1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
19 #include "iso14443crc.h"
20 #include "iso14443a.h"
22 #include "mifareutil.h"
24 static uint32_t iso14a_timeout
;
27 // the block number for the ISO14443-4 PCB
28 static uint8_t iso14_pcb_blocknum
= 0;
33 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
34 #define REQUEST_GUARD_TIME (7000/16 + 1)
35 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
36 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
37 // bool LastCommandWasRequest = FALSE;
40 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
42 // When the PM acts as reader and is receiving tag data, it takes
43 // 3 ticks delay in the AD converter
44 // 16 ticks until the modulation detector completes and sets curbit
45 // 8 ticks until bit_to_arm is assigned from curbit
46 // 8*16 ticks for the transfer from FPGA to ARM
47 // 4*16 ticks until we measure the time
48 // - 8*16 ticks because we measure the time of the previous transfer
49 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
51 // When the PM acts as a reader and is sending, it takes
52 // 4*16 ticks until we can write data to the sending hold register
53 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
54 // 8 ticks until the first transfer starts
55 // 8 ticks later the FPGA samples the data
56 // 1 tick to assign mod_sig_coil
57 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
59 // When the PM acts as tag and is receiving it takes
60 // 2 ticks delay in the RF part (for the first falling edge),
61 // 3 ticks for the A/D conversion,
62 // 8 ticks on average until the start of the SSC transfer,
63 // 8 ticks until the SSC samples the first data
64 // 7*16 ticks to complete the transfer from FPGA to ARM
65 // 8 ticks until the next ssp_clk rising edge
66 // 4*16 ticks until we measure the time
67 // - 8*16 ticks because we measure the time of the previous transfer
68 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
70 // The FPGA will report its internal sending delay in
71 uint16_t FpgaSendQueueDelay
;
72 // the 5 first bits are the number of bits buffered in mod_sig_buf
73 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
74 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
76 // When the PM acts as tag and is sending, it takes
77 // 4*16 ticks until we can write data to the sending hold register
78 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
79 // 8 ticks until the first transfer starts
80 // 8 ticks later the FPGA samples the data
81 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
82 // + 1 tick to assign mod_sig_coil
83 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
85 // When the PM acts as sniffer and is receiving tag data, it takes
86 // 3 ticks A/D conversion
87 // 14 ticks to complete the modulation detection
88 // 8 ticks (on average) until the result is stored in to_arm
89 // + the delays in transferring data - which is the same for
90 // sniffing reader and tag data and therefore not relevant
91 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
93 // When the PM acts as sniffer and is receiving reader data, it takes
94 // 2 ticks delay in analogue RF receiver (for the falling edge of the
95 // start bit, which marks the start of the communication)
96 // 3 ticks A/D conversion
97 // 8 ticks on average until the data is stored in to_arm.
98 // + the delays in transferring data - which is the same for
99 // sniffing reader and tag data and therefore not relevant
100 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
102 //variables used for timing purposes:
103 //these are in ssp_clk cycles:
104 static uint32_t NextTransferTime
;
105 static uint32_t LastTimeProxToAirStart
;
106 static uint32_t LastProxToAirDuration
;
110 // CARD TO READER - manchester
111 // Sequence D: 11110000 modulation with subcarrier during first half
112 // Sequence E: 00001111 modulation with subcarrier during second half
113 // Sequence F: 00000000 no modulation with subcarrier
114 // READER TO CARD - miller
115 // Sequence X: 00001100 drop after half a period
116 // Sequence Y: 00000000 no drop
117 // Sequence Z: 11000000 drop at start
125 const uint8_t OddByteParity
[256] = {
126 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
127 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
128 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
129 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
130 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
137 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
138 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
141 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
145 void iso14a_set_trigger(bool enable
) {
150 void iso14a_set_timeout(uint32_t timeout
) {
151 iso14a_timeout
= timeout
;
152 if(MF_DBGLEVEL
>= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout
, iso14a_timeout
/ 106);
156 void iso14a_set_ATS_timeout(uint8_t *ats
) {
162 if (ats
[0] > 1) { // there is a format byte T0
163 if ((ats
[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
164 if ((ats
[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
169 fwi
= (tb1
& 0xf0) >> 4; // frame waiting indicator (FWI)
170 fwt
= 256 * 16 * (1 << fwi
); // frame waiting time (FWT) in 1/fc
172 iso14a_set_timeout(fwt
/(8*16));
178 //-----------------------------------------------------------------------------
179 // Generate the parity value for a byte sequence
181 //-----------------------------------------------------------------------------
182 byte_t
oddparity (const byte_t bt
)
184 return OddByteParity
[bt
];
187 void GetParity(const uint8_t *pbtCmd
, uint16_t iLen
, uint8_t *par
)
189 uint16_t paritybit_cnt
= 0;
190 uint16_t paritybyte_cnt
= 0;
191 uint8_t parityBits
= 0;
193 for (uint16_t i
= 0; i
< iLen
; i
++) {
194 // Generate the parity bits
195 parityBits
|= ((OddByteParity
[pbtCmd
[i
]]) << (7-paritybit_cnt
));
196 if (paritybit_cnt
== 7) {
197 par
[paritybyte_cnt
] = parityBits
; // save 8 Bits parity
198 parityBits
= 0; // and advance to next Parity Byte
206 // save remaining parity bits
207 par
[paritybyte_cnt
] = parityBits
;
211 void AppendCrc14443a(uint8_t* data
, int len
)
213 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
216 //=============================================================================
217 // ISO 14443 Type A - Miller decoder
218 //=============================================================================
220 // This decoder is used when the PM3 acts as a tag.
221 // The reader will generate "pauses" by temporarily switching of the field.
222 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
223 // The FPGA does a comparison with a threshold and would deliver e.g.:
224 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
225 // The Miller decoder needs to identify the following sequences:
226 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
227 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
228 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
229 // Note 1: the bitstream may start at any time. We therefore need to sync.
230 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
231 //-----------------------------------------------------------------------------
234 // Lookup-Table to decide if 4 raw bits are a modulation.
235 // We accept two or three consecutive "0" in any position with the rest "1"
236 const bool Mod_Miller_LUT
[] = {
237 TRUE
, TRUE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, FALSE
,
238 TRUE
, TRUE
, FALSE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
240 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
241 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
245 Uart
.state
= STATE_UNSYNCD
;
247 Uart
.len
= 0; // number of decoded data bytes
248 Uart
.parityLen
= 0; // number of decoded parity bytes
249 Uart
.shiftReg
= 0; // shiftreg to hold decoded data bits
250 Uart
.parityBits
= 0; // holds 8 parity bits
251 Uart
.twoBits
= 0x0000; // buffer for 2 Bits
257 void UartInit(uint8_t *data
, uint8_t *parity
)
260 Uart
.parity
= parity
;
264 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
265 static RAMFUNC
bool MillerDecoding(uint8_t bit
, uint32_t non_real_time
)
268 Uart
.twoBits
= (Uart
.twoBits
<< 8) | bit
;
270 if (Uart
.state
== STATE_UNSYNCD
) { // not yet synced
272 if (Uart
.highCnt
< 2) { // wait for a stable unmodulated signal
273 if (Uart
.twoBits
== 0xffff) {
279 Uart
.syncBit
= 0xFFFF; // not set
280 // we look for a ...1111111100x11111xxxxxx pattern (the start bit)
281 if ((Uart
.twoBits
& 0xDF00) == 0x1F00) Uart
.syncBit
= 8; // mask is 11x11111 xxxxxxxx,
282 // check for 00x11111 xxxxxxxx
283 else if ((Uart
.twoBits
& 0xEF80) == 0x8F80) Uart
.syncBit
= 7; // both masks shifted right one bit, left padded with '1'
284 else if ((Uart
.twoBits
& 0xF7C0) == 0xC7C0) Uart
.syncBit
= 6; // ...
285 else if ((Uart
.twoBits
& 0xFBE0) == 0xE3E0) Uart
.syncBit
= 5;
286 else if ((Uart
.twoBits
& 0xFDF0) == 0xF1F0) Uart
.syncBit
= 4;
287 else if ((Uart
.twoBits
& 0xFEF8) == 0xF8F8) Uart
.syncBit
= 3;
288 else if ((Uart
.twoBits
& 0xFF7C) == 0xFC7C) Uart
.syncBit
= 2;
289 else if ((Uart
.twoBits
& 0xFFBE) == 0xFE3E) Uart
.syncBit
= 1;
290 if (Uart
.syncBit
!= 0xFFFF) { // found a sync bit
291 Uart
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
292 Uart
.startTime
-= Uart
.syncBit
;
293 Uart
.endTime
= Uart
.startTime
;
294 Uart
.state
= STATE_START_OF_COMMUNICATION
;
300 if (IsMillerModulationNibble1(Uart
.twoBits
>> Uart
.syncBit
)) {
301 if (IsMillerModulationNibble2(Uart
.twoBits
>> Uart
.syncBit
)) { // Modulation in both halves - error
303 } else { // Modulation in first half = Sequence Z = logic "0"
304 if (Uart
.state
== STATE_MILLER_X
) { // error - must not follow after X
308 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
309 Uart
.state
= STATE_MILLER_Z
;
310 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 6;
311 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
312 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
313 Uart
.parityBits
<<= 1; // make room for the parity bit
314 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
317 if((Uart
.len
&0x0007) == 0) { // every 8 data bytes
318 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
325 if (IsMillerModulationNibble2(Uart
.twoBits
>> Uart
.syncBit
)) { // Modulation second half = Sequence X = logic "1"
327 Uart
.shiftReg
= (Uart
.shiftReg
>> 1) | 0x100; // add a 1 to the shiftreg
328 Uart
.state
= STATE_MILLER_X
;
329 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 2;
330 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
331 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
332 Uart
.parityBits
<<= 1; // make room for the new parity bit
333 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
336 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
337 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
341 } else { // no modulation in both halves - Sequence Y
342 if (Uart
.state
== STATE_MILLER_Z
|| Uart
.state
== STATE_MILLER_Y
) { // Y after logic "0" - End of Communication
343 Uart
.state
= STATE_UNSYNCD
;
344 Uart
.bitCount
--; // last "0" was part of EOC sequence
345 Uart
.shiftReg
<<= 1; // drop it
346 if(Uart
.bitCount
> 0) { // if we decoded some bits
347 Uart
.shiftReg
>>= (9 - Uart
.bitCount
); // right align them
348 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff); // add last byte to the output
349 Uart
.parityBits
<<= 1; // add a (void) parity bit
350 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align parity bits
351 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store it
353 } else if (Uart
.len
& 0x0007) { // there are some parity bits to store
354 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align remaining parity bits
355 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store them
358 return TRUE
; // we are finished with decoding the raw data sequence
360 UartReset(); // Nothing received - start over
364 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) { // error - must not follow directly after SOC
367 } else { // a logic "0"
369 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
370 Uart
.state
= STATE_MILLER_Y
;
371 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
372 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
373 Uart
.parityBits
<<= 1; // make room for the parity bit
374 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
377 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
378 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
388 return FALSE
; // not finished yet, need more data
393 //=============================================================================
394 // ISO 14443 Type A - Manchester decoder
395 //=============================================================================
397 // This decoder is used when the PM3 acts as a reader.
