1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
19 #include "lfsampling.h"
21 #include "mifareutil.h"
27 // Craig Young - 14a stand-alone code
28 #ifdef WITH_ISO14443a_StandAlone
29 #include "iso14443a.h"
30 #include "protocols.h"
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
39 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
40 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
43 struct common_area common_area
__attribute__((section(".commonarea")));
45 void ToSendReset(void)
51 void ToSendStuffBit(int b
) {
54 ToSend
[ToSendMax
] = 0;
59 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
63 if(ToSendMax
>= sizeof(ToSend
)) {
65 DbpString("ToSendStuffBit overflowed!");
69 void PrintToSendBuffer(void){
70 DbpString("Printing ToSendBuffer:");
71 Dbhexdump(ToSendMax
, ToSend
, 0);
74 void print_result(char *name
, uint8_t *buf
, size_t len
) {
77 if ( len
% 16 == 0 ) {
78 for(; p
-buf
< len
; p
+= 16)
79 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
83 p
[0], p
[1], p
[2], p
[3], p
[4], p
[5], p
[6], p
[7],p
[8], p
[9], p
[10], p
[11], p
[12], p
[13], p
[14], p
[15]
87 for(; p
-buf
< len
; p
+= 8)
88 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x",
92 p
[0], p
[1], p
[2], p
[3], p
[4], p
[5], p
[6], p
[7]);
96 //=============================================================================
97 // Debug print functions, to go out over USB, to the usual PC-side client.
98 //=============================================================================
100 void DbpStringEx(char *str
, uint32_t cmd
){
101 byte_t len
= strlen(str
);
102 cmd_send(CMD_DEBUG_PRINT_STRING
,len
, cmd
,0,(byte_t
*)str
,len
);
105 void DbpString(char *str
) {
110 void DbpIntegers(int x1
, int x2
, int x3
) {
111 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
114 void DbprintfEx(uint32_t cmd
, const char *fmt
, ...) {
115 // should probably limit size here; oh well, let's just use a big buffer
116 char output_string
[128] = {0x00};
120 kvsprintf(fmt
, output_string
, 10, ap
);
123 DbpStringEx(output_string
, cmd
);
126 void Dbprintf(const char *fmt
, ...) {
127 // should probably limit size here; oh well, let's just use a big buffer
128 char output_string
[128] = {0x00};
132 kvsprintf(fmt
, output_string
, 10, ap
);
135 DbpString(output_string
);
138 // prints HEX & ASCII
139 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
145 l
= (len
>8) ? 8 : len
;
152 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
155 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
157 Dbprintf("%*D",l
,d
," ");
164 //-----------------------------------------------------------------------------
165 // Read an ADC channel and block till it completes, then return the result
166 // in ADC units (0 to 1023). Also a routine to average 32 samples and
168 //-----------------------------------------------------------------------------
169 static int ReadAdc(int ch
)
173 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
174 AT91C_BASE_ADC
->ADC_MR
=
175 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
176 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
177 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
179 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
180 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
181 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
184 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
186 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
188 // Note: with the "historic" values in the comments above, the error was 34% !!!
190 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
192 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
194 while (!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) ;
196 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
200 int AvgAdc(int ch
) // was static - merlok
203 for(i
= 0; i
< 32; ++i
)
206 return (a
+ 15) >> 5;
210 void MeasureAntennaTuning(void) {
212 uint8_t LF_Results
[256];
213 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0;
214 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
216 memset(LF_Results
, 0, sizeof(LF_Results
));
220 * Sweeps the useful LF range of the proxmark from
221 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
222 * read the voltage in the antenna, the result left
223 * in the buffer is a graph which should clearly show
224 * the resonating frequency of your LF antenna
225 * ( hopefully around 95 if it is tuned to 125kHz!)
