1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
19 #include "iso14443crc.h"
20 #include "iso14443a.h"
22 #include "mifareutil.h"
24 static uint32_t iso14a_timeout
;
27 // the block number for the ISO14443-4 PCB
28 static uint8_t iso14_pcb_blocknum
= 0;
33 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
34 #define REQUEST_GUARD_TIME (7000/16 + 1)
35 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
36 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
37 // bool LastCommandWasRequest = FALSE;
40 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
42 // When the PM acts as reader and is receiving tag data, it takes
43 // 3 ticks delay in the AD converter
44 // 16 ticks until the modulation detector completes and sets curbit
45 // 8 ticks until bit_to_arm is assigned from curbit
46 // 8*16 ticks for the transfer from FPGA to ARM
47 // 4*16 ticks until we measure the time
48 // - 8*16 ticks because we measure the time of the previous transfer
49 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
51 // When the PM acts as a reader and is sending, it takes
52 // 4*16 ticks until we can write data to the sending hold register
53 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
54 // 8 ticks until the first transfer starts
55 // 8 ticks later the FPGA samples the data
56 // 1 tick to assign mod_sig_coil
57 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
59 // When the PM acts as tag and is receiving it takes
60 // 2 ticks delay in the RF part (for the first falling edge),
61 // 3 ticks for the A/D conversion,
62 // 8 ticks on average until the start of the SSC transfer,
63 // 8 ticks until the SSC samples the first data
64 // 7*16 ticks to complete the transfer from FPGA to ARM
65 // 8 ticks until the next ssp_clk rising edge
66 // 4*16 ticks until we measure the time
67 // - 8*16 ticks because we measure the time of the previous transfer
68 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
70 // The FPGA will report its internal sending delay in
71 uint16_t FpgaSendQueueDelay
;
72 // the 5 first bits are the number of bits buffered in mod_sig_buf
73 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
74 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
76 // When the PM acts as tag and is sending, it takes
77 // 4*16 ticks until we can write data to the sending hold register
78 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
79 // 8 ticks until the first transfer starts
80 // 8 ticks later the FPGA samples the data
81 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
82 // + 1 tick to assign mod_sig_coil
83 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
85 // When the PM acts as sniffer and is receiving tag data, it takes
86 // 3 ticks A/D conversion
87 // 14 ticks to complete the modulation detection
88 // 8 ticks (on average) until the result is stored in to_arm
89 // + the delays in transferring data - which is the same for
90 // sniffing reader and tag data and therefore not relevant
91 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
93 // When the PM acts as sniffer and is receiving reader data, it takes
94 // 2 ticks delay in analogue RF receiver (for the falling edge of the
95 // start bit, which marks the start of the communication)
96 // 3 ticks A/D conversion
97 // 8 ticks on average until the data is stored in to_arm.
98 // + the delays in transferring data - which is the same for
99 // sniffing reader and tag data and therefore not relevant
100 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
102 //variables used for timing purposes:
103 //these are in ssp_clk cycles:
104 static uint32_t NextTransferTime
;
105 static uint32_t LastTimeProxToAirStart
;
106 static uint32_t LastProxToAirDuration
;
110 // CARD TO READER - manchester
111 // Sequence D: 11110000 modulation with subcarrier during first half
112 // Sequence E: 00001111 modulation with subcarrier during second half
113 // Sequence F: 00000000 no modulation with subcarrier
114 // READER TO CARD - miller
115 // Sequence X: 00001100 drop after half a period
116 // Sequence Y: 00000000 no drop
117 // Sequence Z: 11000000 drop at start
125 const uint8_t OddByteParity
[256] = {
126 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
127 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
128 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
129 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
