]> cvs.zerfleddert.de Git - proxmark3-svn/blob - client/mifarehost.c
ADD: Started to add a Presco LF clone functionality. Can calc Wiegand from printed...
[proxmark3-svn] / client / mifarehost.c
1 // Merlok, 2011, 2012
2 // people from mifare@nethemba.com, 2010
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // mifare commands
9 //-----------------------------------------------------------------------------
10
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <pthread.h>
15 #include "mifarehost.h"
16 #include "proxmark3.h"
17 //#include "radixsort.h"
18
19 // MIFARE
20 int compar_int(const void * a, const void * b) {
21 // didn't work: (the result is truncated to 32 bits)
22 //return (*(uint64_t*)b - *(uint64_t*)a);
23
24 // better:
25 if (*(uint64_t*)b < *(uint64_t*)a) return -1;
26 if (*(uint64_t*)b > *(uint64_t*)a) return 1;
27 return 0;
28
29 //return (*(uint64_t*)b > *(uint64_t*)a) - (*(uint64_t*)b < *(uint64_t*)a);
30 }
31
32 // Compare 16 Bits out of cryptostate
33 int Compare16Bits(const void * a, const void * b) {
34
35 if ((*(uint64_t*)b & 0x00ff000000ff0000) < (*(uint64_t*)a & 0x00ff000000ff0000)) return -1;
36 if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1;
37 return 0;
38
39 /*return
40 ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000))
41 -
42 ((*(uint64_t*)b & 0x00ff000000ff0000) < (*(uint64_t*)a & 0x00ff000000ff0000))
43 ;
44 */
45 }
46
47 typedef
48 struct {
49 union {
50 struct Crypto1State *slhead;
51 uint64_t *keyhead;
52 } head;
53 union {
54 struct Crypto1State *sltail;
55 uint64_t *keytail;
56 } tail;
57 uint32_t len;
58 uint32_t uid;
59 uint32_t blockNo;
60 uint32_t keyType;
61 uint32_t nt;
62 uint32_t ks1;
63 } StateList_t;
64
65
66 // wrapper function for multi-threaded lfsr_recovery32
67 void* nested_worker_thread(void *arg)
68 {
69 struct Crypto1State *p1;
70 StateList_t *statelist = arg;
71
72 statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid);
73
74 for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++);
75
76 statelist->len = p1 - statelist->head.slhead;
77 statelist->tail.sltail = --p1;
78 qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits);
79
80 return statelist->head.slhead;
81 }
82
83 int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t * resultKey, bool calibrate)
84 {
85 uint16_t i;
86 uint32_t uid;
87 UsbCommand resp;
88 StateList_t statelists[2];
89 struct Crypto1State *p1, *p2, *p3, *p4;
90
91 UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
92 memcpy(c.d.asBytes, key, 6);
93 clearCommandBuffer();
94 SendCommand(&c);
95 if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return -1;
96
97 // error during nested
98 if (resp.arg[0]) return resp.arg[0];
99
100 // memcpy(&uid, resp.d.asBytes, 4);
101 uid = bytes_to_num(resp.d.asBytes, 4);
102
103 for (i = 0; i < 2; i++) {
104 statelists[i].blockNo = resp.arg[2] & 0xff;
105 statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
106 statelists[i].uid = uid;
107 memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
108 memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
109 }
110
111 // calc keys
112 pthread_t thread_id[2];
113
114 // create and run worker threads
115 for (i = 0; i < 2; i++)
116 pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
117
118 // wait for threads to terminate:
119 for (i = 0; i < 2; i++)
120 pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
121
122 // the first 16 Bits of the cryptostate already contain part of our key.