228 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
229 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
231 for (i
= 255; i
>= 19; i
--) {
233 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
235 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
236 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
237 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
239 LF_Results
[i
] = adcval
>> 8; // scale int to fit in byte for graphing purposes
240 if(LF_Results
[i
] > peak
) {
242 peak
= LF_Results
[i
];
248 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
249 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
250 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
252 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
254 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<< 16), vHf
, peakf
| (peakv
<< 16), LF_Results
, 256);
255 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
259 void MeasureAntennaTuningHf(void) {
260 int vHf
= 0; // in mV
261 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
262 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
263 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
265 while ( !BUTTON_PRESS() ){
267 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
268 //Dbprintf("%d mV",vHf);
269 DbprintfEx(CMD_MEASURE_ANTENNA_TUNING_HF
, "%d mV",vHf
);
271 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
272 DbpString("cancelled");
276 void ReadMem(int addr
) {
277 const uint8_t *data
= ((uint8_t *)addr
);
279 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
280 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
283 /* osimage version information is linked in */
284 extern struct version_information version_information
;
285 /* bootrom version information is pointed to from _bootphase1_version_pointer */
286 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
287 void SendVersion(void)
289 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
290 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
292 /* Try to find the bootrom version information. Expect to find a pointer at
293 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
294 * pointer, then use it.
296 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
298 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
299 strcat(VersionString
, "bootrom version information appears invalid\n");
301 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
302 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
305 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
306 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
308 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
309 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
311 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
312 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
314 // Send Chip ID and used flash memory
315 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
316 uint32_t compressed_data_section_size
= common_area
.arg1
;
317 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
320 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
321 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
322 void printUSBSpeed(void)
324 Dbprintf("USB Speed:");
325 Dbprintf(" Sending USB packets to client...");
327 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
328 uint8_t *test_data
= BigBuf_get_addr();
331 uint32_t start_time
= end_time
= GetTickCount();
332 uint32_t bytes_transferred
= 0;
335 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
336 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
337 end_time
= GetTickCount();
338 bytes_transferred
+= USB_CMD_DATA_SIZE
;
342 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
343 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
344 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
345 1000 * bytes_transferred
/ (end_time
- start_time
));
350 * Prints runtime information about the PM3.
352 void SendStatus(void) {
353 BigBuf_print_status();
355 printConfig(); //LF Sampling config
358 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
359 Dbprintf(" ToSendMax..........%d", ToSendMax
);
360 Dbprintf(" ToSendBit..........%d", ToSendBit
);
361 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE
);
363 cmd_send(CMD_ACK
,1,0,0,0,0);
366 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
369 void StandAloneMode()
371 DbpString("Stand-alone mode! No PC necessary.");
372 // Oooh pretty -- notify user we're in elite samy mode now
374 LED(LED_ORANGE
, 200);
376 LED(LED_ORANGE
, 200);
378 LED(LED_ORANGE
, 200);
380 LED(LED_ORANGE