130 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
137 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
138 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
141 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
145 void iso14a_set_trigger(bool enable
) {
150 void iso14a_set_timeout(uint32_t timeout
) {
151 iso14a_timeout
= timeout
;
152 if(MF_DBGLEVEL
>= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout
, iso14a_timeout
/ 106);
156 void iso14a_set_ATS_timeout(uint8_t *ats
) {
162 if (ats
[0] > 1) { // there is a format byte T0
163 if ((ats
[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
164 if ((ats
[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
169 fwi
= (tb1
& 0xf0) >> 4; // frame waiting indicator (FWI)
170 fwt
= 256 * 16 * (1 << fwi
); // frame waiting time (FWT) in 1/fc
172 iso14a_set_timeout(fwt
/(8*16));
178 //-----------------------------------------------------------------------------
179 // Generate the parity value for a byte sequence
181 //-----------------------------------------------------------------------------
182 byte_t
oddparity (const byte_t bt
)
184 return OddByteParity
[bt
];
187 void GetParity(const uint8_t *pbtCmd
, uint16_t iLen
, uint8_t *par
)
189 uint16_t paritybit_cnt
= 0;
190 uint16_t paritybyte_cnt
= 0;
191 uint8_t parityBits
= 0;
193 for (uint16_t i
= 0; i
< iLen
; i
++) {
194 // Generate the parity bits
195 parityBits
|= ((OddByteParity
[pbtCmd
[i
]]) << (7-paritybit_cnt
));
196 if (paritybit_cnt
== 7) {
197 par
[paritybyte_cnt
] = parityBits
; // save 8 Bits parity
198 parityBits
= 0; // and advance to next Parity Byte
206 // save remaining parity bits
207 par
[paritybyte_cnt
] = parityBits
;
211 void AppendCrc14443a(uint8_t* data
, int len
)
213 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
216 //=============================================================================
217 // ISO 14443 Type A - Miller decoder
218 //=============================================================================
220 // This decoder is used when the PM3 acts as a tag.
221 // The reader will generate "pauses" by temporarily switching of the field.
222 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
223 // The FPGA does a comparison with a threshold and would deliver e.g.:
224 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
225 // The Miller decoder needs to identify the following sequences:
226 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
227 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
228 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
229 // Note 1: the bitstream may start at any time. We therefore need to sync.
230 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
231 //-----------------------------------------------------------------------------
234 // Lookup-Table to decide if 4 raw bits are a modulation.
235 // We accept two or three consecutive "0" in any position with the rest "1"
236 const bool Mod_Miller_LUT
[] = {
237 TRUE
, TRUE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, FALSE
,
238 TRUE
, TRUE
, FALSE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
240 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
241 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
245 Uart
.state
= STATE_UNSYNCD
;
247 Uart
.len
= 0; // number of decoded data bytes
248 Uart
.parityLen
= 0; // number of decoded parity bytes
249 Uart
.shiftReg
= 0; // shiftreg to hold decoded data bits
250 Uart
.parityBits
= 0; // holds 8 parity bits
251 Uart
.twoBits
= 0x0000; // buffer for 2 Bits
257 void UartInit(uint8_t *data
, uint8_t *parity
)
260 Uart
.parity
= parity
;
264 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
265 static RAMFUNC
bool MillerDecoding(uint8_t bit
, uint32_t non_real_time
)
268 Uart
.twoBits
= (Uart
.twoBits
<< 8) | bit
;
270 if (Uart
.state
== STATE_UNSYNCD
) { // not yet synced
272 if (Uart
.highCnt
< 2) { // wait for a stable unmodulated signal
273 if (Uart
.twoBits
== 0xffff) {
279 Uart
.syncBit
= 0xFFFF; // not set
280 // we look for a ...1111111100x11111xxxxxx pattern (the start bit)
281 if ((Uart
.twoBits
& 0xDF00) == 0x1F00) Uart
.syncBit
= 8; // mask is 11x11111 xxxxxxxx,
282 // check for 00x11111 xxxxxxxx
283 else if ((Uart
.twoBits
& 0xEF80) == 0x8F80) Uart
.syncBit
= 7; // both masks shifted right one bit, left padded with '1'
284 else if ((Uart
.twoBits
& 0xF7C0) == 0xC7C0) Uart
.syncBit
= 6; // ...
