SEC_Y
;
1385 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1386 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1393 NextTransferTime
= MAX(NextTransferTime
, LastTimeProxToAirStart
+ REQUEST_GUARD_TIME
);
1396 //-----------------------------------------------------------------------------
1397 // Prepare reader command (in bits, support short frames) to send to FPGA
1398 //-----------------------------------------------------------------------------
1399 void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd
, uint16_t bits
, const uint8_t *parity
)
1407 // Start of Communication (Seq. Z)
1408 ToSend
[++ToSendMax
] = SEC_Z
;
1409 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1411 size_t bytecount
= nbytes(bits
);
1412 // Generate send structure for the data bits
1413 for (i
= 0; i
< bytecount
; i
++) {
1414 // Get the current byte to send
1416 size_t bitsleft
= MIN((bits
-(i
*8)),8);
1418 for (j
= 0; j
< bitsleft
; j
++) {
1421 ToSend
[++ToSendMax
] = SEC_X
;
1422 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1427 ToSend
[++ToSendMax
] = SEC_Z
;
1428 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1431 ToSend
[++ToSendMax
] = SEC_Y
;
1438 // Only transmit parity bit if we transmitted a complete byte
1439 if (j
== 8 && parity
!= NULL
) {
1440 // Get the parity bit
1441 if (parity
[i
>>3] & (0x80 >> (i
&0x0007))) {
1443 ToSend
[++ToSendMax
] = SEC_X
;
1444 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1449 ToSend
[++ToSendMax
] = SEC_Z
;
1450 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1453 ToSend
[++ToSendMax
] = SEC_Y
;
1460 // End of Communication: Logic 0 followed by Sequence Y
1463 ToSend
[++ToSendMax
] = SEC_Z
;
1464 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1467 ToSend
[++ToSendMax
] = SEC_Y
;
1470 ToSend
[++ToSendMax
] = SEC_Y
;
1472 // Convert to length of command:
1476 //-----------------------------------------------------------------------------
1477 // Prepare reader command to send to FPGA
1478 //-----------------------------------------------------------------------------
1479 void CodeIso14443aAsReaderPar(const uint8_t *cmd
, uint16_t len
, const uint8_t *parity
) {
1480 CodeIso14443aBitsAsReaderPar(cmd
, len
*8, parity
);
1483 //-----------------------------------------------------------------------------
1484 // Wait for commands from reader
1485 // Stop when button is pressed (return 1) or field was gone (return 2)
1486 // Or return 0 when command is captured
1487 //-----------------------------------------------------------------------------
1488 static int EmGetCmd(uint8_t *received
, uint16_t *len
, uint8_t *parity
) {
1491 uint32_t timer
= 0, vtime
= 0;
1495 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1496 // only, since we are receiving, not transmitting).
1497 // Signal field is off with the appropriate LED
1499 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1501 // Set ADC to read field strength
1502 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1503 AT91C_BASE_ADC
->ADC_MR
=
1504 ADC_MODE_PRESCALE(63) |
1505 ADC_MODE_STARTUP_TIME(1) |
1506 ADC_MODE_SAMPLE_HOLD_TIME(15);
1507 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1509 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1511 // Now run a 'software UART' on the stream of incoming samples.
1512 UartInit(received
, parity
);
1515 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1520 if (BUTTON_PRESS()) return 1;
1522 // test if the field exists
1523 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1525 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1526 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1527 if (analogCnt
>= 32) {
1528 if ((MAX_ADC_HF_VOLTAGE
* (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1529 vtime
= GetTickCount();
1530 if (!timer
) timer
= vtime
;
1531 // 50ms no field --> card to idle state
1532 if (vtime
- timer
> 50) return 2;
1534 if (timer
) timer
= 0;
1540 // receive and test the miller decoding
1541 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1542 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1543 if(MillerDecoding(b
, 0)) {
1551 int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
) {
1554 uint32_t ThisTransferTime
;
1556 // Modulate Manchester
1557 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1559 // include correction bit if necessary
1560 if (Uart
.parityBits
& 0x01) {
1561 correctionNeeded
= TRUE
;
1563 // 1236, so correction bit needed
1564 i
= (correctionNeeded
) ? 0 : 1;
1566 // clear receiving shift register and holding register
1567 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1568 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1569 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1570 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1572 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1573 for (uint16_t j
= 0; j
< 5; j
++) { // allow timeout - better late than never
1574 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1575 if (AT91C_BASE_SSC
->SSC_RHR
) break;
1578 while ((ThisTransferTime
= GetCountSspClk()) & 0x00000007);
1581 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1584 for(; i
< respLen
; ) {
1585 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1586 AT91C_BASE_SSC
->SSC_THR
= resp
[i
++];
1587 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1590 if(BUTTON_PRESS()) break;
1593 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1594 uint8_t fpga_queued_bits
= FpgaSendQueueDelay
>> 3; // twich /8 ?? >>3,
1595 for (i
= 0; i
<= fpga_queued_bits
/8 + 1; ) {
1596 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1597 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1598 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1602 LastTimeProxToAirStart
= ThisTransferTime
+ (correctionNeeded
?8:0);
1606 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
){
1607 Code4bitAnswerAsTag(resp
);
1608 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1609 // do the tracing for the previous reader request and this tag answer:
1610 uint8_t par
[1] = {0x00};
1611 GetParity(&resp
, 1, par
);
1612 EmLogTrace(Uart
.output
,
1614 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1615 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1619 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1620 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1625 int EmSend4bit(uint8_t resp
){
1626 return EmSend4bitEx(resp
, false);
1629 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
){
1630 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1631 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1632 // do the tracing for the previous reader request and this tag answer:
1633 EmLogTrace(Uart
.output
,
1635 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1636 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1640 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1641 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1646 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
){
1647 uint8_t par
[MAX_PARITY_SIZE
] = {0x00};
1648 GetParity(resp
, respLen
, par
);
1649 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, par
);
1652 int EmSendCmd(uint8_t *resp
, uint16_t respLen
){
1653 uint8_t par
[MAX_PARITY_SIZE
] = {0x00};
1654 GetParity(resp
, respLen
, par
);
1655 return EmSendCmdExPar(resp
, respLen
, false, par
);
1658 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
){
1659 return EmSendCmdExPar(resp
, respLen
, false, par
);
1662 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
1663 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
)
1665 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1666 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1667 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1668 uint16_t reader_modlen
= reader_EndTime
- reader_StartTime
;
1669 uint16_t approx_fdt
= tag_StartTime
- reader_EndTime
;
1670 uint16_t exact_fdt
= (approx_fdt
- 20 + 32)/64 * 64 + 20;
1671 reader_EndTime
= tag_StartTime
- exact_fdt
;
1672 reader_StartTime
= reader_EndTime
- reader_modlen
;
1674 if (!LogTrace(reader_data
, reader_len
, reader_StartTime
, reader_EndTime
, reader_Parity
, TRUE
))
1677 return(!LogTrace(tag_data
, tag_len
, tag_StartTime
, tag_EndTime
, tag_Parity
, FALSE
));
1681 //-----------------------------------------------------------------------------
1682 // Wait a certain time for tag response
1683 // If a response is captured return TRUE
1684 // If it takes too long return FALSE
1685 //-----------------------------------------------------------------------------
1686 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, uint8_t *receivedResponsePar
, uint16_t offset
) {
1689 // Set FPGA mode to "reader listen mode", no modulation (listen
1690 // only, since we are receiving, not transmitting).