398 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
399 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
400 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
401 // The Manchester decoder needs to identify the following sequences:
402 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
403 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
404 // 8 ticks unmodulated: Sequence F = end of communication
405 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
406 // Note 1: the bitstream may start at any time. We therefore need to sync.
407 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
410 // Lookup-Table to decide if 4 raw bits are a modulation.
411 // We accept three or four "1" in any position
412 const bool Mod_Manchester_LUT
[] = {
413 FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, TRUE
,
414 FALSE
, FALSE
, FALSE
, TRUE
, FALSE
, TRUE
, TRUE
, TRUE
417 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
418 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
423 Demod
.state
= DEMOD_UNSYNCD
;
424 Demod
.len
= 0; // number of decoded data bytes
426 Demod
.shiftReg
= 0; // shiftreg to hold decoded data bits
427 Demod
.parityBits
= 0; //
428 Demod
.collisionPos
= 0; // Position of collision bit
429 Demod
.twoBits
= 0xffff; // buffer for 2 Bits
435 void DemodInit(uint8_t *data
, uint8_t *parity
)
438 Demod
.parity
= parity
;
442 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
443 static RAMFUNC
int ManchesterDecoding(uint8_t bit
, uint16_t offset
, uint32_t non_real_time
)
446 Demod
.twoBits
= (Demod
.twoBits
<< 8) | bit
;
448 if (Demod
.state
== DEMOD_UNSYNCD
) {
450 if (Demod
.highCnt
< 2) { // wait for a stable unmodulated signal
451 if (Demod
.twoBits
== 0x0000) {
457 Demod
.syncBit
= 0xFFFF; // not set
458 if ((Demod
.twoBits
& 0x7700) == 0x7000) Demod
.syncBit
= 7;
459 else if ((Demod
.twoBits
& 0x3B80) == 0x3800) Demod
.syncBit
= 6;
460 else if ((Demod
.twoBits
& 0x1DC0) == 0x1C00) Demod
.syncBit
= 5;
461 else if ((Demod
.twoBits
& 0x0EE0) == 0x0E00) Demod
.syncBit
= 4;
462 else if ((Demod
.twoBits
& 0x0770) == 0x0700) Demod
.syncBit
= 3;
463 else if ((Demod
.twoBits
& 0x03B8) == 0x0380) Demod
.syncBit
= 2;
464 else if ((Demod
.twoBits
& 0x01DC) == 0x01C0) Demod
.syncBit
= 1;
465 else if ((Demod
.twoBits
& 0x00EE) == 0x00E0) Demod
.syncBit
= 0;
466 if (Demod
.syncBit
!= 0xFFFF) {
467 Demod
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
468 Demod
.startTime
-= Demod
.syncBit
;
469 Demod
.bitCount
= offset
; // number of decoded data bits
470 Demod
.state
= DEMOD_MANCHESTER_DATA
;
476 if (IsManchesterModulationNibble1(Demod
.twoBits
>> Demod
.syncBit
)) { // modulation in first half
477 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // ... and in second half = collision
478 if (!Demod
.collisionPos
) {
479 Demod
.collisionPos
= (Demod
.len
<< 3) + Demod
.bitCount
;
481 } // modulation in first half only - Sequence D = 1
483 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) | 0x100; // in both cases, add a 1 to the shiftreg
484 if(Demod
.bitCount
== 9) { // if we decoded a full byte (including parity)
485 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
486 Demod
.parityBits
<<= 1; // make room for the parity bit
487 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
490 if((Demod
.len
&0x0007) == 0) { // every 8 data bytes
491 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits
492 Demod
.parityBits
= 0;
495 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1) - 4;
496 } else { // no modulation in first half
497 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // and modulation in second half = Sequence E = 0
499 Demod
.shiftReg
= (Demod
.shiftReg
>> 1); // add a 0 to the shiftreg
500 if(Demod
.bitCount
>= 9) { // if we decoded a full byte (including parity)
501 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
502 Demod
.parityBits
<<= 1; // make room for the new parity bit
503 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
506 if ((Demod
.len
&0x0007) == 0) { // every 8 data bytes
507 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits1
508 Demod
.parityBits
= 0;
511 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1);
512 } else { // no modulation in both halves - End of communication
513 if(Demod
.bitCount
> 0) { // there are some remaining data bits
514 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align the decoded bits
515 Demod
.output
[Demod
.len
++] = Demod
.shiftReg
& 0xff; // and add them to the output
516 Demod
.parityBits
<<= 1; // add a (void) parity bit
517 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
518 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
520 } else if (Demod
.len
& 0x0007) { // there are some parity bits to store
521 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
522 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
525 return TRUE
; // we are finished with decoding the raw data sequence
526 } else { // nothing received. Start over
534 return FALSE
; // not finished yet, need more data
537 //=============================================================================
538 // Finally, a `sniffer' for ISO 14443 Type A
539 // Both sides of communication!
540 //=============================================================================
542 //-----------------------------------------------------------------------------
543 // Record the sequence of commands sent by the reader to the tag, with
544 // triggering so that we start recording at the point that the tag is moved
546 //-----------------------------------------------------------------------------
547 void RAMFUNC
SnoopIso14443a(uint8_t param
) {
549 // bit 0 - trigger from first card answer
550 // bit 1 - trigger from first reader 7-bit request
554 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
556 // Allocate memory from BigBuf for some buffers
557 // free all previous allocations first
560 // The command (reader -> tag) that we're receiving.
561 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
562 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
564 // The response (tag -> reader) that we're receiving.
565 uint8_t *receivedResponse
= BigBuf_malloc(MAX_FRAME_SIZE
);
566 uint8_t *receivedResponsePar
= BigBuf_malloc(MAX_PARITY_SIZE
);
568 // The DMA buffer, used to stream samples from the FPGA
569 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
575 uint8_t *data
= dmaBuf
;
576 uint8_t previous_data
= 0;
579 bool TagIsActive
= FALSE
;
580 bool ReaderIsActive
= FALSE
;
582 // Set up the demodulator for tag -> reader responses.
583 DemodInit(receivedResponse
, receivedResponsePar
);
585 // Set up the demodulator for the reader -> tag commands
586 UartInit(receivedCmd
, receivedCmdPar
);
588 // Setup and start DMA.
589 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
591 // We won't start recording the frames that we acquire until we trigger;
592 // a good trigger condition to get started is probably when we see a
593 // response from the tag.
594 // triggered == FALSE -- to wait first for card
595 bool triggered
= !(param
& 0x03);
597 // And now we loop, receiving samples.
598 for(uint32_t rsamples
= 0; TRUE
; ) {
601 DbpString("cancelled by button");
608 int register readBufDataP
= data
- dmaBuf
;
609 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
610 if (readBufDataP
<= dmaBufDataP
){
611 dataLen
= dmaBufDataP
- readBufDataP
;
613 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
;
615 // test for length of buffer
616 if(dataLen
> maxDataLen
) {
617 maxDataLen
= dataLen
;
618 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
619 Dbprintf("blew circular buffer! dataLen=%d", dataLen
);
623 if(dataLen
< 1) continue;
625 // primary buffer was stopped( <-- we lost data!
626 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
627 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
628 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
629 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
631 // secondary buffer sets as primary, secondary buffer was stopped
632 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
633 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
634 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
639 if (rsamples
& 0x01) { // Need two samples to feed Miller and Manchester-Decoder
641 if(!TagIsActive
) { // no need to try decoding reader data if the tag is sending
642 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
643 if (MillerDecoding(readerdata
, (rsamples
-1)*4)) {
646 // check - if there is a short 7bit request from reader
647 if ((!triggered
) && (param
& 0x02) && (Uart
.len
== 1) && (Uart
.bitCount
== 7)) triggered
= TRUE
;
650 if (!LogTrace(receivedCmd
,
652 Uart
.startTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
653 Uart
.endTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
657 /* And ready to receive another command. */
659 /* And also reset the demod code, which might have been */
660 /* false-triggered by the commands from the reader. */
664 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
667 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
668 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
669 if(ManchesterDecoding(tagdata
, 0, (rsamples
-1)*4)) {
672 if (!LogTrace(receivedResponse
,
674 Demod
.startTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
675 Demod
.endTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
679 if ((!triggered
) && (param
& 0x01)) triggered
= TRUE
;
681 // And ready to receive another response.