, 200);
385 #ifdef WITH_ISO14443a_StandAlone
392 } __attribute__((__packed__
)) card_clone_t
;
394 void StandAloneMode14a()
397 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
399 int selected
= 0, playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
400 int cardRead
[OPTS
] = {0};
402 card_clone_t uids
[OPTS
];
403 iso14a_card_select_t card_info
[OPTS
];
404 uint8_t params
= (MAGIC_SINGLE
| MAGIC_DATAIN
);
406 LED(selected
+ 1, 0);
414 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
418 LED(selected
+ 1, 0);
422 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
423 /* need this delay to prevent catching some weird data */
425 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
430 if (BUTTON_PRESS()) {
431 if (cardRead
[selected
]) {
432 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
435 else if (cardRead
[(selected
+1) % OPTS
]) {
436 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
437 selected
= (selected
+1) % OPTS
;
438 break; // playing = 1;
441 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
445 if (!iso14443a_select_card(NULL
, &card_info
[selected
], NULL
, true, 0))
449 Dbprintf("Read UID:");
450 Dbhexdump(card_info
[selected
].uidlen
, card_info
[selected
].uid
, 0);
452 if (memcmp(uids
[(selected
+1)%OPTS
].uid
, card_info
[selected
].uid
, card_info
[selected
].uidlen
) == 0 ) {
453 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
457 uids
[selected
].sak
= card_info
[selected
].sak
;
458 uids
[selected
].uidlen
= card_info
[selected
].uidlen
;
459 memcpy(uids
[selected
].uid
, card_info
[selected
].uid
, uids
[selected
].uidlen
);
460 memcpy(uids
[selected
].atqa
, card_info
[selected
].atqa
, 2);
462 if (uids
[selected
].uidlen
> 4)
463 Dbprintf("Bank[%d] received a 7-byte UID", selected
);
465 Dbprintf("Bank[%d] received a 4-byte UID", selected
);
470 Dbprintf("ATQA = %02X%02X", uids
[selected
].atqa
[0], uids
[selected
].atqa
[1]);
471 Dbprintf("SAK = %02X", uids
[selected
].sak
);
474 LED(LED_ORANGE
, 200);
476 LED(LED_ORANGE
, 200);
479 LED(selected
+ 1, 0);
481 // Next state is replay:
484 cardRead
[selected
] = 1;
486 /* MF Classic UID clone */
487 else if (iGotoClone
==1)
491 LED(selected
+ 1, 0);
492 LED(LED_ORANGE
, 250);
494 // magiccards holds 4bytes uid.
495 uint64_t tmpuid
= bytes_to_num(uids
[selected
].uid
, 4);
498 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, tmpuid
& 0xFFFFFFFF);
500 // wait for button to be released
501 // Delay cloning until card is in place
502 while(BUTTON_PRESS())
505 Dbprintf("Starting clone. [Bank: %u]", selected
);
506 // need this delay to prevent catching some weird data
508 // Begin clone function here:
509 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
510 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
511 memcpy(c.d.asBytes, data, 16);
514 Block read is similar:
515 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
516 We need to imitate that call with blockNo 0 to set a uid.
518 The get and set commands are handled in this file:
519 // Work with "magic Chinese" card
520 case CMD_MIFARE_CSETBLOCK:
521 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
523 case CMD_MIFARE_CGETBLOCK:
524 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
527 mfCSetUID provides example logic for UID set workflow:
528 -Read block0 from card in field with MifareCGetBlock()
529 -Configure new values without replacing reserved bytes
530 memcpy(block0, uid, 4); // Copy UID bytes from byte array
532 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
533 Bytes 5-7 are reserved SAK and ATQA for mifare classic
534 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
536 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
537 // arg0 = Flags, arg1=blockNo
538 MifareCGetBlock(params
, 0, oldBlock0
);
539 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
540 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
544 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0], oldBlock0
[1], oldBlock0
[2], oldBlock0
[3]);
545 memcpy(newBlock0
, oldBlock0
, 16);
547 // Copy uid for bank (2nd is for longer UIDs not supported if classic)
548 memcpy(newBlock0
, uids
[selected
].uid
, 4);
549 newBlock0
[4] = newBlock0
[0] ^ newBlock0
[1] ^ newBlock0
[2] ^ newBlock0
[3];
551 // arg0 = workFlags, arg1 = blockNo, datain
552 MifareCSetBlock(params
, 0, newBlock0
);
553 MifareCGetBlock(params
, 0, testBlock0
);
555 if (memcmp(testBlock0
, newBlock0
, 16)==0) {
556 DbpString("Cloned successfull!");
557 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
560 selected
= (selected
+ 1) % OPTS
;
562 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
