1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
26 #include "lfsampling.h"
28 #include "mifareutil.h"
34 // Craig Young - 14a stand-alone code
35 #ifdef WITH_ISO14443a_StandAlone
36 #include "iso14443a.h"
39 #define abs(x) ( ((x)<0) ? -(x) : (x) )
41 //=============================================================================
42 // A buffer where we can queue things up to be sent through the FPGA, for
43 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
44 // is the order in which they go out on the wire.
45 //=============================================================================
47 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
48 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
51 struct common_area common_area
__attribute__((section(".commonarea")));
53 void ToSendReset(void)
59 void ToSendStuffBit(int b
)
63 ToSend
[ToSendMax
] = 0;
68 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
73 if(ToSendMax
>= sizeof(ToSend
)) {
75 DbpString("ToSendStuffBit overflowed!");
79 //=============================================================================
80 // Debug print functions, to go out over USB, to the usual PC-side client.
81 //=============================================================================
83 void DbpString(char *str
)
85 byte_t len
= strlen(str
);
86 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
90 void DbpIntegers(int x1
, int x2
, int x3
)
92 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
96 void Dbprintf(const char *fmt
, ...) {
97 // should probably limit size here; oh well, let's just use a big buffer
98 char output_string
[128];
102 kvsprintf(fmt
, output_string
, 10, ap
);
105 DbpString(output_string
);
108 // prints HEX & ASCII
109 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
122 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
125 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
127 Dbprintf("%*D",l
,d
," ");
135 //-----------------------------------------------------------------------------
136 // Read an ADC channel and block till it completes, then return the result
137 // in ADC units (0 to 1023). Also a routine to average 32 samples and
139 //-----------------------------------------------------------------------------
140 static int ReadAdc(int ch
)
144 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
145 AT91C_BASE_ADC
->ADC_MR
=
146 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
147 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
148 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
150 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
151 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
152 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
155 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
157 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
159 // Note: with the "historic" values in the comments above, the error was 34% !!!
161 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
163 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
165 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
167 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
172 int AvgAdc(int ch
) // was static - merlok
177 for(i
= 0; i
< 32; i
++) {
181 return (a
+ 15) >> 5;
184 void MeasureAntennaTuning(void)
186 uint8_t LF_Results
[256];
187 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
188 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
193 * Sweeps the useful LF range of the proxmark from
194 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
195 * read the voltage in the antenna, the result left
196 * in the buffer is a graph which should clearly show
197 * the resonating frequency of your LF antenna
198 * ( hopefully around 95 if it is tuned to 125kHz!)
201 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
202 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
203 for (i
=255; i
>=19; i
--) {
205 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
207 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
208 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
209 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
211 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
212 if(LF_Results
[i
] > peak
) {
214 peak
= LF_Results
[i
];
220 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
223 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
224 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
225 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
227 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
229 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<<16), vHf
, peakf
| (peakv
<<16), LF_Results
, 256);
230 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
236 void MeasureAntennaTuningHf(void)
238 int vHf
= 0; // in mV
240 DbpString("Measuring HF antenna, press button to exit");
242 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
243 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
244 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
248 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
250 Dbprintf("%d mV",vHf
);
251 if (BUTTON_PRESS()) break;
253 DbpString("cancelled");
255 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
260 void ReadMem(int addr
)
262 const uint8_t *data
= ((uint8_t *)addr
);
264 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
265 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
268 /* osimage version information is linked in */
269 extern struct version_information version_information
;
270 /* bootrom version information is pointed to from _bootphase1_version_pointer */
271 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
272 void SendVersion(void)
274 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
275 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
277 /* Try to find the bootrom version information. Expect to find a pointer at
278 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
279 * pointer, then use it.