685 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
689 previous_data
= *data
;
692 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
697 DbpString("COMMAND FINISHED");
700 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen
, Uart
.state
, Uart
.len
);
701 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart
.output
[0]);
705 //-----------------------------------------------------------------------------
706 // Prepare tag messages
707 //-----------------------------------------------------------------------------
708 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, uint16_t len
, uint8_t *parity
)
712 // Correction bit, might be removed when not needed
717 ToSendStuffBit(1); // 1
723 ToSend
[++ToSendMax
] = SEC_D
;
724 LastProxToAirDuration
= 8 * ToSendMax
- 4;
726 for(uint16_t i
= 0; i
< len
; i
++) {
730 for(uint16_t j
= 0; j
< 8; j
++) {
732 ToSend
[++ToSendMax
] = SEC_D
;
734 ToSend
[++ToSendMax
] = SEC_E
;
739 // Get the parity bit
740 if (parity
[i
>>3] & (0x80>>(i
&0x0007))) {
741 ToSend
[++ToSendMax
] = SEC_D
;
742 LastProxToAirDuration
= 8 * ToSendMax
- 4;
744 ToSend
[++ToSendMax
] = SEC_E
;
745 LastProxToAirDuration
= 8 * ToSendMax
;
750 ToSend
[++ToSendMax
] = SEC_F
;
752 // Convert from last byte pos to length
756 static void CodeIso14443aAsTag(const uint8_t *cmd
, uint16_t len
)
758 uint8_t par
[MAX_PARITY_SIZE
];
760 GetParity(cmd
, len
, par
);
761 CodeIso14443aAsTagPar(cmd
, len
, par
);
765 static void Code4bitAnswerAsTag(uint8_t cmd
)
771 // Correction bit, might be removed when not needed
776 ToSendStuffBit(1); // 1
782 ToSend
[++ToSendMax
] = SEC_D
;
785 for(i
= 0; i
< 4; i
++) {
787 ToSend
[++ToSendMax
] = SEC_D
;
788 LastProxToAirDuration
= 8 * ToSendMax
- 4;
790 ToSend
[++ToSendMax
] = SEC_E
;
791 LastProxToAirDuration
= 8 * ToSendMax
;
797 ToSend
[++ToSendMax
] = SEC_F
;
799 // Convert from last byte pos to length
803 //-----------------------------------------------------------------------------
804 // Wait for commands from reader
805 // Stop when button is pressed
806 // Or return TRUE when command is captured
807 //-----------------------------------------------------------------------------
808 static int GetIso14443aCommandFromReader(uint8_t *received
, uint8_t *parity
, int *len
)
810 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
811 // only, since we are receiving, not transmitting).
812 // Signal field is off with the appropriate LED
814 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
816 // Now run a `software UART' on the stream of incoming samples.
817 UartInit(received
, parity
);
820 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
825 if(BUTTON_PRESS()) return FALSE
;
827 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
828 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
829 if(MillerDecoding(b
, 0)) {
837 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
);
838 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
);
839 int EmSend4bit(uint8_t resp
);
840 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
);
841 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
);
842 int EmSendCmd(uint8_t *resp
, uint16_t respLen
);
843 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
);
844 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
845 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
);
847 static uint8_t* free_buffer_pointer
;
854 uint32_t ProxToAirDuration
;
855 } tag_response_info_t
;
857 bool prepare_tag_modulation(tag_response_info_t
* response_info
, size_t max_buffer_size
) {
858 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
859 // This will need the following byte array for a modulation sequence
860 // 144 data bits (18 * 8)
863 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
864 // 1 just for the case
866 // 166 bytes, since every bit that needs to be send costs us a byte
870 // Prepare the tag modulation bits from the message
871 CodeIso14443aAsTag(response_info
->response
,response_info
->response_n
);
873 // Make sure we do not exceed the free buffer space
874 if (ToSendMax
> max_buffer_size
) {
875 Dbprintf("Out of memory, when modulating bits for tag answer:");
876 Dbhexdump(response_info
->response_n
,response_info
->response
,false);
880 // Copy the byte array, used for this modulation to the buffer position
881 memcpy(response_info
->modulation
,ToSend
,ToSendMax
);
883 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
884 response_info
->modulation_n
= ToSendMax
;
885 response_info
->ProxToAirDuration
= LastProxToAirDuration
;
891 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
892 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
893 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
894 // -> need 273 bytes buffer
895 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
897 bool prepare_allocated_tag_modulation(tag_response_info_t
* response_info
) {
898 // Retrieve and store the current buffer index
899 response_info
->modulation
= free_buffer_pointer
;
901 // Determine the maximum size we can use from our buffer
902 size_t max_buffer_size
= ALLOCATED_TAG_MODULATION_BUFFER_SIZE
;
904 // Forward the prepare tag modulation function to the inner function
905 if (prepare_tag_modulation(response_info
, max_buffer_size
)) {
906 // Update the free buffer offset
907 free_buffer_pointer
+= ToSendMax
;
914 //-----------------------------------------------------------------------------
915 // Main loop of simulated tag: receive commands from reader, decide what
916 // response to send, and send it.
917 //-----------------------------------------------------------------------------
918 void SimulateIso14443aTag(int tagType
, int uid_1st
, int uid_2nd
, byte_t
* data
)
922 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
923 uint8_t response1
[2];
926 case 1: { // MIFARE Classic
927 // Says: I am Mifare 1k - original line
932 case 2: { // MIFARE Ultralight
933 // Says: I am a stupid memory tag, no crypto
938 case 3: { // MIFARE DESFire
939 // Says: I am a DESFire tag, ph33r me
944 case 4: { // ISO/IEC 14443-4
945 // Says: I am a javacard (JCOP)
950 case 5: { // MIFARE TNP3XXX
957 Dbprintf("Error: unkown tagtype (%d)",tagType
);
962 // The second response contains the (mandatory) first 24 bits of the UID
963 uint8_t response2
[5] = {0x00};
965 // Check if the uid uses the (optional) part
966 uint8_t response2a
[5] = {0x00};
970 num_to_bytes(uid_1st
,3,response2
+1);
971 num_to_bytes(uid_2nd
,4,response2a
);
972 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
974 // Configure the ATQA and SAK accordingly
975 response1
[0] |= 0x40;
978 num_to_bytes(uid_1st
,4,response2
);
979 // Configure the ATQA and SAK accordingly
980 response1
[0] &= 0xBF;
984 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
985 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
987 // Prepare the mandatory SAK (for 4 and 7 byte UID)
988 uint8_t response3
[3] = {0x00};
990 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
992 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
993 uint8_t response3a
[3] = {0x00};
994 response3a
[0] = sak
& 0xFB;
995 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
997 uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
998 uint8_t response6
[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
999 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1000 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1001 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1002 // TC(1) = 0x02: CID supported, NAD not supported
1003 ComputeCrc14443(CRC_14443_A
, response6
, 4, &response6
[4], &response6
[5]);
1005 #define TAG_RESPONSE_COUNT 7
1006 tag_response_info_t responses
[TAG_RESPONSE_COUNT
] = {
1007 { .response
= response1
, .response_n
= sizeof(response1
) }, // Answer to request - respond with card type
1008 { .response
= response2
, .response_n
= sizeof(response2
) }, // Anticollision cascade1 - respond with uid
1009 { .response
= response2a
, .response_n
= sizeof(response2a
) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1010 { .response
= response3
, .response_n
= sizeof(response3
) }, // Acknowledge select - cascade 1
1011 { .response
= response3a
, .response_n
= sizeof(response3a
) }, // Acknowledge select - cascade 2
1012 { .response
= response5
, .response_n
= sizeof(response5
) }, // Authentication answer (random nonce)
1013 { .response
= response6
, .response_n
= sizeof(response6
) }, // dummy ATS (pseudo-ATR), answer to RATS
1016 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1017 // Such a response is less time critical, so we can prepare them on the fly
1018 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1019 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1020 uint8_t dynamic_response_buffer
[DYNAMIC_RESPONSE_BUFFER_SIZE
];
1021 uint8_t dynamic_modulation_buffer
[DYNAMIC_MODULATION_BUFFER_SIZE
];
1022 tag_response_info_t dynamic_response_info
= {
1023 .response
= dynamic_response_buffer
,
1025 .modulation
= dynamic_modulation_buffer
,
1029 // We need to listen to the high-frequency, peak-detected path.
1030 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1032 BigBuf_free_keep_EM();
1034 // allocate buffers:
1035 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
1036 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
1037 free_buffer_pointer
= BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE
);
1043 // Prepare the responses of the anticollision phase
1044 // there will be not enough time to do this at the moment the reader sends it REQA
1045 for (size_t i
=0; i
<TAG_RESPONSE_COUNT
; i
++) {
1046 prepare_allocated_tag_modulation(&responses
[i
]);
1051 // To control where we are in the protocol
1055 // Just to allow some checks
1061 tag_response_info_t
* p_response
;
1065 // Clean receive command buffer
1066 if(!GetIso14443aCommandFromReader(receivedCmd
, receivedCmdPar
, &len
)) {
1067 DbpString("Button press");
1073 // Okay, look at the command now.