567 LED(selected
+ 1, 0);
569 // Change where to record (or begin playing)
570 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
573 LED(selected
+ 1, 0);
575 // Begin transmitting
579 DbpString("Playing");
582 int button_action
= BUTTON_HELD(1000);
583 if (button_action
== 0) { // No button action, proceed with sim
585 uint8_t flags
= FLAG_4B_UID_IN_DATA
;
586 uint8_t data
[USB_CMD_DATA_SIZE
] = {0}; // in case there is a read command received we shouldn't break
588 memcpy(data
, uids
[selected
].uid
, uids
[selected
].uidlen
);
590 uint64_t tmpuid
= bytes_to_num(uids
[selected
].uid
, uids
[selected
].uidlen
);
592 if ( uids
[selected
].uidlen
== 7 ) {
593 flags
= FLAG_7B_UID_IN_DATA
;
594 Dbprintf("Simulating ISO14443a tag with uid: %02x%08x [Bank: %u]", tmpuid
>> 32, tmpuid
& 0xFFFFFFFF , selected
);
596 Dbprintf("Simulating ISO14443a tag with uid: %08x [Bank: %u]", tmpuid
& 0xFFFFFFFF , selected
);
599 if (uids
[selected
].sak
== 0x08 && uids
[selected
].atqa
[0] == 0x04 && uids
[selected
].atqa
[1] == 0) {
600 DbpString("Mifare Classic 1k");
601 SimulateIso14443aTag(1, flags
, data
);
602 } else if (uids
[selected
].sak
== 0x18 && uids
[selected
].atqa
[0] == 0x02 && uids
[selected
].atqa
[1] == 0) {
603 DbpString("Mifare Classic 4k (4b uid)");
604 SimulateIso14443aTag(8, flags
, data
);
605 } else if (uids
[selected
].sak
== 0x08 && uids
[selected
].atqa
[0] == 0x44 && uids
[selected
].atqa
[1] == 0) {
606 DbpString("Mifare Classic 4k (7b uid)");
607 SimulateIso14443aTag(8, flags
, data
);
608 } else if (uids
[selected
].sak
== 0x00 && uids
[selected
].atqa
[0] == 0x44 && uids
[selected
].atqa
[1] == 0) {
609 DbpString("Mifare Ultralight");
610 SimulateIso14443aTag(2, flags
, data
);
611 } else if (uids
[selected
].sak
== 0x20 && uids
[selected
].atqa
[0] == 0x04 && uids
[selected
].atqa
[1] == 0x03) {
612 DbpString("Mifare DESFire");
613 SimulateIso14443aTag(3, flags
, data
);
616 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
617 SimulateIso14443aTag(1, flags
, data
);
620 else if (button_action
== BUTTON_SINGLE_CLICK
) {
621 selected
= (selected
+ 1) % OPTS
;
622 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
626 else if (button_action
== BUTTON_HOLD
) {
627 Dbprintf("Playtime over. Begin cloning...");
634 /* We pressed a button so ignore it here with a delay */
637 LED(selected
+ 1, 0);
640 while(BUTTON_PRESS())
646 // samy's sniff and repeat routine
650 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
652 int high
[OPTS
], low
[OPTS
];
657 // Turn on selected LED
658 LED(selected
+ 1, 0);
664 // Was our button held down or pressed?
665 int button_pressed
= BUTTON_HELD(1000);
668 // Button was held for a second, begin recording
669 if (button_pressed
> 0 && cardRead
== 0)
672 LED(selected
+ 1, 0);
676 DbpString("Starting recording");
678 // wait for button to be released
679 while(BUTTON_PRESS())
682 /* need this delay to prevent catching some weird data */
685 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
686 Dbprintf("Recorded %x %x %08x", selected
, high
[selected
], low
[selected
]);
689 LED(selected
+ 1, 0);
690 // Finished recording
691 // If we were previously playing, set playing off
692 // so next button push begins playing what we recorded
696 else if (button_pressed
> 0 && cardRead
== 1) {
698 LED(selected
+ 1, 0);
702 Dbprintf("Cloning %x %x %08x", selected
, high
[selected
], low
[selected
]);
704 // wait for button to be released
705 while(BUTTON_PRESS())
708 /* need this delay to prevent catching some weird data */
711 CopyHIDtoT55x7(0, high
[selected
], low
[selected
], 0);
712 Dbprintf("Cloned %x %x %08x", selected
, high
[selected
], low
[selected
]);
715 LED(selected
+ 1, 0);
716 // Finished recording
718 // If we were previously playing, set playing off
719 // so next button push begins playing what we recorded
724 // Change where to record (or begin playing)
725 else if (button_pressed
) {
726 // Next option if we were previously playing
728 selected
= (selected
+ 1) % OPTS
;
732 LED(selected
+ 1, 0);
734 // Begin transmitting
738 DbpString("Playing");
739 // wait for button to be released
740 while(BUTTON_PRESS())
743 Dbprintf("%x %x %08x", selected
, high
[selected
], low
[selected
]);
744 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
745 DbpString("Done playing");
747 if (BUTTON_HELD(1000) > 0) {
748 DbpString("Exiting");
753 /* We pressed a button so ignore it here with a delay */
756 // when done, we're done playing, move to next option
757 selected
= (selected
+ 1) % OPTS
;
760 LED(selected
+ 1, 0);
763 while(BUTTON_PRESS())