285 else if ((Uart
.twoBits
& 0xFBE0) == 0xE3E0) Uart
.syncBit
= 5;
286 else if ((Uart
.twoBits
& 0xFDF0) == 0xF1F0) Uart
.syncBit
= 4;
287 else if ((Uart
.twoBits
& 0xFEF8) == 0xF8F8) Uart
.syncBit
= 3;
288 else if ((Uart
.twoBits
& 0xFF7C) == 0xFC7C) Uart
.syncBit
= 2;
289 else if ((Uart
.twoBits
& 0xFFBE) == 0xFE3E) Uart
.syncBit
= 1;
290 if (Uart
.syncBit
!= 0xFFFF) { // found a sync bit
291 Uart
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
292 Uart
.startTime
-= Uart
.syncBit
;
293 Uart
.endTime
= Uart
.startTime
;
294 Uart
.state
= STATE_START_OF_COMMUNICATION
;
300 if (IsMillerModulationNibble1(Uart
.twoBits
>> Uart
.syncBit
)) {
301 if (IsMillerModulationNibble2(Uart
.twoBits
>> Uart
.syncBit
)) { // Modulation in both halves - error
303 } else { // Modulation in first half = Sequence Z = logic "0"
304 if (Uart
.state
== STATE_MILLER_X
) { // error - must not follow after X
308 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
309 Uart
.state
= STATE_MILLER_Z
;
310 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 6;
311 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
312 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
313 Uart
.parityBits
<<= 1; // make room for the parity bit
314 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
317 if((Uart
.len
&0x0007) == 0) { // every 8 data bytes
318 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
325 if (IsMillerModulationNibble2(Uart
.twoBits
>> Uart
.syncBit
)) { // Modulation second half = Sequence X = logic "1"
327 Uart
.shiftReg
= (Uart
.shiftReg
>> 1) | 0x100; // add a 1 to the shiftreg
328 Uart
.state
= STATE_MILLER_X
;
329 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 2;
330 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
331 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
332 Uart
.parityBits
<<= 1; // make room for the new parity bit
333 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
336 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
337 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
341 } else { // no modulation in both halves - Sequence Y
342 if (Uart
.state
== STATE_MILLER_Z
|| Uart
.state
== STATE_MILLER_Y
) { // Y after logic "0" - End of Communication
343 Uart
.state
= STATE_UNSYNCD
;
344 Uart
.bitCount
--; // last "0" was part of EOC sequence
345 Uart
.shiftReg
<<= 1; // drop it
346 if(Uart
.bitCount
> 0) { // if we decoded some bits
347 Uart
.shiftReg
>>= (9 - Uart
.bitCount
); // right align them
348 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff); // add last byte to the output
349 Uart
.parityBits
<<= 1; // add a (void) parity bit
350 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align parity bits
351 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store it
353 } else if (Uart
.len
& 0x0007) { // there are some parity bits to store
354 Uart
.parityBits
<<= (8 - (Uart
.len
&0x0007)); // left align remaining parity bits
355 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // and store them
358 return TRUE
; // we are finished with decoding the raw data sequence
360 UartReset(); // Nothing received - start over
364 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) { // error - must not follow directly after SOC
367 } else { // a logic "0"
369 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
370 Uart
.state
= STATE_MILLER_Y
;
371 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
372 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
373 Uart
.parityBits
<<= 1; // make room for the parity bit
374 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
377 if ((Uart
.len
&0x0007) == 0) { // every 8 data bytes
378 Uart
.parity
[Uart
.parityLen
++] = Uart
.parityBits
; // store 8 parity bits
388 return FALSE
; // not finished yet, need more data
393 //=============================================================================
394 // ISO 14443 Type A - Manchester decoder
395 //=============================================================================
397 // This decoder is used when the PM3 acts as a reader.
398 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
399 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
400 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
401 // The Manchester decoder needs to identify the following sequences:
402 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
403 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
404 // 8 ticks unmodulated: Sequence F = end of communication
405 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
406 // Note 1: the bitstream may start at any time. We therefore need to sync.
407 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
410 // Lookup-Table to decide if 4 raw bits are a modulation.