281 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
282 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
283 strcat(VersionString
, "bootrom version information appears invalid\n");
285 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
286 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
289 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
290 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
292 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
293 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
294 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
295 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
297 // Send Chip ID and used flash memory
298 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
299 uint32_t compressed_data_section_size
= common_area
.arg1
;
300 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
303 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
304 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
305 void printUSBSpeed(void)
307 Dbprintf("USB Speed:");
308 Dbprintf(" Sending USB packets to client...");
310 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
311 uint8_t *test_data
= BigBuf_get_addr();
314 uint32_t start_time
= end_time
= GetTickCount();
315 uint32_t bytes_transferred
= 0;
318 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
319 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
320 end_time
= GetTickCount();
321 bytes_transferred
+= USB_CMD_DATA_SIZE
;
325 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
326 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
327 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
328 1000 * bytes_transferred
/ (end_time
- start_time
));
333 * Prints runtime information about the PM3.
335 void SendStatus(void)
337 BigBuf_print_status();
339 printConfig(); //LF Sampling config
342 Dbprintf(" MF_DBGLEVEL......%d", MF_DBGLEVEL
);
343 Dbprintf(" ToSendMax........%d",ToSendMax
);
344 Dbprintf(" ToSendBit........%d",ToSendBit
);
346 cmd_send(CMD_ACK
,1,0,0,0,0);
349 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
353 void StandAloneMode()
355 DbpString("Stand-alone mode! No PC necessary.");
356 // Oooh pretty -- notify user we're in elite samy mode now
358 LED(LED_ORANGE
, 200);
360 LED(LED_ORANGE
, 200);
362 LED(LED_ORANGE
, 200);
364 LED(LED_ORANGE
, 200);
373 #ifdef WITH_ISO14443a_StandAlone
374 void StandAloneMode14a()
377 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
380 int playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
381 int cardRead
[OPTS
] = {0};
382 uint8_t readUID
[10] = {0};
383 uint32_t uid_1st
[OPTS
]={0};
384 uint32_t uid_2nd
[OPTS
]={0};
385 uint32_t uid_tmp1
= 0;
386 uint32_t uid_tmp2
= 0;
387 iso14a_card_select_t hi14a_card
[OPTS
];
389 LED(selected
+ 1, 0);
397 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
401 LED(selected
+ 1, 0);
405 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
406 /* need this delay to prevent catching some weird data */
408 /* Code for reading from 14a tag */
409 uint8_t uid
[10] ={0};
411 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
416 if (BUTTON_PRESS()) {
417 if (cardRead
[selected
]) {
418 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
421 else if (cardRead
[(selected
+1)%OPTS
]) {
422 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
423 selected
= (selected
+1)%OPTS
;
424 break; // playing = 1;
427 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
431 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
))
435 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
436 memcpy(readUID
,uid
,10*sizeof(uint8_t));
437 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
438 // Set UID byte order
439 for (int i
=0; i
<4; i
++)
441 dst
= (uint8_t *)&uid_tmp2
;
442 for (int i
=0; i
<4; i
++)
444 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
445 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
449 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
450 uid_1st
[selected
] = (uid_tmp1
)>>8;
451 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
454 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
455 uid_1st
[selected
] = uid_tmp1
;
456 uid_2nd
[selected
] = uid_tmp2
;
462 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
463 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
466 LED(LED_ORANGE
, 200);
468 LED(LED_ORANGE
, 200);
471 LED(selected
+ 1, 0);
473 // Next state is replay:
476 cardRead
[selected
] = 1;
478 /* MF Classic UID clone */
479 else if (iGotoClone
==1)
483 LED(selected
+ 1, 0);
484 LED(LED_ORANGE
, 250);
488 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
490 // wait for button to be released
491 while(BUTTON_PRESS())
493 // Delay cloning until card is in place
496 Dbprintf("Starting clone. [Bank: %u]", selected
);
497 // need this delay to prevent catching some weird data
499 // Begin clone function here:
500 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
501 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
502 memcpy(c.d.asBytes, data, 16);