123 // Create the intersection of the two lists based on these 16 Bits and
124 // roll back the cryptostate
125 p1 = p3 = statelists[0].head.slhead;
126 p2 = p4 = statelists[1].head.slhead;
127
128 while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) {
129 if (Compare16Bits(p1, p2) == 0) {
130
131 struct Crypto1State savestate, *savep = &savestate;
132 savestate = *p1;
133 while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
134 *p3 = *p1;
135 lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0);
136 p3++;
137 p1++;
138 }
139 savestate = *p2;
140 while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
141 *p4 = *p2;
142 lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0);
143 p4++;
144 p2++;
145 }
146 }
147 else {
148 while (Compare16Bits(p1, p2) == -1) p1++;
149 while (Compare16Bits(p1, p2) == 1) p2++;
150 }
151 }
152
153 p3->even = 0; p3->odd = 0;
154 p4->even = 0; p4->odd = 0;
155 statelists[0].len = p3 - statelists[0].head.slhead;
156 statelists[1].len = p4 - statelists[1].head.slhead;
157 statelists[0].tail.sltail=--p3;
158 statelists[1].tail.sltail=--p4;
159
160 // the statelists now contain possible keys. The key we are searching for must be in the
161 // intersection of both lists. Create the intersection:
162 qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compar_int);
163 qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compar_int);
164
165 uint64_t *p5, *p6, *p7;
166 p5 = p7 = statelists[0].head.keyhead;
167 p6 = statelists[1].head.keyhead;
168 while (p5 <= statelists[0].tail.keytail && p6 <= statelists[1].tail.keytail) {
169 if (compar_int(p5, p6) == 0) {
170 *p7++ = *p5++;
171 p6++;
172 }
173 else {
174 while (compar_int(p5, p6) == -1) p5++;
175 while (compar_int(p5, p6) == 1) p6++;
176 }
177 }
178 statelists[0].len = p7 - statelists[0].head.keyhead;
179 statelists[0].tail.keytail = --p7;
180
181 memset(resultKey, 0, 6);
182 uint64_t key64 = 0;
183
184 // The list may still contain several key candidates. Test each of them with mfCheckKeys
185 // uint32_t max_keys = keycnt > (USB_CMD_DATA_SIZE/6) ? (USB_CMD_DATA_SIZE/6) : keycnt;
186
187 uint32_t numOfCandidates = statelists[0].len;
188 if ( numOfCandidates == 0 ) goto out;
189
190 uint8_t *keyBlock = malloc(numOfCandidates*6);
191 if (keyBlock == NULL) return -6;
192
193 for (i = 0; i < numOfCandidates; ++i){
194 crypto1_get_lfsr(statelists[0].head.slhead + i, &key64);
195 num_to_bytes(key64, 6, keyBlock + i * 6);
196 }
197
198 if (!mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, false, numOfCandidates, keyBlock, &key64)) {
199 free(statelists[0].head.slhead);
200 free(statelists[1].head.slhead);
201 free(keyBlock);
202 num_to_bytes(key64, 6, resultKey);
203
204 PrintAndLog("UID: %08x target block:%3u key type: %c -- Found key [%012"llx"]",
205 uid,
206 (uint16_t)resp.arg[2] & 0xff,
207 (resp.arg[2] >> 8) ? 'B' : 'A',
208 key64
209 );
210 return -5;
211 }
212
213 out:
214 PrintAndLog("UID: %08x target block:%3u key type: %c",
215 uid,
216 (uint16_t)resp.arg[2] & 0xff,
217 (resp.arg[2] >> 8) ? 'B' : 'A'
218 );
219
220 free(statelists[0].head.slhead);
221 free(statelists[1].head.slhead);
222 return -4;
223 }
224
225 int mfCheckKeys (uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){
226
227 *key = 0;
228 UsbCommand c = {CMD_MIFARE_CHKKEYS, { (blockNo | (keyType<<8)), clear_trace, keycnt}};
229 memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
230 clearCommandBuffer();
231 SendCommand(&c);
232 UsbCommand resp;
233 if (!WaitForResponseTimeout(CMD_ACK,&resp, 3000)) return 1;
234 if ((resp.arg[0] & 0xff) != 0x01) return 2;
235 *key = bytes_to_num(resp.d.asBytes, 6);
236 return 0;
237 }
238
239 // EMULATOR
240
241 int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
242 UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}};