1075 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1076 p_response
= &responses
[0]; order
= 1;
1077 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1078 p_response
= &responses
[0]; order
= 6;
1079 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1080 p_response
= &responses
[1]; order
= 2;
1081 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1082 p_response
= &responses
[2]; order
= 20;
1083 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1084 p_response
= &responses
[3]; order
= 3;
1085 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1086 p_response
= &responses
[4]; order
= 30;
1087 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1088 EmSendCmdEx(data
+(4*receivedCmd
[1]),16,false);
1089 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1090 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1092 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1095 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1098 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1099 p_response
= &responses
[5]; order
= 7;
1100 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1101 if (tagType
== 1 || tagType
== 2) { // RATS not supported
1102 EmSend4bit(CARD_NACK_NA
);
1105 p_response
= &responses
[6]; order
= 70;
1107 } else if (order
== 7 && len
== 8) { // Received {nr] and {ar} (part of authentication)
1109 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1111 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1112 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1113 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr
,ar
);
1115 // Check for ISO 14443A-4 compliant commands, look at left nibble
1116 switch (receivedCmd
[0]) {
1119 case 0x0A: { // IBlock (command)
1120 dynamic_response_info
.response
[0] = receivedCmd
[0];
1121 dynamic_response_info
.response
[1] = 0x00;
1122 dynamic_response_info
.response
[2] = 0x90;
1123 dynamic_response_info
.response
[3] = 0x00;
1124 dynamic_response_info
.response_n
= 4;
1128 case 0x1B: { // Chaining command
1129 dynamic_response_info
.response
[0] = 0xaa | ((receivedCmd
[0]) & 1);
1130 dynamic_response_info
.response_n
= 2;
1135 dynamic_response_info
.response
[0] = receivedCmd
[0] ^ 0x11;
1136 dynamic_response_info
.response_n
= 2;
1140 memcpy(dynamic_response_info
.response
,"\xAB\x00",2);
1141 dynamic_response_info
.response_n
= 2;
1145 case 0xC2: { // Readers sends deselect command
1146 memcpy(dynamic_response_info
.response
,"\xCA\x00",2);
1147 dynamic_response_info
.response_n
= 2;
1151 // Never seen this command before
1153 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1155 Dbprintf("Received unknown command (len=%d):",len
);
1156 Dbhexdump(len
,receivedCmd
,false);
1158 dynamic_response_info
.response_n
= 0;
1162 if (dynamic_response_info
.response_n
> 0) {
1163 // Copy the CID from the reader query
1164 dynamic_response_info
.response
[1] = receivedCmd
[1];
1166 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1167 AppendCrc14443a(dynamic_response_info
.response
,dynamic_response_info
.response_n
);
1168 dynamic_response_info
.response_n
+= 2;
1170 if (prepare_tag_modulation(&dynamic_response_info
,DYNAMIC_MODULATION_BUFFER_SIZE
) == false) {
1171 Dbprintf("Error preparing tag response");
1173 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1177 p_response
= &dynamic_response_info
;
1181 // Count number of wakeups received after a halt
1182 if(order
== 6 && lastorder
== 5) { happened
++; }
1184 // Count number of other messages after a halt
1185 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1187 if(cmdsRecvd
> 999) {
1188 DbpString("1000 commands later...");
1193 if (p_response
!= NULL
) {
1194 EmSendCmd14443aRaw(p_response
->modulation
, p_response
->modulation_n
, receivedCmd
[0] == 0x52);
1195 // do the tracing for the previous reader request and this tag answer:
1196 uint8_t par
[MAX_PARITY_SIZE
];
1197 GetParity(p_response
->response
, p_response
->response_n
, par
);
1199 EmLogTrace(Uart
.output
,
1201 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1202 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1204 p_response
->response
,
1205 p_response
->response_n
,
1206 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1207 (LastTimeProxToAirStart
+ p_response
->ProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1212 Dbprintf("Trace Full. Simulation stopped.");
1217 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1219 BigBuf_free_keep_EM();
1223 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1224 // of bits specified in the delay parameter.
1225 void PrepareDelayedTransfer(uint16_t delay
)
1227 uint8_t bitmask
= 0;
1228 uint8_t bits_to_shift
= 0;
1229 uint8_t bits_shifted
= 0;
1233 for (uint16_t i
= 0; i
< delay
; i
++) {
1234 bitmask
|= (0x01 << i
);
1236 ToSend
[ToSendMax
++] = 0x00;
1237 for (uint16_t i
= 0; i
< ToSendMax
; i
++) {
1238 bits_to_shift
= ToSend
[i
] & bitmask
;
1239 ToSend
[i
] = ToSend
[i
] >> delay
;
1240 ToSend
[i
] = ToSend
[i
] | (bits_shifted
<< (8 - delay
));
1241 bits_shifted
= bits_to_shift
;
1247 //-------------------------------------------------------------------------------------
1248 // Transmit the command (to the tag) that was placed in ToSend[].
1249 // Parameter timing:
1250 // if NULL: transfer at next possible time, taking into account
1251 // request guard time and frame delay time
1252 // if == 0: transfer immediately and return time of transfer
1253 // if != 0: delay transfer until time specified
1254 //-------------------------------------------------------------------------------------
1255 static void TransmitFor14443a(const uint8_t *cmd
, uint16_t len
, uint32_t *timing
)
1258 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1260 uint32_t ThisTransferTime
= 0;
1263 if(*timing
== 0) { // Measure time
1264 *timing
= (GetCountSspClk() + 8) & 0xfffffff8;
1266 PrepareDelayedTransfer(*timing
& 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1268 if(MF_DBGLEVEL
>= 4 && GetCountSspClk() >= (*timing
& 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1269 while(GetCountSspClk() < (*timing
& 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1270 LastTimeProxToAirStart
= *timing
;
1272 ThisTransferTime
= ((MAX(NextTransferTime
, GetCountSspClk()) & 0xfffffff8) + 8);
1273 while(GetCountSspClk() < ThisTransferTime
);
1274 LastTimeProxToAirStart
= ThisTransferTime
;
1278 AT91C_BASE_SSC
->SSC_THR
= SEC_Y
;
1282 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1283 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1291 NextTransferTime
= MAX(NextTransferTime
, LastTimeProxToAirStart
+ REQUEST_GUARD_TIME
);
1295 //-----------------------------------------------------------------------------
1296 // Prepare reader command (in bits, support short frames) to send to FPGA
1297 //-----------------------------------------------------------------------------
1298 void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd
, uint16_t bits
, const uint8_t *parity
)
1306 // Start of Communication (Seq. Z)
1307 ToSend
[++ToSendMax
] = SEC_Z
;
1308 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1311 size_t bytecount
= nbytes(bits
);
1312 // Generate send structure for the data bits
1313 for (i
= 0; i
< bytecount
; i
++) {
1314 // Get the current byte to send
1316 size_t bitsleft
= MIN((bits
-(i
*8)),8);
1318 for (j
= 0; j
< bitsleft
; j
++) {
1321 ToSend
[++ToSendMax
] = SEC_X
;
1322 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1327 ToSend
[++ToSendMax
] = SEC_Z
;
1328 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1331 ToSend
[++ToSendMax
] = SEC_Y
;
1338 // Only transmit parity bit if we transmitted a complete byte
1340 // Get the parity bit
1341 if (parity
[i
>>3] & (0x80 >> (i
&0x0007))) {
1343 ToSend
[++ToSendMax
] = SEC_X
;
1344 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1349 ToSend
[++ToSendMax
] = SEC_Z
;
1350 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1353 ToSend
[++ToSendMax
] = SEC_Y
;
1360 // End of Communication: Logic 0 followed by Sequence Y
1363 ToSend
[++ToSendMax
] = SEC_Z
;
1364 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1367 ToSend
[++ToSendMax
] = SEC_Y
;
1370 ToSend
[++ToSendMax
] = SEC_Y
;
1372 // Convert to length of command:
1376 //-----------------------------------------------------------------------------
1377 // Prepare reader command to send to FPGA
1378 //-----------------------------------------------------------------------------
1379 void CodeIso14443aAsReaderPar(const uint8_t *cmd
, uint16_t len
, const uint8_t *parity
)
1381 CodeIso14443aBitsAsReaderPar(cmd
, len
*8, parity
);
1385 //-----------------------------------------------------------------------------
1386 // Wait for commands from reader
1387 // Stop when button is pressed (return 1) or field was gone (return 2)
1388 // Or return 0 when command is captured
1389 //-----------------------------------------------------------------------------
1390 static int EmGetCmd(uint8_t *received
, uint16_t *len
, uint8_t *parity
)
1394 uint32_t timer
= 0, vtime
= 0;
1398 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1399 // only, since we are receiving, not transmitting).
1400 // Signal field is off with the appropriate LED
1402 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1404 // Set ADC to read field strength
1405 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1406 AT91C_BASE_ADC
->ADC_MR
=
1407 ADC_MODE_PRESCALE(63) |
1408 ADC_MODE_STARTUP_TIME(1) |
1409 ADC_MODE_SAMPLE_HOLD_TIME(15);
1410 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1412 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1414 // Now run a 'software UART' on the stream of incoming samples.