1691 // Signal field is on with the appropriate LED
1693 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1695 // Now get the answer from the card
1696 DemodInit(receivedResponse
, receivedResponsePar
);
1699 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1704 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1705 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1706 if(ManchesterDecoding(b
, offset
, 0)) {
1707 NextTransferTime
= MAX(NextTransferTime
, Demod
.endTime
- (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/16 + FRAME_DELAY_TIME_PICC_TO_PCD
);
1709 } else if (c
++ > iso14a_timeout
&& Demod
.state
== DEMOD_UNSYNCD
) {
1716 void ReaderTransmitBitsPar(uint8_t* frame
, uint16_t bits
, uint8_t *par
, uint32_t *timing
) {
1718 CodeIso14443aBitsAsReaderPar(frame
, bits
, par
);
1719 // Send command to tag
1720 TransmitFor14443a(ToSend
, ToSendMax
, timing
);
1721 if(trigger
) LED_A_ON();
1723 LogTrace(frame
, nbytes(bits
), (LastTimeProxToAirStart
<<4) + DELAY_ARM2AIR_AS_READER
, ((LastTimeProxToAirStart
+ LastProxToAirDuration
)<<4) + DELAY_ARM2AIR_AS_READER
, par
, TRUE
);
1726 void ReaderTransmitPar(uint8_t* frame
, uint16_t len
, uint8_t *par
, uint32_t *timing
) {
1727 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1730 void ReaderTransmitBits(uint8_t* frame
, uint16_t len
, uint32_t *timing
) {
1731 // Generate parity and redirect
1732 uint8_t par
[MAX_PARITY_SIZE
] = {0x00};
1733 GetParity(frame
, len
/8, par
);
1734 ReaderTransmitBitsPar(frame
, len
, par
, timing
);
1737 void ReaderTransmit(uint8_t* frame
, uint16_t len
, uint32_t *timing
) {
1738 // Generate parity and redirect
1739 uint8_t par
[MAX_PARITY_SIZE
] = {0x00};
1740 GetParity(frame
, len
, par
);
1741 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1744 int ReaderReceiveOffset(uint8_t* receivedAnswer
, uint16_t offset
, uint8_t *parity
) {
1745 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, offset
))
1747 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1751 int ReaderReceive(uint8_t *receivedAnswer
, uint8_t *parity
) {
1752 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, 0))
1754 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1758 // performs iso14443a anticollision (optional) and card select procedure
1759 // fills the uid and cuid pointer unless NULL
1760 // fills the card info record unless NULL
1761 // if anticollision is false, then the UID must be provided in uid_ptr[]
1762 // and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
1763 int iso14443a_select_card(byte_t
*uid_ptr
, iso14a_card_select_t
*p_hi14a_card
, uint32_t *cuid_ptr
, bool anticollision
, uint8_t num_cascades
) {
1764 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1765 uint8_t sel_all
[] = { 0x93,0x20 };
1766 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1767 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1768 uint8_t resp
[MAX_FRAME_SIZE
] = {0}; // theoretically. A usual RATS will be much smaller
1769 uint8_t resp_par
[MAX_PARITY_SIZE
] = {0};
1770 byte_t uid_resp
[4] = {0};
1771 size_t uid_resp_len
= 0;
1773 uint8_t sak
= 0x04; // cascade uid
1774 int cascade_level
= 0;
1777 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1778 ReaderTransmitBitsPar(wupa
, 7, NULL
, NULL
);
1781 if(!ReaderReceive(resp
, resp_par
)) return 0;
1784 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1785 p_hi14a_card
->uidlen
= 0;
1786 memset(p_hi14a_card
->uid
,0,10);
1789 if (anticollision
) {
1792 memset(uid_ptr
,0,10);
1795 // check for proprietary anticollision:
1796 if ((resp
[0] & 0x1F) == 0) return 3;
1798 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1799 // which case we need to make a cascade 2 request and select - this is a long UID
1800 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1801 for(; sak
& 0x04; cascade_level
++) {
1802 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1803 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1805 if (anticollision
) {
1807 ReaderTransmit(sel_all
, sizeof(sel_all
), NULL
);
1808 if (!ReaderReceive(resp
, resp_par
)) return 0;
1810 if (Demod
.collisionPos
) { // we had a collision and need to construct the UID bit by bit
1811 memset(uid_resp
, 0, 4);
1812 uint16_t uid_resp_bits
= 0;
1813 uint16_t collision_answer_offset
= 0;
1814 // anti-collision-loop:
1815 while (Demod
.collisionPos
) {
1816 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod
.collisionPos
);
1817 for (uint16_t i
= collision_answer_offset
; i
< Demod
.collisionPos
; i
++, uid_resp_bits
++) { // add valid UID bits before collision point
1818 uint16_t UIDbit
= (resp
[i
/8] >> (i
% 8)) & 0x01;
1819 uid_resp
[uid_resp_bits
/ 8] |= UIDbit
<< (uid_resp_bits
% 8);
1821 uid_resp
[uid_resp_bits
/8] |= 1 << (uid_resp_bits
% 8); // next time select the card(s) with a 1 in the collision position
1823 // construct anticollosion command:
1824 sel_uid
[1] = ((2 + uid_resp_bits
/8) << 4) | (uid_resp_bits
& 0x07); // length of data in bytes and bits
1825 for (uint16_t i
= 0; i
<= uid_resp_bits
/8; i
++) {
1826 sel_uid
[2+i
] = uid_resp
[i
];
1828 collision_answer_offset
= uid_resp_bits
%8;
1829 ReaderTransmitBits(sel_uid
, 16 + uid_resp_bits
, NULL
);
1830 if (!ReaderReceiveOffset(resp
, collision_answer_offset
, resp_par
)) return 0;
1832 // finally, add the last bits and BCC of the UID
1833 for (uint16_t i
= collision_answer_offset
; i
< (Demod
.len
-1)*8; i
++, uid_resp_bits
++) {
1834 uint16_t UIDbit
= (resp
[i
/8] >> (i
%8)) & 0x01;
1835 uid_resp
[uid_resp_bits
/8] |= UIDbit
<< (uid_resp_bits
% 8);
1838 } else { // no collision, use the response to SELECT_ALL as current uid
1839 memcpy(uid_resp
, resp
, 4);
1843 if (cascade_level
< num_cascades
- 1) {
1845 memcpy(uid_resp
+1, uid_ptr
+cascade_level
*3, 3);
1847 memcpy(uid_resp
, uid_ptr
+cascade_level
*3, 4);
1852 // calculate crypto UID. Always use last 4 Bytes.