772 Listen and detect an external reader. Determine the best location
776 Inside the ListenReaderField() function, there is two mode.
777 By default, when you call the function, you will enter mode 1.
778 If you press the PM3 button one time, you will enter mode 2.
779 If you press the PM3 button a second time, you will exit the function.
781 DESCRIPTION OF MODE 1:
782 This mode just listens for an external reader field and lights up green
783 for HF and/or red for LF. This is the original mode of the detectreader
786 DESCRIPTION OF MODE 2:
787 This mode will visually represent, using the LEDs, the actual strength of the
788 current compared to the maximum current detected. Basically, once you know
789 what kind of external reader is present, it will help you spot the best location to place
790 your antenna. You will probably not get some good results if there is a LF and a HF reader
791 at the same place! :-)
795 static const char LIGHT_SCHEME
[] = {
796 0x0, /* ---- | No field detected */
797 0x1, /* X--- | 14% of maximum current detected */
798 0x2, /* -X-- | 29% of maximum current detected */
799 0x4, /* --X- | 43% of maximum current detected */
800 0x8, /* ---X | 57% of maximum current detected */
801 0xC, /* --XX | 71% of maximum current detected */
802 0xE, /* -XXX | 86% of maximum current detected */
803 0xF, /* XXXX | 100% of maximum current detected */
805 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
807 void ListenReaderField(int limit
) {
810 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
812 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
813 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
814 int mode
=1, display_val
, display_max
, i
;
816 // switch off FPGA - we don't want to measure our own signal
817 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
818 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
822 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
824 if(limit
!= HF_ONLY
) {
825 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
829 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
831 if (limit
!= LF_ONLY
) {
832 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
837 if (BUTTON_PRESS()) {
842 DbpString("Signal Strength Mode");
846 DbpString("Stopped");
854 if (limit
!= HF_ONLY
) {
856 if (ABS(lf_av
- lf_baseline
) > REPORT_CHANGE
)
862 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
863 // see if there's a significant change
864 if(ABS(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
865 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
872 if (limit
!= LF_ONLY
) {
874 if (ABS(hf_av
- hf_baseline
) > REPORT_CHANGE
)
880 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
881 // see if there's a significant change
882 if(ABS(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
883 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
891 if (limit
== LF_ONLY
) {
893 display_max
= lf_max
;
894 } else if (limit
== HF_ONLY
) {
896 display_max
= hf_max
;
897 } else { /* Pick one at random */
898 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
900 display_max
= hf_max
;
903 display_max
= lf_max
;
906 for (i
=0; i
<LIGHT_LEN
; i
++) {
907 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
908 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
909 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
910 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
911 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
919 void UsbPacketReceived(uint8_t *packet
, int len
)
921 UsbCommand
*c
= (UsbCommand
*)packet
;
923 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
927 case CMD_SET_LF_SAMPLING_CONFIG
:
928 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
930 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
931 cmd_send(CMD_ACK
, SampleLF(c
->arg
[0]),0,0,0,0);
933 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
934 ModThenAcquireRawAdcSamples125k(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
936 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
937 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
939 case CMD_HID_DEMOD_FSK
:
940 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
942 case CMD_HID_SIM_TAG
:
943 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
945 case CMD_FSK_SIM_TAG
:
946 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