243 clearCommandBuffer();
244 SendCommand(&c);
245 UsbCommand resp;
246 if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) return 1;
247 memcpy(data, resp.d.asBytes, blocksCount * 16);
248 return 0;
249 }
250
251 int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) {
252 return mfEmlSetMem_xt(data, blockNum, blocksCount, 16);
253 }
254
255 int mfEmlSetMem_xt(uint8_t *data, int blockNum, int blocksCount, int blockBtWidth) {
256 UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, blockBtWidth}};
257 memcpy(c.d.asBytes, data, blocksCount * blockBtWidth);
258
259 clearCommandBuffer();
260 SendCommand(&c);
261 return 0;
262 }
263
264 // "MAGIC" CARD
265
266 int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, uint8_t wipecard) {
267
268 uint8_t params = MAGIC_SINGLE;
269 uint8_t block0[16];
270 memset(block0, 0x00, sizeof(block0));
271
272 int old = mfCGetBlock(0, block0, params);
273 if (old == 0)
274 PrintAndLog("old block 0: %s", sprint_hex(block0, sizeof(block0)));
275 else
276 PrintAndLog("Couldn't get old data. Will write over the last bytes of Block 0.");
277
278 // fill in the new values
279 // UID
280 memcpy(block0, uid, 4);
281 // Mifare UID BCC
282 block0[4] = block0[0]^block0[1]^block0[2]^block0[3];
283 // mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed)
284 if ( sak != NULL )
285 block0[5]=sak[0];
286
287 if ( atqa != NULL ) {
288 block0[6]=atqa[1];
289 block0[7]=atqa[0];
290 }
291 PrintAndLog("new block 0: %s", sprint_hex(block0,16));
292
293 if ( wipecard ) params |= MAGIC_WIPE;
294 if ( oldUID == NULL) params |= MAGIC_UID;
295
296 return mfCSetBlock(0, block0, oldUID, params);
297 }
298
299 int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, uint8_t params) {
300
301 uint8_t isOK = 0;
302 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params, blockNo, 0}};
303 memcpy(c.d.asBytes, data, 16);
304 clearCommandBuffer();
305 SendCommand(&c);
306 UsbCommand resp;
307 if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
308 isOK = resp.arg[0] & 0xff;
309 if (uid != NULL)
310 memcpy(uid, resp.d.asBytes, 4);
311 if (!isOK)
312 return 2;
313 } else {
314 PrintAndLog("Command execute timeout");
315 return 1;
316 }
317 return 0;
318 }
319
320 int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) {
321 uint8_t isOK = 0;
322 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
323 clearCommandBuffer();
324 SendCommand(&c);
325 UsbCommand resp;
326 if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
327 isOK = resp.arg[0] & 0xff;
328 memcpy(data, resp.d.asBytes, 16);
329 if (!isOK) return 2;
330 } else {
331 PrintAndLog("Command execute timeout");
332 return 1;
333 }
334 return 0;
335 }
336
337 // SNIFFER
338
339 // constants
340 static uint8_t trailerAccessBytes[4] = {0x08, 0x77, 0x8F, 0x00};
341
342 // variables
343 char logHexFileName[FILE_PATH_SIZE] = {0x00};
344 static uint8_t traceCard[4096] = {0x00};
345 static char traceFileName[FILE_PATH_SIZE] = {0x00};
346 static int traceState = TRACE_IDLE;
347 static uint8_t traceCurBlock = 0;
348 static uint8_t traceCurKey = 0;
349
350 struct Crypto1State *traceCrypto1 = NULL;
351
352 struct Crypto1State *revstate = NULL;
353
354 uint64_t key = 0;
355 uint32_t ks2 = 0;
356 uint32_t ks3 = 0;
357
358 uint32_t uid = 0; // serial number
359 uint32_t nt =0; // tag challenge
360 uint32_t nr_enc =0; // encrypted reader challenge
361 uint32_t ar_enc =0; // encrypted reader response
362 uint32_t at_enc =0; // encrypted tag response
363
364 int isTraceCardEmpty(void) {
365 return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0));
366 }
367
368 int isBlockEmpty(int blockN) {
369 for (int i = 0; i < 16; i++)
370 if (traceCard[blockN * 16 + i] != 0) return 0;
371
372 return 1;
373 }
374
375 int isBlockTrailer(int blockN) {