1854 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1856 // Construct SELECT UID command
1857 sel_uid
[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1858 memcpy(sel_uid
+2, uid_resp
, 4); // the UID received during anticollision, or the provided UID
1859 sel_uid
[6] = sel_uid
[2] ^ sel_uid
[3] ^ sel_uid
[4] ^ sel_uid
[5]; // calculate and add BCC
1860 AppendCrc14443a(sel_uid
, 7); // calculate and add CRC
1861 ReaderTransmit(sel_uid
, sizeof(sel_uid
), NULL
);
1864 if (!ReaderReceive(resp
, resp_par
)) return 0;
1868 // Test if more parts of the uid are coming
1869 if ((sak
& 0x04) /* && uid_resp[0] == 0x88 */) {
1870 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1871 // http://www.nxp.com/documents/application_note/AN10927.pdf
1872 uid_resp
[0] = uid_resp
[1];
1873 uid_resp
[1] = uid_resp
[2];
1874 uid_resp
[2] = uid_resp
[3];
1878 if(uid_ptr
&& anticollision
)
1879 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1882 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1883 p_hi14a_card
->uidlen
+= uid_resp_len
;
1888 p_hi14a_card
->sak
= sak
;
1889 p_hi14a_card
->ats_len
= 0;
1892 // non iso14443a compliant tag
1893 if( (sak
& 0x20) == 0) return 2;
1895 // Request for answer to select
1896 AppendCrc14443a(rats
, 2);
1897 ReaderTransmit(rats
, sizeof(rats
), NULL
);
1899 if (!(len
= ReaderReceive(resp
, resp_par
))) return 0;
1902 memcpy(p_hi14a_card
->ats
, resp
, sizeof(p_hi14a_card
->ats
));
1903 p_hi14a_card
->ats_len
= len
;
1906 // reset the PCB block number
1907 iso14_pcb_blocknum
= 0;
1909 // set default timeout based on ATS
1910 iso14a_set_ATS_timeout(resp
);
1915 void iso14443a_setup(uint8_t fpga_minor_mode
) {
1916 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1917 // Set up the synchronous serial port
1919 // connect Demodulated Signal to ADC:
1920 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1922 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| fpga_minor_mode
);
1925 // Signal field is on with the appropriate LED
1926 if (fpga_minor_mode
== FPGA_HF_ISO14443A_READER_MOD
||
1927 fpga_minor_mode
== FPGA_HF_ISO14443A_READER_LISTEN
)
1930 // Prepare the demodulation functions
1934 iso14a_set_timeout(10*106); // 10ms default
1936 //NextTransferTime = 2 * DELAY_ARM2AIR_AS_READER;
1937 NextTransferTime
= DELAY_ARM2AIR_AS_READER
<< 1;
1943 int iso14_apdu(uint8_t *cmd
, uint16_t cmd_len
, void *data
) {
1944 uint8_t parity
[MAX_PARITY_SIZE
] = {0x00};
1945 uint8_t real_cmd
[cmd_len
+4];
1946 real_cmd
[0] = 0x0a; //I-Block
1947 // put block number into the PCB
1948 real_cmd
[0] |= iso14_pcb_blocknum
;
1949 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1950 memcpy(real_cmd
+2, cmd
, cmd_len
);
1951 AppendCrc14443a(real_cmd
,cmd_len
+2);
1953 ReaderTransmit(real_cmd
, cmd_len
+4, NULL
);
1954 size_t len
= ReaderReceive(data
, parity
);
1958 uint8_t *data_bytes
= (uint8_t *) data
;
1960 // if we received an I- or R(ACK)-Block with a block number equal to the
1961 // current block number, toggle the current block number
1962 if (len
>= 4 // PCB+CID+CRC = 4 bytes
1963 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
1964 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1965 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
1967 iso14_pcb_blocknum
^= 1;
1973 //-----------------------------------------------------------------------------
1974 // Read an ISO 14443a tag. Send out commands and store answers.
1976 //-----------------------------------------------------------------------------
1977 void ReaderIso14443a(UsbCommand
*c
) {
1978 iso14a_command_t param
= c
->arg
[0];
1979 size_t len
= c
->arg
[1] & 0xffff;
1980 size_t lenbits
= c
->arg
[1] >> 16;
1981 uint32_t timeout
= c
->arg
[2];
1982 uint8_t *cmd
= c
->d
.asBytes
;
1984 byte_t buf
[USB_CMD_DATA_SIZE
] = {0x00};
1985 uint8_t par
[MAX_PARITY_SIZE
] = {0x00};
1987 if (param
& ISO14A_CONNECT
)
1992 if (param
& ISO14A_REQUEST_TRIGGER
)
1993 iso14a_set_trigger(TRUE
);
1995 if (param
& ISO14A_CONNECT
) {
1996 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN
);
1997 if(!(param
& ISO14A_NO_SELECT
)) {
1998 iso14a_card_select_t
*card
= (iso14a_card_select_t
*)buf
;
1999 arg0
= iso14443a_select_card(NULL
,card
,NULL
, true, 0);
2000 cmd_send(CMD_ACK
, arg0
, card
->uidlen
, 0, buf
, sizeof(iso14a_card_select_t
));
2001 // if it fails, the cmdhf14a.c client quites.. however this one still executes.