505 Block read is similar:
506 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
507 We need to imitate that call with blockNo 0 to set a uid.
509 The get and set commands are handled in this file:
510 // Work with "magic Chinese" card
511 case CMD_MIFARE_CSETBLOCK:
512 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
514 case CMD_MIFARE_CGETBLOCK:
515 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
518 mfCSetUID provides example logic for UID set workflow:
519 -Read block0 from card in field with MifareCGetBlock()
520 -Configure new values without replacing reserved bytes
521 memcpy(block0, uid, 4); // Copy UID bytes from byte array
523 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
524 Bytes 5-7 are reserved SAK and ATQA for mifare classic
525 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
527 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
528 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
529 MifareCGetBlock(0x3F, 1, 0, oldBlock0
);
530 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
531 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
535 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
536 memcpy(newBlock0
,oldBlock0
,16);
537 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
539 newBlock0
[0] = uid_1st
[selected
]>>24;
540 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
541 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
542 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
543 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
544 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
545 MifareCSetBlock(0, 0xFF,0, newBlock0
);
546 MifareCGetBlock(0x3F, 1, 0, testBlock0
);
547 if (memcmp(testBlock0
,newBlock0
,16)==0)
549 DbpString("Cloned successfull!");
550 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
553 selected
= (selected
+1) % OPTS
;
556 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
561 LED(selected
+ 1, 0);
564 // Change where to record (or begin playing)
565 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
568 LED(selected
+ 1, 0);
570 // Begin transmitting
574 DbpString("Playing");
577 int button_action
= BUTTON_HELD(1000);
578 if (button_action
== 0) { // No button action, proceed with sim
579 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
580 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
581 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
582 DbpString("Mifare Classic");
583 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
); // Mifare Classic
585 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
586 DbpString("Mifare Ultralight");
587 SimulateIso14443aTag(2,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare Ultralight
589 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
590 DbpString("Mifare DESFire");
591 SimulateIso14443aTag(3,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare DESFire
594 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
595 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
);
598 else if (button_action
== BUTTON_SINGLE_CLICK
) {
599 selected
= (selected
+ 1) % OPTS
;
600 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
604 else if (button_action
== BUTTON_HOLD
) {
605 Dbprintf("Playtime over. Begin cloning...");
612 /* We pressed a button so ignore it here with a delay */
615 LED(selected
+ 1, 0);
618 while(BUTTON_PRESS())
624 // samy's sniff and repeat routine
628 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
630 int high
[OPTS
], low
[OPTS
];
635 // Turn on selected LED
636 LED(selected
+ 1, 0);
643 // Was our button held down or pressed?
644 int button_pressed
= BUTTON_HELD(1000);
647 // Button was held for a second, begin recording
648 if (button_pressed
> 0 && cardRead
== 0)
651 LED(selected
+ 1, 0);
655 DbpString("Starting recording");
657 // wait for button to be released
658 while(BUTTON_PRESS())
661 /* need this delay to prevent catching some weird data */
664 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
665 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
668 LED(selected
+ 1, 0);
669 // Finished recording
671 // If we were previously playing, set playing off
672 // so next button push begins playing what we recorded
679 else if (button_pressed
> 0 && cardRead
== 1)
682 LED(selected
+ 1, 0);
686 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
688 // wait for button to be released
689 while(BUTTON_PRESS())
692 /* need this delay to prevent catching some weird data */
695 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
696 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
699 LED(selected
+ 1, 0);
700 // Finished recording
702 // If we were previously playing, set playing off
703 // so next button push begins playing what we recorded
710 // Change where to record (or begin playing)
711 else if (button_pressed
)
713 // Next option if we were previously playing
715 selected
= (selected
+ 1) % OPTS
;
719 LED(selected
+ 1, 0);
721 // Begin transmitting
725 DbpString("Playing");
726 // wait for button to be released
727 while(BUTTON_PRESS())
729 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
730 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
731 DbpString("Done playing");
732 if (BUTTON_HELD(1000) > 0)
734 DbpString("Exiting");
739 /* We pressed a button so ignore it here with a delay */
742 // when done, we're done playing, move to next option
743 selected
= (selected
+ 1) % OPTS
;
746 LED(selected
+ 1, 0);
749 while(BUTTON_PRESS())