1415 UartInit(received
, parity
);
1418 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1423 if (BUTTON_PRESS()) return 1;
1425 // test if the field exists
1426 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1428 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1429 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1430 if (analogCnt
>= 32) {
1431 if ((MAX_ADC_HF_VOLTAGE
* (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1432 vtime
= GetTickCount();
1433 if (!timer
) timer
= vtime
;
1434 // 50ms no field --> card to idle state
1435 if (vtime
- timer
> 50) return 2;
1437 if (timer
) timer
= 0;
1443 // receive and test the miller decoding
1444 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1445 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1446 if(MillerDecoding(b
, 0)) {
1456 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
)
1460 uint32_t ThisTransferTime
;
1462 // Modulate Manchester
1463 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1465 // include correction bit if necessary
1466 if (Uart
.parityBits
& 0x01) {
1467 correctionNeeded
= TRUE
;
1469 if(correctionNeeded
) {
1470 // 1236, so correction bit needed
1476 // clear receiving shift register and holding register
1477 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1478 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1479 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1480 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1482 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1483 for (uint16_t j
= 0; j
< 5; j
++) { // allow timeout - better late than never
1484 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1485 if (AT91C_BASE_SSC
->SSC_RHR
) break;
1488 while ((ThisTransferTime
= GetCountSspClk()) & 0x00000007);
1491 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1494 for(; i
< respLen
; ) {
1495 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1496 AT91C_BASE_SSC
->SSC_THR
= resp
[i
++];
1497 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1500 if(BUTTON_PRESS()) {
1505 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1506 uint8_t fpga_queued_bits
= FpgaSendQueueDelay
>> 3;
1507 for (i
= 0; i
<= fpga_queued_bits
/8 + 1; ) {
1508 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1509 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1510 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1515 LastTimeProxToAirStart
= ThisTransferTime
+ (correctionNeeded
?8:0);
1520 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
){
1521 Code4bitAnswerAsTag(resp
);
1522 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1523 // do the tracing for the previous reader request and this tag answer:
1525 GetParity(&resp
, 1, par
);
1526 EmLogTrace(Uart
.output
,
1528 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1529 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1533 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1534 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1539 int EmSend4bit(uint8_t resp
){
1540 return EmSend4bitEx(resp
, false);
1543 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
){
1544 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1545 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1546 // do the tracing for the previous reader request and this tag answer:
1547 EmLogTrace(Uart
.output
,
1549 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1550 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1554 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1555 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1560 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
){
1561 uint8_t par
[MAX_PARITY_SIZE
];
1562 GetParity(resp
, respLen
, par
);
1563 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, par
);
1566 int EmSendCmd(uint8_t *resp
, uint16_t respLen
){
1567 uint8_t par
[MAX_PARITY_SIZE
];
1568 GetParity(resp
, respLen
, par
);
1569 return EmSendCmdExPar(resp
, respLen
, false, par
);
1572 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
){
1573 return EmSendCmdExPar(resp
, respLen
, false, par
);
1576 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
1577 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
)
1580 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1581 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1582 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1583 uint16_t reader_modlen
= reader_EndTime
- reader_StartTime
;
1584 uint16_t approx_fdt
= tag_StartTime
- reader_EndTime
;
1585 uint16_t exact_fdt
= (approx_fdt
- 20 + 32)/64 * 64 + 20;
1586 reader_EndTime
= tag_StartTime
- exact_fdt
;
1587 reader_StartTime
= reader_EndTime
- reader_modlen
;
1588 if (!LogTrace(reader_data
, reader_len
, reader_StartTime
, reader_EndTime
, reader_Parity
, TRUE
)) {
1590 } else return(!LogTrace(tag_data
, tag_len
, tag_StartTime
, tag_EndTime
, tag_Parity
, FALSE
));
1596 //-----------------------------------------------------------------------------
1597 // Wait a certain time for tag response
1598 // If a response is captured return TRUE
1599 // If it takes too long return FALSE
1600 //-----------------------------------------------------------------------------
1601 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, uint8_t *receivedResponsePar
, uint16_t offset
)
1605 // Set FPGA mode to "reader listen mode", no modulation (listen
1606 // only, since we are receiving, not transmitting).
1607 // Signal field is on with the appropriate LED
1609 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1611 // Now get the answer from the card
1612 DemodInit(receivedResponse
, receivedResponsePar
);
1615 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1621 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1622 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1623 if(ManchesterDecoding(b
, offset
, 0)) {
1624 NextTransferTime
= MAX(NextTransferTime
, Demod
.endTime
- (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/16 + FRAME_DELAY_TIME_PICC_TO_PCD
);
1626 } else if (c
++ > iso14a_timeout
&& Demod
.state
== DEMOD_UNSYNCD
) {
1633 void ReaderTransmitBitsPar(uint8_t* frame
, uint16_t bits
, uint8_t *par
, uint32_t *timing
)
1635 CodeIso14443aBitsAsReaderPar(frame
, bits
, par
);
1637 // Send command to tag
1638 TransmitFor14443a(ToSend
, ToSendMax
, timing
);
1642 // Log reader command in trace buffer
1644 LogTrace(frame
, nbytes(bits
), LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_READER
, (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_READER
, par
, TRUE
);
1648 void ReaderTransmitPar(uint8_t* frame
, uint16_t len
, uint8_t *par
, uint32_t *timing
)
1650 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1653 void ReaderTransmitBits(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1655 // Generate parity and redirect
1656 uint8_t par
[MAX_PARITY_SIZE
];
1657 GetParity(frame
, len
/8, par
);
1658 ReaderTransmitBitsPar(frame
, len
, par
, timing
);
1661 void ReaderTransmit(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1663 // Generate parity and redirect
1664 uint8_t par
[MAX_PARITY_SIZE
];
1665 GetParity(frame
, len
, par
);
1666 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1669 int ReaderReceiveOffset(uint8_t* receivedAnswer
, uint16_t offset
, uint8_t *parity
)
1671 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, offset
)) return FALSE
;
1673 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1678 int ReaderReceive(uint8_t *receivedAnswer
, uint8_t *parity
)
1680 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, 0)) return FALSE
;
1682 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1687 /* performs iso14443a anticollision procedure
1688 * fills the uid pointer unless NULL
1689 * fills resp_data unless NULL */
1690 int iso14443a_select_card(byte_t
*uid_ptr
, iso14a_card_select_t
*p_hi14a_card
, uint32_t *cuid_ptr
) {
1691 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1692 uint8_t sel_all
[] = { 0x93,0x20 };
1693 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1694 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1695 uint8_t resp
[MAX_FRAME_SIZE
]; // theoretically. A usual RATS will be much smaller
1696 uint8_t resp_par
[MAX_PARITY_SIZE
];
1698 size_t uid_resp_len
;
1700 uint8_t sak
= 0x04; // cascade uid
1701 int cascade_level
= 0;
1704 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1705 ReaderTransmitBitsPar(wupa
,7,0, NULL
);
1708 if(!ReaderReceive(resp
, resp_par
)) return 0;
1711 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1712 p_hi14a_card
->uidlen
= 0;
1713 memset(p_hi14a_card
->uid
,0,10);
1718 memset(uid_ptr
,0,10);
1721 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1722 // which case we need to make a cascade 2 request and select - this is a long UID
1723 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1724 for(; sak
& 0x04; cascade_level
++) {
1725 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1726 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1729 ReaderTransmit(sel_all
, sizeof(sel_all
), NULL
);
1730 if (!ReaderReceive(resp
, resp_par
)) return 0;
1732 if (Demod
.collisionPos
) { // we had a collision and need to construct the UID bit by bit
1733 memset(uid_resp
, 0, 4);
1734 uint16_t uid_resp_bits
= 0;
1735 uint16_t collision_answer_offset
= 0;
1736 // anti-collision-loop:
1737 while (Demod
.collisionPos
) {
1738 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod
.collisionPos
);
1739 for (uint16_t i
= collision_answer_offset
; i
< Demod
.collisionPos
; i
++, uid_resp_bits
++) { // add valid UID bits before collision point
1740 uint16_t UIDbit
= (resp
[i
/8] >> (i
% 8)) & 0x01;
1741 uid_resp
[uid_resp_bits
/ 8] |= UIDbit
<< (uid_resp_bits
% 8);
1743 uid_resp
[uid_resp_bits
/8] |= 1 << (uid_resp_bits
% 8); // next time select the card(s) with a 1 in the collision position
1745 // construct anticollosion command:
1746 sel_uid
[1] = ((2 + uid_resp_bits
/8) << 4) | (uid_resp_bits
& 0x07); // length of data in bytes and bits
1747 for (uint16_t i
= 0; i
<= uid_resp_bits
/8; i
++) {
1748 sel_uid
[2+i
] = uid_resp
[i
];
1750 collision_answer_offset
= uid_resp_bits
%8;
1751 ReaderTransmitBits(sel_uid
, 16 + uid_resp_bits
, NULL
);
1752 if (!ReaderReceiveOffset(resp
, collision_answer_offset
, resp_par
)) return 0;
1754 // finally, add the last bits and BCC of the UID
1755 for (uint16_t i
= collision_answer_offset
; i
< (Demod
.len
-1)*8; i
++, uid_resp_bits
++) {
1756 uint16_t UIDbit
= (resp
[i
/8] >> (i
%8)) & 0x01;
1757 uid_resp
[uid_resp_bits
/8] |= UIDbit
<< (uid_resp_bits
% 8);
1760 } else { // no collision, use the response to SELECT_ALL as current uid
1761 memcpy(uid_resp
, resp
, 4);
1765 // calculate crypto UID. Always use last 4 Bytes.