2002 if ( arg0
== 0 ) return;
2006 if (param
& ISO14A_SET_TIMEOUT
)
2007 iso14a_set_timeout(timeout
);
2009 if (param
& ISO14A_APDU
) {
2010 arg0
= iso14_apdu(cmd
, len
, buf
);
2011 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
2014 if (param
& ISO14A_RAW
) {
2015 if(param
& ISO14A_APPEND_CRC
) {
2016 if(param
& ISO14A_TOPAZMODE
) {
2017 AppendCrc14443b(cmd
,len
);
2019 AppendCrc14443a(cmd
,len
);
2022 if (lenbits
) lenbits
+= 16;
2024 if(lenbits
>0) { // want to send a specific number of bits (e.g. short commands)
2025 if(param
& ISO14A_TOPAZMODE
) {
2026 int bits_to_send
= lenbits
;
2028 ReaderTransmitBitsPar(&cmd
[i
++], MIN(bits_to_send
, 7), NULL
, NULL
); // first byte is always short (7bits) and no parity
2030 while (bits_to_send
> 0) {
2031 ReaderTransmitBitsPar(&cmd
[i
++], MIN(bits_to_send
, 8), NULL
, NULL
); // following bytes are 8 bit and no parity
2035 GetParity(cmd
, lenbits
/8, par
);
2036 ReaderTransmitBitsPar(cmd
, lenbits
, par
, NULL
); // bytes are 8 bit with odd parity
2038 } else { // want to send complete bytes only
2039 if(param
& ISO14A_TOPAZMODE
) {
2041 ReaderTransmitBitsPar(&cmd
[i
++], 7, NULL
, NULL
); // first byte: 7 bits, no paritiy
2043 ReaderTransmitBitsPar(&cmd
[i
++], 8, NULL
, NULL
); // following bytes: 8 bits, no paritiy
2046 ReaderTransmit(cmd
,len
, NULL
); // 8 bits, odd parity
2049 arg0
= ReaderReceive(buf
, par
);
2050 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
2053 if (param
& ISO14A_REQUEST_TRIGGER
)
2054 iso14a_set_trigger(FALSE
);
2056 if (param
& ISO14A_NO_DISCONNECT
)
2059 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2064 // Determine the distance between two nonces.
2065 // Assume that the difference is small, but we don't know which is first.
2066 // Therefore try in alternating directions.
2067 int32_t dist_nt(uint32_t nt1
, uint32_t nt2
) {
2069 if (nt1
== nt2
) return 0;
2072 uint32_t nttmp1
= nt1
;
2073 uint32_t nttmp2
= nt2
;
2075 for (i
= 1; i
< (32768/8); ++i
) {
2076 nttmp1
= prng_successor(nttmp1
, 1); if (nttmp1
== nt2
) return i
;
2077 nttmp2
= prng_successor(nttmp2
, 1); if (nttmp2
== nt1
) return -i
;
2079 nttmp1
= prng_successor(nttmp1
, 1); if (nttmp1
== nt2
) return i
+1;
2080 nttmp2
= prng_successor(nttmp2
, 1); if (nttmp2
== nt1
) return -(i
+1);
2081 nttmp1
= prng_successor(nttmp1
, 1); if (nttmp1
== nt2
) return i
+2;
2082 nttmp2
= prng_successor(nttmp2
, 1); if (nttmp2
== nt1
) return -(i
+2);
2083 nttmp1
= prng_successor(nttmp1
, 1); if (nttmp1
== nt2
) return i
+3;
2084 nttmp2
= prng_successor(nttmp2
, 1); if (nttmp2
== nt1
) return -(i
+3);
2085 nttmp1
= prng_successor(nttmp1
, 1); if (nttmp1
== nt2
) return i
+4;
2086 nttmp2
= prng_successor(nttmp2
, 1); if (nttmp2
== nt1
) return -(i
+4);
2087 nttmp1
= prng_successor(nttmp1
, 1); if (nttmp1
== nt2
) return i
+5;
2088 nttmp2
= prng_successor(nttmp2
, 1); if (nttmp2
== nt1
) return -(i
+5);
2089 nttmp1
= prng_successor(nttmp1
, 1); if (nttmp1
== nt2
) return i
+6;
2090 nttmp2
= prng_successor(nttmp2
, 1); if (nttmp2
== nt1
) return -(i
+6);
2091 nttmp1
= prng_successor(nttmp1
, 1); if (nttmp1
== nt2
) return i
+7;
2092 nttmp2
= prng_successor(nttmp2
, 1); if (nttmp2
== nt1
) return -(i
+7);
2094 // either nt1 or nt2 are invalid nonces
2098 //-----------------------------------------------------------------------------
2099 // Recover several bits of the cypher stream. This implements (first stages of)
2100 // the algorithm described in "The Dark Side of Security by Obscurity and
2101 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2102 // (article by Nicolas T. Courtois, 2009)
2103 //-----------------------------------------------------------------------------
2104 void ReaderMifare(bool first_try
, uint8_t block
) {
2105 uint8_t mf_auth
[] = { MIFARE_AUTH_KEYA
, block
, 0x00, 0x00 };
2106 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2107 uint8_t uid
[10] = {0,0,0,0,0,0,0,0,0,0};
2108 uint8_t par_list
[8] = {0,0,0,0,0,0,0,0};
2109 uint8_t ks_list
[8] = {0,0,0,0,0,0,0,0};
2110 uint8_t receivedAnswer
[MAX_MIFARE_FRAME_SIZE
] = {0x00};
2111 uint8_t receivedAnswerPar
[MAX_MIFARE_PARITY_SIZE
] = {0x00};
2112 uint8_t par
[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2115 uint32_t previous_nt
= 0;
2118 int32_t catch_up_cycles
= 0;
2119 int32_t last_catch_up
= 0;
2121 int32_t nt_distance
= 0;
2123 uint16_t elapsed_prng_sequences
= 1;
2124 uint16_t consecutive_resyncs
= 0;
2125 uint16_t unexpected_random
= 0;
2126 uint16_t sync_tries
= 0;
2128 // static variables here, is re-used in the next call
2129 static uint32_t nt_attacked
= 0;
2130 static uint32_t sync_time
= 0;
2131 static uint32_t sync_cycles
= 0;
2132 static uint8_t par_low
= 0;
2133 static uint8_t mf_nr_ar3
= 0;
2135 #define PRNG_SEQUENCE_LENGTH (1 << 16)
2136 #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
2137 #define MAX_SYNC_TRIES 32
2139 BigBuf_free(); BigBuf_Clear_ext(false);
2142 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
2144 AppendCrc14443a(mf_auth
, 2);
2147 sync_time
= GetCountSspClk() & 0xfffffff8;
2148 sync_cycles
= PRNG_SEQUENCE_LENGTH
+ 1130; //65536; //0x10000 // Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2153 // we were unsuccessful on a previous call.
2154 // Try another READER nonce (first 3 parity bits remain the same)
2156 mf_nr_ar
[3] = mf_nr_ar3
;
2160 bool have_uid
= FALSE
;
2161 uint8_t cascade_levels
= 0;
2165 for(i
= 0; TRUE
; ++i
) {
2169 // Test if the action was cancelled
2170 if(BUTTON_PRESS()) {
2175 // this part is from Piwi's faster nonce collecting part in Hardnested.