758 Listen and detect an external reader. Determine the best location
762 Inside the ListenReaderField() function, there is two mode.
763 By default, when you call the function, you will enter mode 1.
764 If you press the PM3 button one time, you will enter mode 2.
765 If you press the PM3 button a second time, you will exit the function.
767 DESCRIPTION OF MODE 1:
768 This mode just listens for an external reader field and lights up green
769 for HF and/or red for LF. This is the original mode of the detectreader
772 DESCRIPTION OF MODE 2:
773 This mode will visually represent, using the LEDs, the actual strength of the
774 current compared to the maximum current detected. Basically, once you know
775 what kind of external reader is present, it will help you spot the best location to place
776 your antenna. You will probably not get some good results if there is a LF and a HF reader
777 at the same place! :-)
781 static const char LIGHT_SCHEME
[] = {
782 0x0, /* ---- | No field detected */
783 0x1, /* X--- | 14% of maximum current detected */
784 0x2, /* -X-- | 29% of maximum current detected */
785 0x4, /* --X- | 43% of maximum current detected */
786 0x8, /* ---X | 57% of maximum current detected */
787 0xC, /* --XX | 71% of maximum current detected */
788 0xE, /* -XXX | 86% of maximum current detected */
789 0xF, /* XXXX | 100% of maximum current detected */
791 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
793 void ListenReaderField(int limit
)
795 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
796 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
797 int mode
=1, display_val
, display_max
, i
;
801 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
804 // switch off FPGA - we don't want to measure our own signal
805 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
806 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
810 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
812 if(limit
!= HF_ONLY
) {
813 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
817 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
819 if (limit
!= LF_ONLY
) {
820 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
825 if (BUTTON_PRESS()) {
830 DbpString("Signal Strength Mode");
834 DbpString("Stopped");
842 if (limit
!= HF_ONLY
) {
844 if (abs(lf_av
- lf_baseline
) > REPORT_CHANGE
)
850 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
851 // see if there's a significant change
852 if(abs(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
853 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
860 if (limit
!= LF_ONLY
) {
862 if (abs(hf_av
- hf_baseline
) > REPORT_CHANGE
)
868 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
869 // see if there's a significant change
870 if(abs(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
871 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
879 if (limit
== LF_ONLY
) {
881 display_max
= lf_max
;
882 } else if (limit
== HF_ONLY
) {
884 display_max
= hf_max
;
885 } else { /* Pick one at random */
886 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
888 display_max
= hf_max
;
891 display_max
= lf_max
;
894 for (i
=0; i
<LIGHT_LEN
; i
++) {
895 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
896 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
897 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
898 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
899 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
907 void UsbPacketReceived(uint8_t *packet
, int len
)
909 UsbCommand
*c
= (UsbCommand
*)packet
;
911 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
915 case CMD_SET_LF_SAMPLING_CONFIG
:
916 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
918 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
919 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0]),0,0,0,0);
921 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
922 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
924 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
925 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
927 case CMD_HID_DEMOD_FSK
:
928 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
930 case CMD_HID_SIM_TAG
:
931 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
933 case CMD_FSK_SIM_TAG
:
934 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
936 case CMD_ASK_SIM_TAG
:
937 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
939 case CMD_PSK_SIM_TAG
:
940 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
942 case CMD_HID_CLONE_TAG
:
943 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
945 case CMD_IO_DEMOD_FSK
:
946 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
948 case CMD_IO_CLONE_TAG
:
949 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
951 case CMD_EM410X_DEMOD