1767 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1770 // Construct SELECT UID command
1771 sel_uid
[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1772 memcpy(sel_uid
+2, uid_resp
, 4); // the UID
1773 sel_uid
[6] = sel_uid
[2] ^ sel_uid
[3] ^ sel_uid
[4] ^ sel_uid
[5]; // calculate and add BCC
1774 AppendCrc14443a(sel_uid
, 7); // calculate and add CRC
1775 ReaderTransmit(sel_uid
, sizeof(sel_uid
), NULL
);
1778 if (!ReaderReceive(resp
, resp_par
)) return 0;
1781 // Test if more parts of the uid are coming
1782 if ((sak
& 0x04) /* && uid_resp[0] == 0x88 */) {
1783 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1784 // http://www.nxp.com/documents/application_note/AN10927.pdf
1785 uid_resp
[0] = uid_resp
[1];
1786 uid_resp
[1] = uid_resp
[2];
1787 uid_resp
[2] = uid_resp
[3];
1793 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1797 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1798 p_hi14a_card
->uidlen
+= uid_resp_len
;
1803 p_hi14a_card
->sak
= sak
;
1804 p_hi14a_card
->ats_len
= 0;
1807 // non iso14443a compliant tag
1808 if( (sak
& 0x20) == 0) return 2;
1810 // Request for answer to select
1811 AppendCrc14443a(rats
, 2);
1812 ReaderTransmit(rats
, sizeof(rats
), NULL
);
1814 if (!(len
= ReaderReceive(resp
, resp_par
))) return 0;
1818 memcpy(p_hi14a_card
->ats
, resp
, sizeof(p_hi14a_card
->ats
));
1819 p_hi14a_card
->ats_len
= len
;
1822 // reset the PCB block number
1823 iso14_pcb_blocknum
= 0;
1825 // set default timeout based on ATS
1826 iso14a_set_ATS_timeout(resp
);
1831 void iso14443a_setup(uint8_t fpga_minor_mode
) {
1832 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1833 // Set up the synchronous serial port
1835 // connect Demodulated Signal to ADC:
1836 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1838 // Signal field is on with the appropriate LED
1839 if (fpga_minor_mode
== FPGA_HF_ISO14443A_READER_MOD
1840 || fpga_minor_mode
== FPGA_HF_ISO14443A_READER_LISTEN
) {
1845 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| fpga_minor_mode
);
1852 NextTransferTime
= 2*DELAY_ARM2AIR_AS_READER
;
1853 iso14a_set_timeout(1050); // 10ms default
1856 int iso14_apdu(uint8_t *cmd
, uint16_t cmd_len
, void *data
) {
1857 uint8_t parity
[MAX_PARITY_SIZE
];
1858 uint8_t real_cmd
[cmd_len
+4];
1859 real_cmd
[0] = 0x0a; //I-Block
1860 // put block number into the PCB
1861 real_cmd
[0] |= iso14_pcb_blocknum
;
1862 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1863 memcpy(real_cmd
+2, cmd
, cmd_len
);
1864 AppendCrc14443a(real_cmd
,cmd_len
+2);
1866 ReaderTransmit(real_cmd
, cmd_len
+4, NULL
);
1867 size_t len
= ReaderReceive(data
, parity
);
1868 uint8_t *data_bytes
= (uint8_t *) data
;
1870 return 0; //DATA LINK ERROR
1871 // if we received an I- or R(ACK)-Block with a block number equal to the
1872 // current block number, toggle the current block number
1873 else if (len
>= 4 // PCB+CID+CRC = 4 bytes
1874 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
1875 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1876 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
1878 iso14_pcb_blocknum
^= 1;
1884 //-----------------------------------------------------------------------------
1885 // Read an ISO 14443a tag. Send out commands and store answers.
1887 //-----------------------------------------------------------------------------
1888 void ReaderIso14443a(UsbCommand
*c
)
1890 iso14a_command_t param
= c
->arg
[0];
1891 uint8_t *cmd
= c
->d
.asBytes
;
1892 size_t len
= c
->arg
[1] & 0xffff;
1893 size_t lenbits
= c
->arg
[1] >> 16;
1894 uint32_t timeout
= c
->arg
[2];
1896 byte_t buf
[USB_CMD_DATA_SIZE
];
1897 uint8_t par
[MAX_PARITY_SIZE
];
1899 if(param
& ISO14A_CONNECT
) {
1905 if(param
& ISO14A_REQUEST_TRIGGER
) {
1906 iso14a_set_trigger(TRUE
);
1909 if(param
& ISO14A_CONNECT
) {
1910 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN
);
1911 if(!(param
& ISO14A_NO_SELECT
)) {
1912 iso14a_card_select_t
*card
= (iso14a_card_select_t
*)buf
;
1913 arg0
= iso14443a_select_card(NULL
,card
,NULL
);
1914 cmd_send(CMD_ACK
,arg0
,card
->uidlen
,0,buf
,sizeof(iso14a_card_select_t
));
1918 if(param
& ISO14A_SET_TIMEOUT
) {
1919 iso14a_set_timeout(timeout
);
1922 if(param
& ISO14A_APDU
) {
1923 arg0
= iso14_apdu(cmd
, len
, buf
);
1924 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1927 if(param
& ISO14A_RAW
) {
1928 if(param
& ISO14A_APPEND_CRC
) {
1929 AppendCrc14443a(cmd
,len
);
1931 if (lenbits
) lenbits
+= 16;
1934 GetParity(cmd
, lenbits
/8, par
);
1935 ReaderTransmitBitsPar(cmd
, lenbits
, par
, NULL
);
1937 ReaderTransmit(cmd
,len
, NULL
);
1939 arg0
= ReaderReceive(buf
, par
);
1940 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1943 if(param
& ISO14A_REQUEST_TRIGGER
) {
1944 iso14a_set_trigger(FALSE
);
1947 if(param
& ISO14A_NO_DISCONNECT
) {
1951 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1956 // Determine the distance between two nonces.
1957 // Assume that the difference is small, but we don't know which is first.
1958 // Therefore try in alternating directions.
1959 int32_t dist_nt(uint32_t nt1
, uint32_t nt2
) {
1962 uint32_t nttmp1
, nttmp2
;
1964 if (nt1
== nt2
) return 0;
1969 for (i
= 1; i
< 32768; i
++) {
1970 nttmp1
= prng_successor(nttmp1
, 1);
1971 if (nttmp1
== nt2
) return i
;
1972 nttmp2
= prng_successor(nttmp2
, 1);
1973 if (nttmp2
== nt1
) return -i
;
1976 return(-99999); // either nt1 or nt2 are invalid nonces
1980 //-----------------------------------------------------------------------------
1981 // Recover several bits of the cypher stream. This implements (first stages of)
1982 // the algorithm described in "The Dark Side of Security by Obscurity and
1983 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
1984 // (article by Nicolas T. Courtois, 2009)
1985 //-----------------------------------------------------------------------------
1986 void ReaderMifare(bool first_try
)
1989 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
1990 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1991 static uint8_t mf_nr_ar3
;
1993 uint8_t receivedAnswer
[MAX_MIFARE_FRAME_SIZE
];
1994 uint8_t receivedAnswerPar
[MAX_MIFARE_PARITY_SIZE
];
1997 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
2000 // free eventually allocated BigBuf memory. We want all for tracing.
2007 uint8_t par
[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2008 static byte_t par_low
= 0;
2010 uint8_t uid
[10] ={0};
2014 uint32_t previous_nt
= 0;
2015 static uint32_t nt_attacked
= 0;
2016 byte_t par_list
[8] = {0x00};
2017 byte_t ks_list
[8] = {0x00};
2019 static uint32_t sync_time
;
2020 static uint32_t sync_cycles
;
2021 int catch_up_cycles
= 0;
2022 int last_catch_up
= 0;
2023 uint16_t consecutive_resyncs
= 0;
2028 sync_time
= GetCountSspClk() & 0xfffffff8;
2029 sync_cycles
= 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2035 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2037 mf_nr_ar
[3] = mf_nr_ar3
;
2046 #define DARKSIDE_MAX_TRIES 32 // number of tries to sync on PRNG cycle. Then give up.
2047 uint16_t unsuccessfull_tries
= 0;
2049 for(uint16_t i
= 0; TRUE
; i
++) {
2054 // Test if the action was cancelled
2055 if(BUTTON_PRESS()) {
2060 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
2061 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Can't select card");
2065 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
+ catch_up_cycles
;
2066 catch_up_cycles
= 0;
2068 // if we missed the sync time already, advance to the next nonce repeat
2069 while(GetCountSspClk() > sync_time
) {
2070 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
;
2073 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2074 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
2076 // Receive the (4 Byte) "random" nonce
2077 if (!ReaderReceive(receivedAnswer
, receivedAnswerPar
)) {
2078 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2083 nt
= bytes_to_num(receivedAnswer
, 4);
2085 // Transmit reader nonce with fake par
2086 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
), par
, NULL
);
2088 if (first_try
&& previous_nt
&& !nt_attacked
) { // we didn't calibrate our clock yet
2089 int nt_distance
= dist_nt(previous_nt
, nt
);
2090 if (nt_distance
== 0) {
2094 if (nt_distance
== -99999) { // invalid nonce received
2095 unsuccessfull_tries
++;
2096 if (!nt_attacked
&& unsuccessfull_tries
> DARKSIDE_MAX_TRIES
) {
2097 isOK
= -3; // Card has an unpredictable PRNG. Give up
2100 continue; // continue trying...
2103 sync_cycles
= (sync_cycles
- nt_distance
);
2104 if (MF_DBGLEVEL
>= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i
, nt_distance
, sync_cycles
);
2109 if ((nt
!= nt_attacked
) && nt_attacked
) { // we somehow lost sync. Try to catch up again...
2110 catch_up_cycles
= -dist_nt(nt_attacked
, nt
);
2111 if (catch_up_cycles
== 99999) { // invalid nonce received. Don't resync on that one.