2176 if (!have_uid
) { // need a full select cycle to get the uid first
2177 iso14a_card_select_t card_info
;
2178 if(!iso14443a_select_card(uid
, &card_info
, &cuid
, true, 0)) {
2179 if (MF_DBGLEVEL
>= 4) Dbprintf("Mifare: Can't select card (ALL)");
2182 switch (card_info
.uidlen
) {
2183 case 4 : cascade_levels
= 1; break;
2184 case 7 : cascade_levels
= 2; break;
2185 case 10: cascade_levels
= 3; break;
2189 } else { // no need for anticollision. We can directly select the card
2190 if(!iso14443a_select_card(uid
, NULL
, &cuid
, false, cascade_levels
)) {
2191 if (MF_DBGLEVEL
>= 4) Dbprintf("Mifare: Can't select card (UID)");
2196 // Sending timeslot of ISO14443a frame
2197 sync_time
= (sync_time
& 0xfffffff8 ) + sync_cycles
+ catch_up_cycles
;
2198 catch_up_cycles
= 0;
2200 // if we missed the sync time already, advance to the next nonce repeat
2201 while( GetCountSspClk() > sync_time
) {
2202 ++elapsed_prng_sequences
;
2203 sync_time
= (sync_time
& 0xfffffff8 ) + sync_cycles
;
2206 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2207 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
2209 // Receive the (4 Byte) "random" nonce from TAG
2210 if (!ReaderReceive(receivedAnswer
, receivedAnswerPar
))
2214 nt
= bytes_to_num(receivedAnswer
, 4);
2216 // Transmit reader nonce with fake par
2217 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
), par
, NULL
);
2221 if (first_try
&& previous_nt
&& !nt_attacked
) { // we didn't calibrate our clock yet
2223 nt_distance
= dist_nt(previous_nt
, nt
);
2225 // if no distance between, then we are in sync.
2226 if (nt_distance
== 0) {
2229 if (nt_distance
== -99999) { // invalid nonce received
2230 ++unexpected_random
;
2231 if (unexpected_random
> MAX_UNEXPECTED_RANDOM
) {
2232 isOK
= -3; // Card has an unpredictable PRNG. Give up
2235 if (sync_cycles
<= 0) sync_cycles
+= PRNG_SEQUENCE_LENGTH
;
2237 continue; // continue trying...
2241 if (++sync_tries
> MAX_SYNC_TRIES
) {
2242 isOK
= -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
2246 sync_cycles
= (sync_cycles
- nt_distance
)/elapsed_prng_sequences
;
2248 if (sync_cycles
<= 0)
2249 sync_cycles
+= PRNG_SEQUENCE_LENGTH
;
2251 if (MF_DBGLEVEL
>= 4)
2252 Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i
, nt_distance
, elapsed_prng_sequences
, sync_cycles
);
2260 if ((nt
!= nt_attacked
) && nt_attacked
) { // we somehow lost sync. Try to catch up again...
2262 catch_up_cycles
= ABS(dist_nt(nt_attacked
, nt
));
2263 if (catch_up_cycles
== 99999) { // invalid nonce received. Don't resync on that one.
2264 catch_up_cycles
= 0;
2268 catch_up_cycles
/= elapsed_prng_sequences
;
2270 if (catch_up_cycles
== last_catch_up
) {
2271 ++consecutive_resyncs
;
2273 last_catch_up
= catch_up_cycles
;
2274 consecutive_resyncs
= 0;
2277 if (consecutive_resyncs
< 3) {
2278 if (MF_DBGLEVEL
>= 4)
2279 Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i
, catch_up_cycles
, consecutive_resyncs
);
2281 sync_cycles
+= catch_up_cycles
;
2283 if (MF_DBGLEVEL
>= 4)
2284 Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i
, catch_up_cycles
, sync_cycles
);
2287 catch_up_cycles
= 0;
2288 consecutive_resyncs
= 0;
2293 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2294 if (ReaderReceive(receivedAnswer
, receivedAnswerPar
)) {
2295 catch_up_cycles
= 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2298 par_low
= par
[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2300 par_list
[nt_diff
] = SwapBits(par
[0], 8);
2301 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05; // xor with NACK value to get keystream
2303 // Test if the information is complete
2304 if (nt_diff
== 0x07) {
2309 nt_diff
= (nt_diff
+ 1) & 0x07;
2310 mf_nr_ar
[3] = (mf_nr_ar
[3] & 0x1F) | (nt_diff
<< 5);
2315 if (nt_diff
== 0 && first_try
) {
2317 if (par
[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
2323 par
[0] = ((par
[0] & 0x1F) + 1) | par_low
;
2327 // reset the resyncs since we got a complete transaction on right time.
2328 consecutive_resyncs
= 0;
2331 mf_nr_ar
[3] &= 0x1F;
2333 if (MF_DBGLEVEL
>= 4) Dbprintf("Number of sent auth requestes: %u", i
);
2335 uint8_t buf
[28] = {0x00};
2336 memset(buf
, 0x00, sizeof(buf
));
2337 num_to_bytes(cuid
, 4, buf
);
2338 num_to_bytes(nt
, 4, buf
+ 4);
2339 memcpy(buf
+ 8, par_list
, 8);
2340 memcpy(buf
+ 16, ks_list
, 8);
2341 memcpy(buf
+ 24, mf_nr_ar
, 4);
2343 cmd_send(CMD_ACK
, isOK
, 0, 0, buf
, sizeof(buf
) );
2345 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2351 *MIFARE 1K simulate.
2354 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2355 * FLAG_4B_UID_IN_DATA - use 4-byte UID in the data-section
2356 * FLAG_7B_UID_IN_DATA - use 7-byte UID in the data-section
2357 * FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section
2358 * FLAG_UID_IN_EMUL - use 4-byte UID from emulator memory
2359 * FLAG_NR_AR_ATTACK - collect NR_AR responses for bruteforcing later
2360 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2362 void Mifare1ksim(uint8_t flags
, uint8_t exitAfterNReads
, uint8_t arg2
, uint8_t *datain
) {
2363 int cardSTATE
= MFEMUL_NOFIELD
;
2364 int _UID_LEN
= 0; // 4, 7, 10
2365 int vHf
= 0; // in mV
2367 uint32_t selTimer
= 0;
2368 uint32_t authTimer
= 0;
2370 uint8_t cardWRBL
= 0;
2371 uint8_t cardAUTHSC
= 0;
2372 uint8_t cardAUTHKEY
= 0xff; // no authentication
2375 uint32_t cardINTREG
= 0;
2376 uint8_t cardINTBLOCK
= 0;
2377 struct Crypto1State mpcs
= {0, 0};
2378 struct Crypto1State
*pcs
;
2380 uint32_t numReads
= 0; //Counts numer of times reader read a block
2381 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
] = {0x00};
2382 uint8_t receivedCmd_par
[MAX_MIFARE_PARITY_SIZE
] = {0x00};
2383 uint8_t response
[MAX_MIFARE_FRAME_SIZE
] = {0x00};
2384 uint8_t response_par
[MAX_MIFARE_PARITY_SIZE
] = {0x00};
2386 uint8_t atqa
[] = {0x04, 0x00}; // Mifare classic 1k
2387 uint8_t sak_4
[] = {0x0C, 0x00, 0x00}; // CL1 - 4b uid
2388 uint8_t sak_7
[] = {0x0C, 0x00, 0x00}; // CL2 - 7b uid
2389 uint8_t sak_10
[] = {0x0C, 0x00, 0x00}; // CL3 - 10b uid
2390 //uint8_t sak[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
2392 uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2393 uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2394 uint8_t rUIDBCC3
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2396 uint8_t rAUTH_NT
[] = {0x01, 0x01, 0x01, 0x01}; // very random nonce
2397 //uint8_t rAUTH_NT[] = {0x55, 0x41, 0x49, 0x92};// nonce from nested? why this?