411 // We accept three or four "1" in any position
412 const bool Mod_Manchester_LUT
[] = {
413 FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, TRUE
,
414 FALSE
, FALSE
, FALSE
, TRUE
, FALSE
, TRUE
, TRUE
, TRUE
417 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
418 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
423 Demod
.state
= DEMOD_UNSYNCD
;
424 Demod
.len
= 0; // number of decoded data bytes
426 Demod
.shiftReg
= 0; // shiftreg to hold decoded data bits
427 Demod
.parityBits
= 0; //
428 Demod
.collisionPos
= 0; // Position of collision bit
429 Demod
.twoBits
= 0xffff; // buffer for 2 Bits
435 void DemodInit(uint8_t *data
, uint8_t *parity
)
438 Demod
.parity
= parity
;
442 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
443 static RAMFUNC
int ManchesterDecoding(uint8_t bit
, uint16_t offset
, uint32_t non_real_time
)
446 Demod
.twoBits
= (Demod
.twoBits
<< 8) | bit
;
448 if (Demod
.state
== DEMOD_UNSYNCD
) {
450 if (Demod
.highCnt
< 2) { // wait for a stable unmodulated signal
451 if (Demod
.twoBits
== 0x0000) {
457 Demod
.syncBit
= 0xFFFF; // not set
458 if ((Demod
.twoBits
& 0x7700) == 0x7000) Demod
.syncBit
= 7;
459 else if ((Demod
.twoBits
& 0x3B80) == 0x3800) Demod
.syncBit
= 6;
460 else if ((Demod
.twoBits
& 0x1DC0) == 0x1C00) Demod
.syncBit
= 5;
461 else if ((Demod
.twoBits
& 0x0EE0) == 0x0E00) Demod
.syncBit
= 4;
462 else if ((Demod
.twoBits
& 0x0770) == 0x0700) Demod
.syncBit
= 3;
463 else if ((Demod
.twoBits
& 0x03B8) == 0x0380) Demod
.syncBit
= 2;
464 else if ((Demod
.twoBits
& 0x01DC) == 0x01C0) Demod
.syncBit
= 1;
465 else if ((Demod
.twoBits
& 0x00EE) == 0x00E0) Demod
.syncBit
= 0;
466 if (Demod
.syncBit
!= 0xFFFF) {
467 Demod
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
468 Demod
.startTime
-= Demod
.syncBit
;
469 Demod
.bitCount
= offset
; // number of decoded data bits
470 Demod
.state
= DEMOD_MANCHESTER_DATA
;
476 if (IsManchesterModulationNibble1(Demod
.twoBits
>> Demod
.syncBit
)) { // modulation in first half
477 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // ... and in second half = collision
478 if (!Demod
.collisionPos
) {
479 Demod
.collisionPos
= (Demod
.len
<< 3) + Demod
.bitCount
;
481 } // modulation in first half only - Sequence D = 1
483 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) | 0x100; // in both cases, add a 1 to the shiftreg
484 if(Demod
.bitCount
== 9) { // if we decoded a full byte (including parity)
485 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
486 Demod
.parityBits
<<= 1; // make room for the parity bit
487 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
490 if((Demod
.len
&0x0007) == 0) { // every 8 data bytes
491 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits
492 Demod
.parityBits
= 0;
495 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1) - 4;
496 } else { // no modulation in first half
497 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // and modulation in second half = Sequence E = 0
499 Demod
.shiftReg
= (Demod
.shiftReg
>> 1); // add a 0 to the shiftreg
500 if(Demod
.bitCount
>= 9) { // if we decoded a full byte (including parity)
501 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
502 Demod
.parityBits
<<= 1; // make room for the new parity bit
503 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
506 if ((Demod
.len
&0x0007) == 0) { // every 8 data bytes
507 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // store 8 parity bits1
508 Demod
.parityBits
= 0;
511 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1);
512 } else { // no modulation in both halves - End of communication
513 if(Demod
.bitCount
> 0) { // there are some remaining data bits
514 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align the decoded bits
515 Demod
.output
[Demod
.len
++] = Demod
.shiftReg
& 0xff; // and add them to the output
516 Demod
.parityBits
<<= 1; // add a (void) parity bit
517 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
518 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
520 } else if (Demod
.len
& 0x0007) { // there are some parity bits to store
521 Demod
.parityBits
<<= (8 - (Demod
.len
&0x0007)); // left align remaining parity bits
522 Demod
.parity
[Demod
.parityLen
++] = Demod
.parityBits
; // and store them
525 return TRUE
; // we are finished with decoding the raw data sequence
526 } else { // nothing received. Start over
534 return FALSE
; // not finished yet, need more data
537 //=============================================================================
538 // Finally, a `sniffer' for ISO 14443 Type A
539 // Both sides of communication!