2112 catch_up_cycles
= 0;
2115 if (catch_up_cycles
== last_catch_up
) {
2116 consecutive_resyncs
++;
2119 last_catch_up
= catch_up_cycles
;
2120 consecutive_resyncs
= 0;
2122 if (consecutive_resyncs
< 3) {
2123 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i
, -catch_up_cycles
, consecutive_resyncs
);
2126 sync_cycles
= sync_cycles
+ catch_up_cycles
;
2127 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i
, -catch_up_cycles
, sync_cycles
);
2132 consecutive_resyncs
= 0;
2134 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2135 if (ReaderReceive(receivedAnswer
, receivedAnswerPar
))
2137 catch_up_cycles
= 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2141 par_low
= par
[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2145 if(led_on
) LED_B_ON(); else LED_B_OFF();
2147 par_list
[nt_diff
] = SwapBits(par
[0], 8);
2148 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
2150 // Test if the information is complete
2151 if (nt_diff
== 0x07) {
2156 nt_diff
= (nt_diff
+ 1) & 0x07;
2157 mf_nr_ar
[3] = (mf_nr_ar
[3] & 0x1F) | (nt_diff
<< 5);
2160 if (nt_diff
== 0 && first_try
)
2163 if (par
[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
2168 par
[0] = ((par
[0] & 0x1F) + 1) | par_low
;
2174 mf_nr_ar
[3] &= 0x1F;
2177 memcpy(buf
+ 0, uid
, 4);
2178 num_to_bytes(nt
, 4, buf
+ 4);
2179 memcpy(buf
+ 8, par_list
, 8);
2180 memcpy(buf
+ 16, ks_list
, 8);
2181 memcpy(buf
+ 24, mf_nr_ar
, 4);
2183 cmd_send(CMD_ACK
, isOK
, 0, 0, buf
, 28);
2186 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2193 *MIFARE 1K simulate.
2196 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2197 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2198 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2199 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2200 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2202 void Mifare1ksim(uint8_t flags
, uint8_t exitAfterNReads
, uint8_t arg2
, uint8_t *datain
)
2204 int cardSTATE
= MFEMUL_NOFIELD
;
2206 int vHf
= 0; // in mV
2208 uint32_t selTimer
= 0;
2209 uint32_t authTimer
= 0;
2211 uint8_t cardWRBL
= 0;
2212 uint8_t cardAUTHSC
= 0;
2213 uint8_t cardAUTHKEY
= 0xff; // no authentication
2214 uint32_t cardRr
= 0;
2216 //uint32_t rn_enc = 0;
2218 uint32_t cardINTREG
= 0;
2219 uint8_t cardINTBLOCK
= 0;
2220 struct Crypto1State mpcs
= {0, 0};
2221 struct Crypto1State
*pcs
;
2223 uint32_t numReads
= 0;//Counts numer of times reader read a block
2224 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
];
2225 uint8_t receivedCmd_par
[MAX_MIFARE_PARITY_SIZE
];
2226 uint8_t response
[MAX_MIFARE_FRAME_SIZE
];
2227 uint8_t response_par
[MAX_MIFARE_PARITY_SIZE
];
2229 uint8_t rATQA
[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2230 uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2231 uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2232 uint8_t rSAK
[] = {0x08, 0xb6, 0xdd};
2233 uint8_t rSAK1
[] = {0x04, 0xda, 0x17};
2235 uint8_t rAUTH_NT
[] = {0x01, 0x02, 0x03, 0x04};
2236 uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
2238 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2239 // This can be used in a reader-only attack.
2240 // (it can also be retrieved via 'hf 14a list', but hey...
2241 uint32_t ar_nr_responses
[] = {0,0,0,0,0,0,0,0};
2242 uint8_t ar_nr_collected
= 0;
2244 // Authenticate response - nonce
2245 uint32_t nonce
= bytes_to_num(rAUTH_NT
, 4);
2247 //-- Determine the UID
2248 // Can be set from emulator memory, incoming data
2249 // and can be 7 or 4 bytes long
2250 if (flags
& FLAG_4B_UID_IN_DATA
)
2252 // 4B uid comes from data-portion of packet
2253 memcpy(rUIDBCC1
,datain
,4);
2254 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2256 } else if (flags
& FLAG_7B_UID_IN_DATA
) {
2257 // 7B uid comes from data-portion of packet
2258 memcpy(&rUIDBCC1
[1],datain
,3);
2259 memcpy(rUIDBCC2
, datain
+3, 4);
2262 // get UID from emul memory
2263 emlGetMemBt(receivedCmd
, 7, 1);
2264 _7BUID
= !(receivedCmd
[0] == 0x00);
2265 if (!_7BUID
) { // ---------- 4BUID
2266 emlGetMemBt(rUIDBCC1
, 0, 4);
2267 } else { // ---------- 7BUID
2268 emlGetMemBt(&rUIDBCC1
[1], 0, 3);
2269 emlGetMemBt(rUIDBCC2
, 3, 4);
2274 * Regardless of what method was used to set the UID, set fifth byte and modify
2275 * the ATQA for 4 or 7-byte UID
2277 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2281 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2282 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2285 if (MF_DBGLEVEL
>= 1) {
2287 Dbprintf("4B UID: %02x%02x%02x%02x",
2288 rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3]);
2290 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2291 rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3],
2292 rUIDBCC2
[0], rUIDBCC2
[1] ,rUIDBCC2
[2], rUIDBCC2
[3]);
2296 // We need to listen to the high-frequency, peak-detected path.
2297 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2299 // free eventually allocated BigBuf memory but keep Emulator Memory
2300 BigBuf_free_keep_EM();
2307 bool finished
= FALSE
;
2308 while (!BUTTON_PRESS() && !finished
) {
2311 // find reader field
2312 if (cardSTATE
== MFEMUL_NOFIELD
) {
2313 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
2314 if (vHf
> MF_MINFIELDV
) {
2315 cardSTATE_TO_IDLE();
2319 if(cardSTATE
== MFEMUL_NOFIELD
) continue;
2323 res
= EmGetCmd(receivedCmd
, &len
, receivedCmd_par
);
2324 if (res
== 2) { //Field is off!
2325 cardSTATE
= MFEMUL_NOFIELD
;
2328 } else if (res
== 1) {
2329 break; //return value 1 means button press
2332 // REQ or WUP request in ANY state and WUP in HALTED state
2333 if (len
== 1 && ((receivedCmd
[0] == 0x26 && cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == 0x52)) {
2334 selTimer
= GetTickCount();
2335 EmSendCmdEx(rATQA
, sizeof(rATQA
), (receivedCmd
[0] == 0x52));
2336 cardSTATE
= MFEMUL_SELECT1
;
2338 // init crypto block
2341 crypto1_destroy(pcs
);
2346 switch (cardSTATE
) {
2347 case MFEMUL_NOFIELD
:
2350 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2353 case MFEMUL_SELECT1
:{
2355 if (len
== 2 && (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x20)) {
2356 if (MF_DBGLEVEL
>= 4) Dbprintf("SELECT ALL received");
2357 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2361 if (MF_DBGLEVEL
>= 4 && len
== 9 && receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 )
2363 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd
[2],receivedCmd
[3],receivedCmd
[4],receivedCmd
[5]);
2367 (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2368 EmSendCmd(_7BUID
?rSAK1
:rSAK
, _7BUID
?sizeof(rSAK1
):sizeof(rSAK
));
2369 cuid
= bytes_to_num(rUIDBCC1
, 4);
2371 cardSTATE
= MFEMUL_WORK
;
2373 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2376 cardSTATE
= MFEMUL_SELECT2
;
2384 cardSTATE_TO_IDLE();
2385 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2389 uint32_t ar
= bytes_to_num(receivedCmd
, 4);
2390 uint32_t nr
= bytes_to_num(&receivedCmd
[4], 4);
2393 if(ar_nr_collected
< 2){
2394 if(ar_nr_responses
[2] != ar
)
2395 {// Avoid duplicates... probably not necessary, ar should vary.
2396 ar_nr_responses
[ar_nr_collected
*4] = cuid
;
2397 ar_nr_responses
[ar_nr_collected
*4+1] = nonce
;
2398 ar_nr_responses
[ar_nr_collected
*4+2] = ar
;
2399 ar_nr_responses
[ar_nr_collected
*4+3] = nr
;
2405 crypto1_word(pcs
, ar
, 1);
2406 cardRr
= nr
^ crypto1_word(pcs
, 0, 0);
2409 if (cardRr
!= prng_successor(nonce
, 64)){
2410 if (MF_DBGLEVEL
>= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2411 cardAUTHSC
, cardAUTHKEY
== 0 ? 'A' : 'B',
2412 cardRr
, prng_successor(nonce
, 64));
2413 // Shouldn't we respond anything here?
2414 // Right now, we don't nack or anything, which causes the
2415 // reader to do a WUPA after a while. /Martin
2416 // -- which is the correct response. /piwi
2417 cardSTATE_TO_IDLE();
2418 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2422 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2424 num_to_bytes(ans
, 4, rAUTH_AT
);
2426 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2428 cardSTATE
= MFEMUL_WORK
;
2429 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2430 cardAUTHSC
, cardAUTHKEY
== 0 ? 'A' : 'B',
2431 GetTickCount() - authTimer
);
2434 case MFEMUL_SELECT2
:{
2436 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2439 if (len
== 2 && (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x20)) {
2440 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2446 (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0)) {
2447 EmSendCmd(rSAK
, sizeof(rSAK
));
2448 cuid
= bytes_to_num(rUIDBCC2
, 4);
2449 cardSTATE
= MFEMUL_WORK
;
2451 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2455 // i guess there is a command). go into the work state.