2398 uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
2400 // Here, we collect CUID, NT, NR, AR, CUID2, NT2, NR2, AR2
2401 // This can be used in a reader-only attack.
2402 uint32_t ar_nr_responses
[] = {0,0,0,0,0,0,0,0,0};
2403 uint8_t ar_nr_collected
= 0;
2405 // Authenticate response - nonce
2406 uint32_t nonce
= bytes_to_num(rAUTH_NT
, 4);
2407 ar_nr_responses
[1] = nonce
;
2409 //-- Determine the UID
2410 // Can be set from emulator memory or incoming data
2411 // Length: 4,7,or 10 bytes
2412 if ( (flags
& FLAG_UID_IN_EMUL
) == FLAG_UID_IN_EMUL
)
2413 emlGetMemBt(datain
, 0, 10); // load 10bytes from EMUL to the datain pointer. to be used below.
2415 if ( (flags
& FLAG_4B_UID_IN_DATA
) == FLAG_4B_UID_IN_DATA
) {
2416 memcpy(rUIDBCC1
, datain
, 4);
2418 } else if ( (flags
& FLAG_7B_UID_IN_DATA
) == FLAG_7B_UID_IN_DATA
) {
2419 memcpy(&rUIDBCC1
[1], datain
, 3);
2420 memcpy( rUIDBCC2
, datain
+3, 4);
2422 } else if ( (flags
& FLAG_10B_UID_IN_DATA
) == FLAG_10B_UID_IN_DATA
) {
2423 memcpy(&rUIDBCC1
[1], datain
, 3);
2424 memcpy(&rUIDBCC2
[1], datain
+3, 3);
2425 memcpy( rUIDBCC3
, datain
+6, 4);
2433 ar_nr_responses
[0] = cuid
= bytes_to_num(rUIDBCC1
, 4);
2435 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2436 if (MF_DBGLEVEL
>= 2) {
2437 Dbprintf("4B UID: %02x%02x%02x%02x",
2449 ar_nr_responses
[0] = cuid
= bytes_to_num(rUIDBCC2
, 4);
2453 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2454 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2455 if (MF_DBGLEVEL
>= 2) {
2456 Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
2471 ar_nr_responses
[0] = cuid
= bytes_to_num(rUIDBCC3
, 4);
2476 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2477 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2478 rUIDBCC3
[4] = rUIDBCC3
[0] ^ rUIDBCC3
[1] ^ rUIDBCC3
[2] ^ rUIDBCC3
[3];
2480 if (MF_DBGLEVEL
>= 2) {
2481 Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
2499 ComputeCrc14443(CRC_14443_A
, sak_4
, 1, &sak_4
[1], &sak_4
[2]);
2500 ComputeCrc14443(CRC_14443_A
, sak_7
, 1, &sak_7
[1], &sak_7
[2]);
2501 ComputeCrc14443(CRC_14443_A
, sak_10
, 1, &sak_10
[1], &sak_10
[2]);
2503 // We need to listen to the high-frequency, peak-detected path.
2504 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2506 // free eventually allocated BigBuf memory but keep Emulator Memory
2507 BigBuf_free_keep_EM();
2511 bool finished
= FALSE
;
2512 while (!BUTTON_PRESS() && !finished
&& !usb_poll_validate_length()) {
2515 // find reader field
2516 if (cardSTATE
== MFEMUL_NOFIELD
) {
2517 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
2518 if (vHf
> MF_MINFIELDV
) {
2519 cardSTATE_TO_IDLE();
2523 if (cardSTATE
== MFEMUL_NOFIELD
) continue;
2526 res
= EmGetCmd(receivedCmd
, &len
, receivedCmd_par
);
2527 if (res
== 2) { //Field is off!
2528 cardSTATE
= MFEMUL_NOFIELD
;
2531 } else if (res
== 1) {
2532 break; //return value 1 means button press
2535 // REQ or WUP request in ANY state and WUP in HALTED state
2536 // this if-statement doesn't match the specification above. (iceman)
2537 if (len
== 1 && ((receivedCmd
[0] == ISO14443A_CMD_REQA
&& cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == ISO14443A_CMD_WUPA
)) {
2538 selTimer
= GetTickCount();
2539 EmSendCmdEx(atqa
, sizeof(atqa
), (receivedCmd
[0] == ISO14443A_CMD_WUPA
));
2540 cardSTATE
= MFEMUL_SELECT1
;
2541 crypto1_destroy(pcs
);
2548 switch (cardSTATE
) {
2549 case MFEMUL_NOFIELD
:
2552 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2555 case MFEMUL_SELECT1
:{
2556 if (len
== 2 && (receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT
&& receivedCmd
[1] == 0x20)) {
2557 if (MF_DBGLEVEL
>= 4) Dbprintf("SELECT ALL received");
2558 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2563 ( receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT
&&
2564 receivedCmd
[1] == 0x70 &&
2565 memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2568 EmSendCmd(sak_4
, sizeof(sak_4
));
2571 cardSTATE
= MFEMUL_WORK
;
2573 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2577 cardSTATE
= MFEMUL_SELECT2
;
2582 cardSTATE_TO_IDLE();
2586 case MFEMUL_SELECT2
:{
2588 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2591 if (len
== 2 && (receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2
&& receivedCmd
[1] == 0x20)) {
2592 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2596 (receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2
&&
2597 receivedCmd
[1] == 0x70 &&
2598 memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0) ) {
2600 EmSendCmd(sak_7
, sizeof(sak_7
));
2603 cardSTATE
= MFEMUL_WORK
;
2605 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2608 cardSTATE
= MFEMUL_SELECT3
;
2613 cardSTATE_TO_IDLE();
2616 case MFEMUL_SELECT3
:{
2618 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2621 if (len
== 2 && (receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3
&& receivedCmd
[1] == 0x20)) {
2622 EmSendCmd(rUIDBCC3
, sizeof(rUIDBCC3
));
2626 (receivedCmd
[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3
&&
2627 receivedCmd
[1] == 0x70 &&
2628 memcmp(&receivedCmd
[2], rUIDBCC3
, 4) == 0) ) {
2630 EmSendCmd(sak_10
, sizeof(sak_10
));
2631 cardSTATE
= MFEMUL_WORK
;
2633 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol3 time: %d", GetTickCount() - selTimer
);
2636 cardSTATE_TO_IDLE();
2641 cardSTATE_TO_IDLE();
2642 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2646 uint32_t nr
= bytes_to_num(receivedCmd
, 4);
2647 uint32_t ar
= bytes_to_num(&receivedCmd
[4], 4);
2650 //if(ar_nr_collected < 2 && cardAUTHSC == 2){
2651 if(ar_nr_collected
< 2) {
2652 //if(ar_nr_responses[2] != nr) {
2653 ar_nr_responses
[ar_nr_collected
*4] = cuid
;
2654 ar_nr_responses
[ar_nr_collected
*4+1] = nonce
;
2655 ar_nr_responses
[ar_nr_collected
*4+2] = nr
;
2656 ar_nr_responses
[ar_nr_collected
*4+3] = ar
;
2660 // Interactive mode flag, means we need to send ACK
2661 finished
= ( ((flags
& FLAG_INTERACTIVE
) == FLAG_INTERACTIVE
)&& ar_nr_collected
== 2);
2664 crypto1_word(pcs, ar , 1);
2665 cardRr = nr ^ crypto1_word(pcs, 0, 0);
2668 if (cardRr != prng_successor(nonce, 64)){
2670 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2671 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2672 cardRr, prng_successor(nonce, 64));