948 case CMD_ASK_SIM_TAG
:
949 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
951 case CMD_PSK_SIM_TAG
:
952 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
954 case CMD_HID_CLONE_TAG
:
955 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
957 case CMD_IO_DEMOD_FSK
:
958 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
960 case CMD_IO_CLONE_TAG
:
961 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
963 case CMD_EM410X_DEMOD
:
964 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
966 case CMD_EM410X_WRITE_TAG
:
967 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
969 case CMD_READ_TI_TYPE
:
972 case CMD_WRITE_TI_TYPE
:
973 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
975 case CMD_SIMULATE_TAG_125K
:
977 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
980 case CMD_LF_SIMULATE_BIDIR
:
981 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
983 case CMD_INDALA_CLONE_TAG
:
984 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
986 case CMD_INDALA_CLONE_TAG_L
:
987 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
989 case CMD_T55XX_READ_BLOCK
:
990 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
992 case CMD_T55XX_WRITE_BLOCK
:
993 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
995 case CMD_T55XX_WAKEUP
:
996 T55xxWakeUp(c
->arg
[0]);
998 case CMD_T55XX_RESET_READ
:
1001 case CMD_PCF7931_READ
:
1004 case CMD_PCF7931_WRITE
:
1005 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1007 case CMD_EM4X_READ_WORD
:
1008 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
1010 case CMD_EM4X_WRITE_WORD
:
1011 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
1013 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1014 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1016 case CMD_VIKING_CLONE_TAG
:
1017 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1025 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1026 SnoopHitag(c
->arg
[0]);
1028 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1029 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1031 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1032 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1034 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1035 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1037 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1038 check_challenges((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1040 case CMD_READ_HITAG_S
: //Reader for only Hitag S tags, args = key or challenge
1041 ReadHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1043 case CMD_WR_HITAG_S
: //writer for Hitag tags args=data to write,page and key or challenge
1044 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1048 #ifdef WITH_ISO15693
1049 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1050 AcquireRawAdcSamplesIso15693();
1052 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1053 RecordRawAdcSamplesIso15693();
1055 case CMD_ISO_15693_COMMAND
:
1056 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1058 case CMD_ISO_15693_FIND_AFI
:
1059 BruteforceIso15693Afi(c
->arg
[0]);
1061 case CMD_ISO_15693_DEBUG
:
1062 SetDebugIso15693(c
->arg
[0]);
1064 case CMD_READER_ISO_15693
:
1065 ReaderIso15693(c
->arg
[0]);
1067 case CMD_SIMTAG_ISO_15693
:
1068 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1073 case CMD_SIMULATE_TAG_LEGIC_RF
:
1074 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1076 case CMD_WRITER_LEGIC_RF
:
1077 LegicRfWriter( c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1079 case CMD_READER_LEGIC_RF
:
1080 LegicRfReader(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1082 case CMD_LEGIC_INFO
:
1085 case CMD_LEGIC_ESET
:
1086 LegicEMemSet(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1090 #ifdef WITH_ISO14443b
1091 case CMD_READ_SRI_TAG
:
1092 ReadSTMemoryIso14443b(c
->arg
[0]);
1094 case CMD_SNOOP_ISO_14443B
:
1097 case CMD_SIMULATE_TAG_ISO_14443B
:
1098 SimulateIso14443bTag(c
->arg
[0]);
1100 case CMD_ISO_14443B_COMMAND
:
1101 //SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1102 SendRawCommand14443B_Ex(c
);
1106 #ifdef WITH_ISO14443a
1107 case CMD_SNOOP_ISO_14443a
:
1108 SniffIso14443a(c
->arg
[0]);
1110 case CMD_READER_ISO_14443a
:
1113 case CMD_SIMULATE_TAG_ISO_14443a
:
1114 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1116 case CMD_EPA_PACE_COLLECT_NONCE