2457 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2460 cardSTATE
= MFEMUL_WORK
;
2462 //intentional fall-through to the next case-stmt
2467 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2471 bool encrypted_data
= (cardAUTHKEY
!= 0xFF) ;
2473 if(encrypted_data
) {
2475 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2478 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2479 authTimer
= GetTickCount();
2480 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2481 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2482 crypto1_destroy(pcs
);//Added by martin
2483 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2485 if (!encrypted_data
) { // first authentication
2486 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2488 crypto1_word(pcs
, cuid
^ nonce
, 0);//Update crypto state
2489 num_to_bytes(nonce
, 4, rAUTH_AT
); // Send nonce
2490 } else { // nested authentication
2491 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2492 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2493 num_to_bytes(ans
, 4, rAUTH_AT
);
2496 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2497 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2498 cardSTATE
= MFEMUL_AUTH1
;
2502 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2503 // BUT... ACK --> NACK
2504 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2505 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2509 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2510 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2511 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2516 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2520 if(receivedCmd
[0] == 0x30 // read block
2521 || receivedCmd
[0] == 0xA0 // write block
2522 || receivedCmd
[0] == 0xC0 // inc
2523 || receivedCmd
[0] == 0xC1 // dec
2524 || receivedCmd
[0] == 0xC2 // restore
2525 || receivedCmd
[0] == 0xB0) { // transfer
2526 if (receivedCmd
[1] >= 16 * 4) {
2527 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2528 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2532 if (receivedCmd
[1] / 4 != cardAUTHSC
) {
2533 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2534 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],cardAUTHSC
);
2539 if (receivedCmd
[0] == 0x30) {
2540 if (MF_DBGLEVEL
>= 4) {
2541 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd
[1],receivedCmd
[1]);
2543 emlGetMem(response
, receivedCmd
[1], 1);
2544 AppendCrc14443a(response
, 16);
2545 mf_crypto1_encrypt(pcs
, response
, 18, response_par
);
2546 EmSendCmdPar(response
, 18, response_par
);
2548 if(exitAfterNReads
> 0 && numReads
== exitAfterNReads
) {
2549 Dbprintf("%d reads done, exiting", numReads
);
2555 if (receivedCmd
[0] == 0xA0) {
2556 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd
[1],receivedCmd
[1]);
2557 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2558 cardSTATE
= MFEMUL_WRITEBL2
;
2559 cardWRBL
= receivedCmd
[1];
2562 // increment, decrement, restore
2563 if (receivedCmd
[0] == 0xC0 || receivedCmd
[0] == 0xC1 || receivedCmd
[0] == 0xC2) {
2564 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2565 if (emlCheckValBl(receivedCmd
[1])) {
2566 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2567 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2570 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2571 if (receivedCmd
[0] == 0xC1)
2572 cardSTATE
= MFEMUL_INTREG_INC
;
2573 if (receivedCmd
[0] == 0xC0)
2574 cardSTATE
= MFEMUL_INTREG_DEC
;
2575 if (receivedCmd
[0] == 0xC2)
2576 cardSTATE
= MFEMUL_INTREG_REST
;
2577 cardWRBL
= receivedCmd
[1];
2581 if (receivedCmd
[0] == 0xB0) {
2582 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2583 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2584 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2586 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2590 if (receivedCmd
[0] == 0x50 && receivedCmd
[1] == 0x00) {
2593 cardSTATE
= MFEMUL_HALTED
;
2594 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2595 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2599 if (receivedCmd
[0] == 0xe0) {//RATS
2600 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2603 // command not allowed
2604 if (MF_DBGLEVEL
>= 4) Dbprintf("Received command not allowed, nacking");
2605 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2608 case MFEMUL_WRITEBL2
:{
2610 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2611 emlSetMem(receivedCmd
, cardWRBL
, 1);
2612 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2613 cardSTATE
= MFEMUL_WORK
;
2615 cardSTATE_TO_IDLE();
2616 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2621 case MFEMUL_INTREG_INC
:{
2622 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2623 memcpy(&ans
, receivedCmd
, 4);
2624 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2625 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2626 cardSTATE_TO_IDLE();
2629 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2630 cardINTREG
= cardINTREG
+ ans
;
2631 cardSTATE
= MFEMUL_WORK
;
2634 case MFEMUL_INTREG_DEC
:{
2635 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2636 memcpy(&ans
, receivedCmd
, 4);
2637 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2638 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2639 cardSTATE_TO_IDLE();
2642 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2643 cardINTREG
= cardINTREG
- ans
;
2644 cardSTATE
= MFEMUL_WORK
;
2647 case MFEMUL_INTREG_REST
:{
2648 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2649 memcpy(&ans
, receivedCmd
, 4);
2650 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2651 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2652 cardSTATE_TO_IDLE();
2655 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2656 cardSTATE
= MFEMUL_WORK
;
2662 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2665 if(flags
& FLAG_INTERACTIVE
)// Interactive mode flag, means we need to send ACK
2667 //May just aswell send the collected ar_nr in the response aswell
2668 cmd_send(CMD_ACK
,CMD_SIMULATE_MIFARE_CARD
,0,0,&ar_nr_responses
,ar_nr_collected
*4*4);
2671 if(flags
& FLAG_NR_AR_ATTACK
)
2673 if(ar_nr_collected
> 1) {
2674 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2675 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
2676 ar_nr_responses
[0], // UID
2677 ar_nr_responses
[1], //NT
2678 ar_nr_responses
[2], //AR1
2679 ar_nr_responses
[3], //NR1
2680 ar_nr_responses
[6], //AR2
2681 ar_nr_responses
[7] //NR2
2684 Dbprintf("Failed to obtain two AR/NR pairs!");
2685 if(ar_nr_collected
>0) {
2686 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2687 ar_nr_responses
[0], // UID
2688 ar_nr_responses
[1], //NT
2689 ar_nr_responses
[2], //AR1
2690 ar_nr_responses
[3] //NR1
2695 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, BigBuf_get_traceLen());
2701 //-----------------------------------------------------------------------------
2704 //-----------------------------------------------------------------------------
2705 void RAMFUNC
SniffMifare(uint8_t param
) {
2707 // bit 0 - trigger from first card answer
2708 // bit 1 - trigger from first reader 7-bit request
2710 // C(red) A(yellow) B(green)
2712 // init trace buffer
2716 // The command (reader -> tag) that we're receiving.
2717 // The length of a received command will in most cases be no more than 18 bytes.
2718 // So 32 should be enough!
2719 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
];
2720 uint8_t receivedCmdPar
[MAX_MIFARE_PARITY_SIZE
];
2721 // The response (tag -> reader) that we're receiving.
2722 uint8_t receivedResponse
[MAX_MIFARE_FRAME_SIZE
];
2723 uint8_t receivedResponsePar
[MAX_MIFARE_PARITY_SIZE
];
2725 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
2727 // free eventually allocated BigBuf memory
2729 // allocate the DMA buffer, used to stream samples from the FPGA
2730 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
2731 uint8_t *data
= dmaBuf
;
2732 uint8_t previous_data
= 0;
2735 bool ReaderIsActive
= FALSE
;
2736 bool TagIsActive
= FALSE
;
2738 // Set up the demodulator for tag -> reader responses.
2739 DemodInit(receivedResponse
, receivedResponsePar
);
2741 // Set up the demodulator for the reader -> tag commands
2742 UartInit(receivedCmd
, receivedCmdPar
);
2744 // Setup for the DMA.
2745 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2752 // And now we loop, receiving samples.
2753 for(uint32_t sniffCounter
= 0; TRUE
; ) {
2755 if(BUTTON_PRESS()) {
2756 DbpString("cancelled by button");
2763 if ((sniffCounter
& 0x0000FFFF) == 0) { // from time to time
2764 // check if a transaction is completed (timeout after 2000ms).
2765 // if yes, stop the DMA transfer and send what we have so far to the client
2766 if (MfSniffSend(2000)) {
2767 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2771 ReaderIsActive
= FALSE
;
2772 TagIsActive
= FALSE
;
2773 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2777 int register readBufDataP
= data
- dmaBuf
; // number of bytes we have processed so far
2778 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
; // number of bytes already transferred
2779 if (readBufDataP
<= dmaBufDataP
){ // we are processing the same block of data which is currently being transferred
2780 dataLen
= dmaBufDataP
- readBufDataP
; // number of bytes still to be processed
2782 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
; // number of bytes still to be processed
2784 // test for length of buffer
2785 if(dataLen
> maxDataLen
) { // we are more behind than ever...
2786 maxDataLen
= dataLen
;
2787 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
2788 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
2792 if(dataLen
< 1) continue;
2794 // primary buffer was stopped ( <-- we lost data!
2795 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
2796 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
2797 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
2798 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
2800 // secondary buffer sets as primary, secondary buffer was stopped
2801 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
2802 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
2803 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
2808 if (sniffCounter
& 0x01) {
2810 if(!TagIsActive
) { // no need to try decoding tag data if the reader is sending
2811 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
2812 if(MillerDecoding(readerdata
, (sniffCounter
-1)*4)) {
2814 if (MfSniffLogic(receivedCmd
, Uart
.len
, Uart
.parity
, Uart
.bitCount
, TRUE
)) break;
2816 /* And ready to receive another command. */
2819 /* And also reset the demod code */
2822 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
2825 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending
2826 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
2827 if(ManchesterDecoding(tagdata
, 0, (sniffCounter
-1)*4)) {
2830 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parity
, Demod
.bitCount
, FALSE
)) break;
2832 // And ready to receive another response.
2835 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
2839 previous_data
= *data
;
2842 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
2848 DbpString("COMMAND FINISHED");
2850 FpgaDisableSscDma();
2853 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen
, Uart
.state
, Uart
.len
);