2673 Shouldn't we respond anything here?
2674 Right now, we don't nack or anything, which causes the
2675 reader to do a WUPA after a while. /Martin
2676 -- which is the correct response. /piwi
2677 cardSTATE_TO_IDLE();
2678 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2683 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2684 num_to_bytes(ans
, 4, rAUTH_AT
);
2685 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2688 if (MF_DBGLEVEL
>= 4) {
2689 Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2691 cardAUTHKEY
== 0 ? 'A' : 'B',
2692 GetTickCount() - authTimer
2695 cardSTATE
= MFEMUL_WORK
;
2700 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2703 bool encrypted_data
= (cardAUTHKEY
!= 0xFF) ;
2706 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2708 if (len
== 4 && (receivedCmd
[0] == MIFARE_AUTH_KEYA
||
2709 receivedCmd
[0] == MIFARE_AUTH_KEYB
) ) {
2711 authTimer
= GetTickCount();
2712 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2713 cardAUTHKEY
= receivedCmd
[0] - 0x60; // & 1
2714 crypto1_destroy(pcs
);
2715 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2717 if (!encrypted_data
) {
2718 // first authentication
2719 crypto1_word(pcs
, cuid
^ nonce
, 0);//Update crypto state
2720 num_to_bytes(nonce
, 4, rAUTH_AT
); // Send nonce
2722 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2725 // nested authentication
2726 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2727 num_to_bytes(ans
, 4, rAUTH_AT
);
2729 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2732 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2733 cardSTATE
= MFEMUL_AUTH1
;
2737 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2738 // BUT... ACK --> NACK
2739 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2740 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2744 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2745 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2746 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2751 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2755 if ( receivedCmd
[0] == ISO14443A_CMD_READBLOCK
||
2756 receivedCmd
[0] == ISO14443A_CMD_WRITEBLOCK
||
2757 receivedCmd
[0] == MIFARE_CMD_INC
||
2758 receivedCmd
[0] == MIFARE_CMD_DEC
||
2759 receivedCmd
[0] == MIFARE_CMD_RESTORE
||
2760 receivedCmd
[0] == MIFARE_CMD_TRANSFER
) {
2762 if (receivedCmd
[1] >= 16 * 4) {
2763 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2764 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2768 if (receivedCmd
[1] / 4 != cardAUTHSC
) {
2769 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2770 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],cardAUTHSC
);
2775 if (receivedCmd
[0] == ISO14443A_CMD_READBLOCK
) {
2776 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader reading block %d (0x%02x)", receivedCmd
[1], receivedCmd
[1]);
2778 emlGetMem(response
, receivedCmd
[1], 1);
2779 AppendCrc14443a(response
, 16);
2780 mf_crypto1_encrypt(pcs
, response
, 18, response_par
);
2781 EmSendCmdPar(response
, 18, response_par
);
2783 if(exitAfterNReads
> 0 && numReads
>= exitAfterNReads
) {
2784 Dbprintf("%d reads done, exiting", numReads
);
2790 if (receivedCmd
[0] == ISO14443A_CMD_WRITEBLOCK
) {
2791 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0xA0 write block %d (%02x)", receivedCmd
[1], receivedCmd
[1]);
2792 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2793 cardSTATE
= MFEMUL_WRITEBL2
;
2794 cardWRBL
= receivedCmd
[1];
2797 // increment, decrement, restore
2798 if ( receivedCmd
[0] == MIFARE_CMD_INC
||
2799 receivedCmd
[0] == MIFARE_CMD_DEC
||
2800 receivedCmd
[0] == MIFARE_CMD_RESTORE
) {
2802 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd
[0], receivedCmd
[1], receivedCmd
[1]);
2804 if (emlCheckValBl(receivedCmd
[1])) {
2805 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2806 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2809 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2810 if (receivedCmd
[0] == MIFARE_CMD_INC
) cardSTATE
= MFEMUL_INTREG_INC
;
2811 if (receivedCmd
[0] == MIFARE_CMD_DEC
) cardSTATE
= MFEMUL_INTREG_DEC
;
2812 if (receivedCmd
[0] == MIFARE_CMD_RESTORE
) cardSTATE
= MFEMUL_INTREG_REST
;
2813 cardWRBL
= receivedCmd
[1];
2817 if (receivedCmd
[0] == MIFARE_CMD_TRANSFER
) {
2818 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)", receivedCmd
[0], receivedCmd
[1], receivedCmd
[1]);
2819 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2820 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2822 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2826 if (receivedCmd
[0] == ISO14443A_CMD_HALT
&& receivedCmd
[1] == 0x00) {
2829 cardSTATE
= MFEMUL_HALTED
;
2830 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2831 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2835 if (receivedCmd
[0] == ISO14443A_CMD_RATS
) {
2836 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2839 // command not allowed
2840 if (MF_DBGLEVEL
>= 4) Dbprintf("Received command not allowed, nacking");
2841 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2844 case MFEMUL_WRITEBL2
:{
2846 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2847 emlSetMem(receivedCmd
, cardWRBL
, 1);
2848 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2849 cardSTATE
= MFEMUL_WORK
;
2851 cardSTATE_TO_IDLE();
2852 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2856 case MFEMUL_INTREG_INC
:{
2857 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2858 memcpy(&ans
, receivedCmd
, 4);
2859 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2860 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2861 cardSTATE_TO_IDLE();
2864 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2865 cardINTREG
= cardINTREG
+ ans
;
2866 cardSTATE
= MFEMUL_WORK
;
2869 case MFEMUL_INTREG_DEC
:{
2870 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2871 memcpy(&ans
, receivedCmd
, 4);
2872 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2873 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2874 cardSTATE_TO_IDLE();
2877 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2878 cardINTREG
= cardINTREG
- ans
;
2879 cardSTATE
= MFEMUL_WORK
;
2882 case MFEMUL_INTREG_REST
:{
2883 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2884 memcpy(&ans
, receivedCmd
, 4);