:
1117 EPA_PACE_Collect_Nonce(c
);
1119 case CMD_EPA_PACE_REPLAY
:
1122 case CMD_READER_MIFARE
:
1123 ReaderMifare(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1125 case CMD_MIFARE_READBL
:
1126 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1128 case CMD_MIFAREU_READBL
:
1129 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1131 case CMD_MIFAREUC_AUTH
:
1132 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1134 case CMD_MIFAREU_READCARD
:
1135 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1137 case CMD_MIFAREUC_SETPWD
:
1138 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1140 case CMD_MIFARE_READSC
:
1141 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1143 case CMD_MIFARE_WRITEBL
:
1144 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1146 //case CMD_MIFAREU_WRITEBL_COMPAT:
1147 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1149 case CMD_MIFAREU_WRITEBL
:
1150 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1152 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1153 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1155 case CMD_MIFARE_NESTED
:
1156 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1158 case CMD_MIFARE_CHKKEYS
:
1159 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1161 case CMD_SIMULATE_MIFARE_CARD
:
1162 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1166 case CMD_MIFARE_SET_DBGMODE
:
1167 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1169 case CMD_MIFARE_EML_MEMCLR
:
1170 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1172 case CMD_MIFARE_EML_MEMSET
:
1173 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1175 case CMD_MIFARE_EML_MEMGET
:
1176 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1178 case CMD_MIFARE_EML_CARDLOAD
:
1179 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1182 // Work with "magic Chinese" card
1183 case CMD_MIFARE_CSETBLOCK
:
1184 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1186 case CMD_MIFARE_CGETBLOCK
:
1187 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1189 case CMD_MIFARE_CIDENT
:
1194 case CMD_MIFARE_SNIFFER
:
1195 SniffMifare(c
->arg
[0]);
1199 case CMD_MIFARE_DESFIRE_READBL
: break;
1200 case CMD_MIFARE_DESFIRE_WRITEBL
: break;
1201 case CMD_MIFARE_DESFIRE_AUTH1
:
1202 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1204 case CMD_MIFARE_DESFIRE_AUTH2
:
1205 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1207 case CMD_MIFARE_DES_READER
:
1208 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1210 case CMD_MIFARE_DESFIRE_INFO
:
1211 MifareDesfireGetInformation();
1213 case CMD_MIFARE_DESFIRE
:
1214 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1216 case CMD_MIFARE_COLLECT_NONCES
:
1220 case CMD_EMV_TRANSACTION
:
1223 case CMD_EMV_GET_RANDOM_NUM
:
1226 case CMD_EMV_LOAD_VALUE
:
1227 EMVloadvalue(c
->arg
[0], c
->d
.asBytes
);
1229 case CMD_EMV_DUMP_CARD
:
1233 // Makes use of ISO14443a FPGA Firmware
1234 case CMD_SNOOP_ICLASS
:
1237 case CMD_SIMULATE_TAG_ICLASS
:
1238 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1240 case CMD_READER_ICLASS
:
1241 ReaderIClass(c
->arg
[0]);
1243 case CMD_READER_ICLASS_REPLAY
:
1244 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1246 case CMD_ICLASS_EML_MEMSET
:
1247 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1249 case CMD_ICLASS_WRITEBLOCK
:
1250 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1252 case CMD_ICLASS_READCHECK
: // auth step 1
1253 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1255 case CMD_ICLASS_READBLOCK
:
1256 iClass_ReadBlk(c
->arg
[0]);
1258 case CMD_ICLASS_AUTHENTICATION
: //check
1259 iClass_Authentication(c
->d
.asBytes
);
1261 case CMD_ICLASS_DUMP
:
1262 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1264 case CMD_ICLASS_CLONE
:
1265 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1269 case CMD_HF_SNIFFER
:
1270 HfSnoop(c
->arg
[0], c
->arg
[1]);
1274 case CMD_BUFF_CLEAR
:
1278 case CMD_MEASURE_ANTENNA_TUNING
:
1279 MeasureAntennaTuning();
1282 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1283 MeasureAntennaTuningHf();
1286 case CMD_LISTEN_READER_FIELD
:
1287 ListenReaderField(c
->arg
[0]);
1290 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1291 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1293 LED_D_OFF(); // LED D indicates field ON or OFF