376 return ((blockN & 0x03) == 0x03);
377 }
378
379 int loadTraceCard(uint8_t *tuid) {
380 FILE * f;
381 char buf[64] = {0x00};
382 uint8_t buf8[64] = {0x00};
383 int i, blockNum;
384
385 if (!isTraceCardEmpty())
386 saveTraceCard();
387
388 memset(traceCard, 0x00, 4096);
389 memcpy(traceCard, tuid + 3, 4);
390
391 FillFileNameByUID(traceFileName, tuid, ".eml", 7);
392
393 f = fopen(traceFileName, "r");
394 if (!f) return 1;
395
396 blockNum = 0;
397
398 while(!feof(f)){
399
400 memset(buf, 0, sizeof(buf));
401 if (fgets(buf, sizeof(buf), f) == NULL) {
402 PrintAndLog("File reading error.");
403 fclose(f);
404 return 2;
405 }
406
407 if (strlen(buf) < 32){
408 if (feof(f)) break;
409 PrintAndLog("File content error. Block data must include 32 HEX symbols");
410 fclose(f);
411 return 2;
412 }
413 for (i = 0; i < 32; i += 2)
414 sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]);
415
416 memcpy(traceCard + blockNum * 16, buf8, 16);
417
418 blockNum++;
419 }
420 fclose(f);
421
422 return 0;
423 }
424
425 int saveTraceCard(void) {
426 FILE * f;
427
428 if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0;
429
430 f = fopen(traceFileName, "w+");
431 if ( !f ) return 1;
432
433 for (int i = 0; i < 64; i++) { // blocks
434 for (int j = 0; j < 16; j++) // bytes
435 fprintf(f, "%02x", *(traceCard + i * 16 + j));
436 fprintf(f,"\n");
437 }
438 fclose(f);
439 return 0;
440 }
441
442 int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) {
443
444 if (traceCrypto1)
445 crypto1_destroy(traceCrypto1);
446
447 traceCrypto1 = NULL;
448
449 if (wantSaveToEmlFile)
450 loadTraceCard(tuid);
451
452 traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3];
453 traceCard[5] = sak;
454 memcpy(&traceCard[6], atqa, 2);
455 traceCurBlock = 0;
456 uid = bytes_to_num(tuid + 3, 4);
457
458 traceState = TRACE_IDLE;
459
460 return 0;
461 }
462
463 void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){
464 uint8_t bt = 0;
465 int i;
466
467 if (len != 1) {
468 for (i = 0; i < len; i++)
469 data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i];
470 } else {
471 bt = 0;
472 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 0)) << 0;
473 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 1)) << 1;
474 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 2)) << 2;
475 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 3)) << 3;
476 data[0] = bt;
477 }
478 return;
479 }
480
481 int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
482
483 uint8_t data[64];
484
485 if (traceState == TRACE_ERROR) return 1;
486
487 if (len > 64) {
488 traceState = TRACE_ERROR;
489 return 1;
490 }
491
492 memcpy(data, data_src, len);
493 if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) {
494 mf_crypto1_decrypt(traceCrypto1, data, len, 0);
495 PrintAndLog("dec> %s", sprint_hex(data, len));
496 AddLogHex(logHexFileName, "dec> ", data, len);
497 }
498
499 switch (traceState) {
500 case TRACE_IDLE:
501 // check packet crc16!
502 if ((len >= 4) && (!CheckCrc14443(CRC_14443_A, data, len))) {
503 PrintAndLog("dec> CRC ERROR!!!");
504 AddLogLine(logHexFileName, "dec> ", "CRC ERROR!!!");
505 traceState = TRACE_ERROR; // do not decrypt the next commands
506 return 1;
507 }
508
509 // AUTHENTICATION
510 if ((len == 4) && ((data[0] == 0x60) || (data[0] == 0x61))) {
511 traceState = TRACE_AUTH1;
512 traceCurBlock = data[1];
513 traceCurKey = data[0] == 60 ? 1:0;
514 return 0;
515 }
516
517 // READ
518 if ((len ==4) && ((data[0] == 0x30))) {
519 traceState = TRACE_READ_DATA;
520 traceCurBlock = data[1];
521 return 0;
522 }
523
524 // WRITE
525 if ((len ==4) && ((data[0] == 0xA0))) {
526 traceState = TRACE_WRITE_OK;
527 traceCurBlock = data[1];
528 return 0;
529 }
530
531 // HALT
532 if ((len ==4) && ((data[0] == 0x50) && (data[1] == 0x00))) {