2885 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2886 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2887 cardSTATE_TO_IDLE();
2890 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2891 cardSTATE
= MFEMUL_WORK
;
2897 // Interactive mode flag, means we need to send ACK
2898 if((flags
& FLAG_INTERACTIVE
) == FLAG_INTERACTIVE
) {
2899 //May just aswell send the collected ar_nr in the response aswell
2900 uint8_t len
= ar_nr_collected
* 4 * 4;
2901 cmd_send(CMD_ACK
, CMD_SIMULATE_MIFARE_CARD
, len
, 0, &ar_nr_responses
, len
);
2904 if( ((flags
& FLAG_NR_AR_ATTACK
) == FLAG_NR_AR_ATTACK
) && MF_DBGLEVEL
>= 1 ) {
2905 if(ar_nr_collected
> 1 ) {
2906 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2907 Dbprintf("../tools/mfkey/mfkey32v2.exe %08x %08x %08x %08x %08x %08x %08x",
2908 ar_nr_responses
[0], // CUID
2909 ar_nr_responses
[1], // NT1
2910 ar_nr_responses
[2], // NR1
2911 ar_nr_responses
[3], // AR1
2912 //ar_nr_responses[4], // CUID2
2913 ar_nr_responses
[5], // NT2
2914 ar_nr_responses
[6], // NR2
2915 ar_nr_responses
[7] // AR2
2918 Dbprintf("Failed to obtain two AR/NR pairs!");
2919 if(ar_nr_collected
== 1 ) {
2920 Dbprintf("Only got these: UID=%08x, nonce=%08x, NR1=%08x, AR1=%08x",
2921 ar_nr_responses
[0], // CUID
2922 ar_nr_responses
[1], // NT
2923 ar_nr_responses
[2], // NR1
2924 ar_nr_responses
[3] // AR1
2929 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, BigBuf_get_traceLen());
2931 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2937 //-----------------------------------------------------------------------------
2940 // if no activity for 2sec, it sends the collected data to the client.
2941 //-----------------------------------------------------------------------------
2943 void RAMFUNC
SniffMifare(uint8_t param
) {
2947 // free eventually allocated BigBuf memory
2948 BigBuf_free(); BigBuf_Clear_ext(false);
2952 // The command (reader -> tag) that we're receiving.
2953 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
] = {0x00};
2954 uint8_t receivedCmdPar
[MAX_MIFARE_PARITY_SIZE
] = {0x00};
2956 // The response (tag -> reader) that we're receiving.
2957 uint8_t receivedResponse
[MAX_MIFARE_FRAME_SIZE
] = {0x00};
2958 uint8_t receivedResponsePar
[MAX_MIFARE_PARITY_SIZE
] = {0x00};
2960 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
2962 // allocate the DMA buffer, used to stream samples from the FPGA
2963 // [iceman] is this sniffed data unsigned?
2964 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
2965 uint8_t *data
= dmaBuf
;
2966 uint8_t previous_data
= 0;
2969 bool ReaderIsActive
= FALSE
;
2970 bool TagIsActive
= FALSE
;
2972 // Set up the demodulator for tag -> reader responses.
2973 DemodInit(receivedResponse
, receivedResponsePar
);
2975 // Set up the demodulator for the reader -> tag commands
2976 UartInit(receivedCmd
, receivedCmdPar
);
2978 // Setup and start DMA.
2979 // set transfer address and number of bytes. Start transfer.
2980 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf
, DMA_BUFFER_SIZE
) ){
2981 if (MF_DBGLEVEL
> 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
2989 // And now we loop, receiving samples.
2990 for(uint32_t sniffCounter
= 0;; ) {
2995 if(BUTTON_PRESS()) {
2996 DbpString("cancelled by button");
3000 if ((sniffCounter
& 0x0000FFFF) == 0) { // from time to time
3001 // check if a transaction is completed (timeout after 2000ms).
3002 // if yes, stop the DMA transfer and send what we have so far to the client
3003 if (MfSniffSend(2000)) {
3004 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
3008 ReaderIsActive
= FALSE
;
3009 TagIsActive
= FALSE
;
3010 // Setup and start DMA. set transfer address and number of bytes. Start transfer.
3011 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf
, DMA_BUFFER_SIZE
) ){
3012 if (MF_DBGLEVEL
> 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
3018 int register readBufDataP
= data
- dmaBuf
; // number of bytes we have processed so far
3019 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
; // number of bytes already transferred
3021 if (readBufDataP
<= dmaBufDataP
) // we are processing the same block of data which is currently being transferred
3022 dataLen
= dmaBufDataP
- readBufDataP
; // number of bytes still to be processed
3024 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
; // number of bytes still to be processed
3026 // test for length of buffer
3027 if(dataLen
> maxDataLen
) { // we are more behind than ever...
3028 maxDataLen
= dataLen
;
3029 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
3030 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
3034 if(dataLen
< 1) continue;
3036 // primary buffer was stopped ( <-- we lost data!
3037 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
3038 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
3039 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
3040 Dbprintf("RxEmpty ERROR, data length:%d", dataLen
); // temporary
3042 // secondary buffer sets as primary, secondary buffer was stopped
3043 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
3044 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
3045 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
3050 if (sniffCounter
& 0x01) {
3052 // no need to try decoding tag data if the reader is sending
3054 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
3055 if(MillerDecoding(readerdata
, (sniffCounter
-1)*4)) {
3058 if (MfSniffLogic(receivedCmd
, Uart
.len
, Uart
.parity
, Uart
.bitCount
, TRUE
)) break;
3060 UartInit(receivedCmd
, receivedCmdPar
);
3063 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
3066 // no need to try decoding tag data if the reader is sending
3067 if(!ReaderIsActive
) {
3068 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
3069 if(ManchesterDecoding(tagdata
, 0, (sniffCounter
-1)*4)) {
3072 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parity
, Demod
.bitCount
, FALSE
)) break;
3075 UartInit(receivedCmd
, receivedCmdPar
);
3077 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
3081 previous_data
= *data
;
3085 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
)
3090 if (MF_DBGLEVEL
>= 1) Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen
, Uart
.state
, Uart
.len
);
3092 FpgaDisableSscDma();
3094 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);