:
952 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
954 case CMD_EM410X_WRITE_TAG
:
955 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
957 case CMD_READ_TI_TYPE
:
960 case CMD_WRITE_TI_TYPE
:
961 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
963 case CMD_SIMULATE_TAG_125K
:
965 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
968 case CMD_LF_SIMULATE_BIDIR
:
969 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
971 case CMD_INDALA_CLONE_TAG
:
972 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
974 case CMD_INDALA_CLONE_TAG_L
:
975 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
977 case CMD_T55XX_READ_BLOCK
:
978 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
980 case CMD_T55XX_WRITE_BLOCK
:
981 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
982 cmd_send(CMD_ACK
,0,0,0,0,0);
984 case CMD_T55XX_READ_TRACE
:
987 case CMD_PCF7931_READ
:
989 cmd_send(CMD_ACK
,0,0,0,0,0);
991 case CMD_PCF7931_WRITE
:
992 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
994 case CMD_EM4X_READ_WORD
:
995 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
997 case CMD_EM4X_WRITE_WORD
:
998 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
1000 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1001 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1006 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1007 SnoopHitag(c
->arg
[0]);
1009 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1010 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1012 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1013 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1017 #ifdef WITH_ISO15693
1018 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1019 AcquireRawAdcSamplesIso15693();
1021 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1022 RecordRawAdcSamplesIso15693();
1025 case CMD_ISO_15693_COMMAND
:
1026 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1029 case CMD_ISO_15693_FIND_AFI
:
1030 BruteforceIso15693Afi(c
->arg
[0]);
1033 case CMD_ISO_15693_DEBUG
:
1034 SetDebugIso15693(c
->arg
[0]);
1037 case CMD_READER_ISO_15693
:
1038 ReaderIso15693(c
->arg
[0]);
1040 case CMD_SIMTAG_ISO_15693
:
1041 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1046 case CMD_SIMULATE_TAG_LEGIC_RF
:
1047 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1050 case CMD_WRITER_LEGIC_RF
:
1051 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1054 case CMD_READER_LEGIC_RF
:
1055 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1059 #ifdef WITH_ISO14443b
1060 case CMD_READ_SRI512_TAG
:
1061 ReadSTMemoryIso14443b(0x0F);
1063 case CMD_READ_SRIX4K_TAG
:
1064 ReadSTMemoryIso14443b(0x7F);
1066 case CMD_SNOOP_ISO_14443B
:
1069 case CMD_SIMULATE_TAG_ISO_14443B
:
1070 SimulateIso14443bTag();
1072 case CMD_ISO_14443B_COMMAND
:
1073 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1077 #ifdef WITH_ISO14443a
1078 case CMD_SNOOP_ISO_14443a
:
1079 SnoopIso14443a(c
->arg
[0]);
1081 case CMD_READER_ISO_14443a
:
1084 case CMD_SIMULATE_TAG_ISO_14443a
:
1085 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1088 case CMD_EPA_PACE_COLLECT_NONCE
:
1089 EPA_PACE_Collect_Nonce(c
);
1091 case CMD_EPA_PACE_REPLAY
:
1095 case CMD_READER_MIFARE
:
1096 ReaderMifare(c
->arg
[0]);
1098 case CMD_MIFARE_READBL
:
1099 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1101 case CMD_MIFAREU_READBL
:
1102 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1104 case CMD_MIFAREUC_AUTH
:
1105 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1107 case CMD_MIFAREU_READCARD
:
1108 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1110 case CMD_MIFAREUC_SETPWD
:
1111 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1113 case CMD_MIFARE_READSC
:
1114 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1116 case CMD_MIFARE_WRITEBL
:
1117 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1119 //case CMD_MIFAREU_WRITEBL_COMPAT:
1120 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1122 case CMD_MIFAREU_WRITEBL
:
1123 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1125 case CMD_MIFARE_NESTED
:
1126 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1128 case CMD_MIFARE_CHKKEYS
:
1129 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1131 case CMD_SIMULATE_MIFARE_CARD
:
1132 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1136 case CMD_MIFARE_SET_DBGMODE
:
1137 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1139 case CMD_MIFARE_EML_MEMCLR
:
1140 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1142 case CMD_MIFARE_EML_MEMSET
:
1143 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1145 case CMD_MIFARE_EML_MEMGET
:
1146 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1148 case CMD_MIFARE_EML_CARDLOAD
:
1149 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1152 // Work with "magic Chinese" card
1153 case CMD_MIFARE_CSETBLOCK
:
1154 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1156 case CMD_MIFARE_CGETBLOCK
:
1157 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1159 case CMD_MIFARE_CIDENT
:
1164 case CMD_MIFARE_SNIFFER
:
1165 SniffMifare(c
->arg
[0]);
1171 // Makes use of ISO14443a FPGA Firmware
1172 case CMD_SNOOP_ICLASS
:
1175 case CMD_SIMULATE_TAG_ICLASS
:
1176 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1178 case CMD_READER_ICLASS
:
1179 ReaderIClass(c
->arg
[0]);
1181 case CMD_READER_ICLASS_REPLAY
:
1182 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1184 case CMD_ICLASS_EML_MEMSET
:
1185 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1187 case CMD_ICLASS_WRITEBLOCK
:
1188 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1190 case CMD_ICLASS_READCHECK
: // auth step 1
1191 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1193 case CMD_ICLASS_READBLOCK
:
1194 iClass_ReadBlk(c
->arg
[0]);
1196 case CMD_ICLASS_AUTHENTICATION
: //check
1197 iClass_Authentication(c
->d
.asBytes
);
1199 case CMD_ICLASS_DUMP
:
1200 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1202 case CMD_ICLASS_CLONE
:
1203 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1207 case CMD_BUFF_CLEAR
:
1211 case CMD_MEASURE_ANTENNA_TUNING
:
1212 MeasureAntennaTuning();
1215 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1216 MeasureAntennaTuningHf();
1219 case CMD_LISTEN_READER_FIELD
:
1220 ListenReaderField(c
->arg
[0]);
1223 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1224 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1226 LED_D_OFF(); // LED D indicates field ON or OFF
1229 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1232 uint8_t *BigBuf
= BigBuf_get_addr();
1233 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1234 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1235 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1237 // Trigger a finish downloading signal with an ACK frame
1238 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1242 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1243 uint8_t *b
= BigBuf_get_addr();
1244 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1245 cmd_send(CMD_ACK
,0,0,0,0,0);
1252 case CMD_SET_LF_DIVISOR
:
1253 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1254 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1257 case CMD_SET_ADC_MUX
:
1259 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1260 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1261 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1262 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1273 cmd_send(CMD_ACK
,0,0,0,0,0);
1283 case CMD_SETUP_WRITE
:
1284 case CMD_FINISH_WRITE
:
1285 case CMD_HARDWARE_RESET
:
1289 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1291 // We're going to reset, and the bootrom will take control.
1295 case CMD_START_FLASH
:
1296 if(common_area
.flags
.bootrom_present
) {
1297 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1300 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1304 case CMD_DEVICE_INFO
: {
1305 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1306 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1307 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1311 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1316 void __attribute__((noreturn
)) AppMain(void)
1320 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1321 /* Initialize common area */
1322 memset(&common_area
, 0, sizeof(common_area
));
1323 common_area
.magic
= COMMON_AREA_MAGIC
;
1324 common_area
.version
= 1;
1326 common_area
.flags
.osimage_present
= 1;
1336 // The FPGA gets its clock from us from PCK0 output, so set that up.
1337 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1338 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1339 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1340 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1341 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1342 AT91C_PMC_PRES_CLK_4
;
1343 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1346 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1348 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1350 // Load the FPGA image, which we have stored in our flash.
1351 // (the HF version by default)
1352 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1360 byte_t rx
[sizeof(UsbCommand
)];
1365 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1367 UsbPacketReceived(rx
,rx_len
);
1373 #ifndef WITH_ISO14443a_StandAlone
1374 if (BUTTON_HELD(1000) > 0)
1378 #ifdef WITH_ISO14443a
1379 #ifdef WITH_ISO14443a_StandAlone
1380 if (BUTTON_HELD(1000) > 0)
1381 StandAloneMode14a();