533 traceState = TRACE_ERROR; // do not decrypt the next commands
534 return 0;
535 }
536
537 return 0;
538 break;
539
540 case TRACE_READ_DATA:
541 if (len == 18) {
542 traceState = TRACE_IDLE;
543
544 if (isBlockTrailer(traceCurBlock)) {
545 memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4);
546 } else {
547 memcpy(traceCard + traceCurBlock * 16, data, 16);
548 }
549 if (wantSaveToEmlFile) saveTraceCard();
550 return 0;
551 } else {
552 traceState = TRACE_ERROR;
553 return 1;
554 }
555 break;
556
557 case TRACE_WRITE_OK:
558 if ((len == 1) && (data[0] == 0x0a)) {
559 traceState = TRACE_WRITE_DATA;
560
561 return 0;
562 } else {
563 traceState = TRACE_ERROR;
564 return 1;
565 }
566 break;
567
568 case TRACE_WRITE_DATA:
569 if (len == 18) {
570 traceState = TRACE_IDLE;
571
572 memcpy(traceCard + traceCurBlock * 16, data, 16);
573 if (wantSaveToEmlFile) saveTraceCard();
574 return 0;
575 } else {
576 traceState = TRACE_ERROR;
577 return 1;
578 }
579 break;
580
581 case TRACE_AUTH1:
582 if (len == 4) {
583 traceState = TRACE_AUTH2;
584 nt = bytes_to_num(data, 4);
585 return 0;
586 } else {
587 traceState = TRACE_ERROR;
588 return 1;
589 }
590 break;
591
592 case TRACE_AUTH2:
593 if (len == 8) {
594 traceState = TRACE_AUTH_OK;
595
596 nr_enc = bytes_to_num(data, 4);
597 ar_enc = bytes_to_num(data + 4, 4);
598 return 0;
599 } else {
600 traceState = TRACE_ERROR;
601 return 1;
602 }
603 break;
604
605 case TRACE_AUTH_OK:
606 if (len ==4) {
607 traceState = TRACE_IDLE;
608
609 at_enc = bytes_to_num(data, 4);
610
611 // decode key here)
612 ks2 = ar_enc ^ prng_successor(nt, 64);
613 ks3 = at_enc ^ prng_successor(nt, 96);
614 revstate = lfsr_recovery64(ks2, ks3);
615 lfsr_rollback_word(revstate, 0, 0);
616 lfsr_rollback_word(revstate, 0, 0);
617 lfsr_rollback_word(revstate, nr_enc, 1);
618 lfsr_rollback_word(revstate, uid ^ nt, 0);
619
620 crypto1_get_lfsr(revstate, &key);
621 printf("Key: %012"llx"\n",key);
622 AddLogUint64(logHexFileName, "key: ", key);
623
624 int blockShift = ((traceCurBlock & 0xFC) + 3) * 16;
625 if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4);
626
627 if (traceCurKey) {
628 num_to_bytes(key, 6, traceCard + blockShift + 10);
629 } else {
630 num_to_bytes(key, 6, traceCard + blockShift);
631 }
632 if (wantSaveToEmlFile) saveTraceCard();
633
634 if (traceCrypto1) {
635 crypto1_destroy(traceCrypto1);
636 }
637
638 // set cryptosystem state
639 traceCrypto1 = lfsr_recovery64(ks2, ks3);
640
641 // nt = crypto1_word(traceCrypto1, nt ^ uid, 1) ^ nt;
642
643 /* traceCrypto1 = crypto1_create(key); // key in lfsr
644 crypto1_word(traceCrypto1, nt ^ uid, 0);
645 crypto1_word(traceCrypto1, ar, 1);
646 crypto1_word(traceCrypto1, 0, 0);
647 crypto1_word(traceCrypto1, 0, 0);*/
648
649 return 0;
650 } else {
651 traceState = TRACE_ERROR;
652 return 1;
653 }
654 break;
655
656 default:
657 traceState = TRACE_ERROR;
658 return 1;
659 }
660
661 return 0;
662 }
663
664 int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data, int len){
665 /*
666 uint32_t nt; // tag challenge
667 uint32_t nr_enc; // encrypted reader challenge
668 uint32_t ar_enc; // encrypted reader response
669 uint32_t at_enc; // encrypted tag response
670 */
671 struct Crypto1State *pcs = NULL;
672
673 ks2 = ar_enc ^ prng_successor(nt, 64);
674 ks3 = at_enc ^ prng_successor(nt, 96);
675
676 PrintAndLog("Decrypting data with:");
677 PrintAndLog(" nt: %08x",nt);
678 PrintAndLog(" ar_enc: %08x",ar_enc);
679 PrintAndLog(" at_enc: %08x",at_enc);
680 PrintAndLog("\nEncrypted data: [%s]", sprint_hex(data,len) );
681
682 pcs = lfsr_recovery64(ks2, ks3);
683 mf_crypto1_decrypt(pcs, data, len, FALSE);
684 PrintAndLog("Decrypted data: [%s]", sprint_hex(data,len) );
685 crypto1_destroy(pcs);
686 return 0;
687 }
Impressum, Datenschutz