1296 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
: {
1298 uint8_t *BigBuf
= BigBuf_get_addr();
1300 size_t startidx
= c
->arg
[0];
1301 uint8_t isok
= FALSE
;
1302 // arg0 = startindex
1303 // arg1 = length bytes to transfer
1305 //Dbprintf("transfer to client parameters: %llu | %llu | %llu", c->arg[0], c->arg[1], c->arg[2]);
1307 for(size_t i
= 0; i
< c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1308 len
= MIN( (c
->arg
[1] - i
), USB_CMD_DATA_SIZE
);
1309 isok
= cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, i
, len
, BigBuf_get_traceLen(), BigBuf
+ startidx
+ i
, len
);
1311 Dbprintf("transfer to client failed :: | bytes %d", len
);
1313 // Trigger a finish downloading signal with an ACK frame
1314 cmd_send(CMD_ACK
, 1, 0, BigBuf_get_traceLen(), getSamplingConfig(), sizeof(sample_config
));
1318 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1319 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1320 // to be able to use this one for uploading data to device
1321 // arg1 = 0 upload for LF usage
1322 // 1 upload for HF usage
1323 if ( c
->arg
[1] == 0 )
1324 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1326 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1327 uint8_t *b
= BigBuf_get_addr();
1328 memcpy( b
+ c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1329 cmd_send(CMD_ACK
,1,0,0,0,0);
1332 case CMD_DOWNLOAD_EML_BIGBUF
: {
1334 uint8_t *cardmem
= BigBuf_get_EM_addr();
1336 for(size_t i
=0; i
< c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1337 len
= MIN((c
->arg
[1] - i
), USB_CMD_DATA_SIZE
);
1338 cmd_send(CMD_DOWNLOADED_EML_BIGBUF
, i
, len
, CARD_MEMORY_SIZE
, cardmem
+ c
->arg
[0] + i
, len
);
1340 // Trigger a finish downloading signal with an ACK frame
1341 cmd_send(CMD_ACK
, 1, 0, CARD_MEMORY_SIZE
, 0, 0);
1349 case CMD_SET_LF_DIVISOR
:
1350 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1351 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1354 case CMD_SET_ADC_MUX
:
1356 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1357 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1358 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1359 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1370 cmd_send(CMD_ACK
,0,0,0,0,0);
1380 case CMD_SETUP_WRITE
:
1381 case CMD_FINISH_WRITE
:
1382 case CMD_HARDWARE_RESET
:
1385 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1387 // We're going to reset, and the bootrom will take control.
1391 case CMD_START_FLASH
:
1392 if(common_area
.flags
.bootrom_present
) {
1393 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1396 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1400 case CMD_DEVICE_INFO
: {
1401 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1402 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1403 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1407 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1412 void __attribute__((noreturn
)) AppMain(void)
1416 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1417 /* Initialize common area */
1418 memset(&common_area
, 0, sizeof(common_area
));
1419 common_area
.magic
= COMMON_AREA_MAGIC
;
1420 common_area
.version
= 1;
1422 common_area
.flags
.osimage_present
= 1;
1429 // The FPGA gets its clock from us from PCK0 output, so set that up.
1430 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1431 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1432 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1433 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1434 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
| AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1435 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1438 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1440 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1442 // Load the FPGA image, which we have stored in our flash.
1443 // (the HF version by default)
1444 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1452 byte_t rx
[sizeof(UsbCommand
)];
1456 if ( usb_poll_validate_length() ) {
1457 rx_len
= usb_read(rx
, sizeof(UsbCommand
));
1460 UsbPacketReceived(rx
, rx_len
);
1465 #ifndef WITH_ISO14443a_StandAlone
1466 if (BUTTON_HELD(1000) > 0)
1470 #ifdef WITH_ISO14443a
1471 #ifdef WITH_ISO14443a_StandAlone
1472 if (BUTTON_HELD(1000) > 0)
1473 StandAloneMode14a();