540 //=============================================================================
542 //-----------------------------------------------------------------------------
543 // Record the sequence of commands sent by the reader to the tag, with
544 // triggering so that we start recording at the point that the tag is moved
546 //-----------------------------------------------------------------------------
547 void RAMFUNC
SnoopIso14443a(uint8_t param
) {
549 // bit 0 - trigger from first card answer
550 // bit 1 - trigger from first reader 7-bit request
554 // We won't start recording the frames that we acquire until we trigger;
555 // a good trigger condition to get started is probably when we see a
556 // response from the tag.
557 // triggered == FALSE -- to wait first for card
558 bool triggered
= !(param
& 0x03);
560 // Allocate memory from BigBuf for some buffers
561 // free all previous allocations first
564 // The command (reader -> tag) that we're receiving.
565 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
566 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
568 // The response (tag -> reader) that we're receiving.
569 uint8_t *receivedResponse
= BigBuf_malloc(MAX_FRAME_SIZE
);
570 uint8_t *receivedResponsePar
= BigBuf_malloc(MAX_PARITY_SIZE
);
572 // The DMA buffer, used to stream samples from the FPGA
573 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
579 uint8_t *data
= dmaBuf
;
580 uint8_t previous_data
= 0;
583 bool TagIsActive
= FALSE
;
584 bool ReaderIsActive
= FALSE
;
586 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
588 // Set up the demodulator for tag -> reader responses.
589 DemodInit(receivedResponse
, receivedResponsePar
);
591 // Set up the demodulator for the reader -> tag commands
592 UartInit(receivedCmd
, receivedCmdPar
);
594 // Setup and start DMA.
595 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
597 // And now we loop, receiving samples.
598 for(uint32_t rsamples
= 0; TRUE
; ) {
601 DbpString("cancelled by button");
608 int register readBufDataP
= data
- dmaBuf
;
609 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
610 if (readBufDataP
<= dmaBufDataP
){
611 dataLen
= dmaBufDataP
- readBufDataP
;
613 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
;
615 // test for length of buffer
616 if(dataLen
> maxDataLen
) {
617 maxDataLen
= dataLen
;
618 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
619 Dbprintf("blew circular buffer! dataLen=%d", dataLen
);
623 if(dataLen
< 1) continue;
625 // primary buffer was stopped( <-- we lost data!
626 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
627 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
628 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
629 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
631 // secondary buffer sets as primary, secondary buffer was stopped
632 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
633 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
634 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
639 if (rsamples
& 0x01) { // Need two samples to feed Miller and Manchester-Decoder
641 if(!TagIsActive
) { // no need to try decoding reader data if the tag is sending
642 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
643 if (MillerDecoding(readerdata
, (rsamples
-1)*4)) {
646 // check - if there is a short 7bit request from reader
647 if ((!triggered
) && (param
& 0x02) && (Uart
.len
== 1) && (Uart
.bitCount
== 7)) triggered
= TRUE
;
650 if (!LogTrace(receivedCmd
,
652 Uart
.startTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
653 Uart
.endTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
,
657 /* And ready to receive another command. */
659 /* And also reset the demod code, which might have been */
660 /* false-triggered by the commands from the reader. */
664 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
667 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
668 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
669 if(ManchesterDecoding(tagdata
, 0, (rsamples
-1)*4)) {
672 if (!LogTrace(receivedResponse
,
674 Demod
.startTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
675 Demod
.endTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
,
679 if ((!triggered
) && (param
& 0x01)) triggered
= TRUE
;
681 // And ready to receive another response.
685 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
689 previous_data
= *data
;
692 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
697 DbpString("COMMAND FINISHED");
700 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen
, Uart
.state
, Uart
.len
);
701 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart
.output
[0]);
705 //-----------------------------------------------------------------------------
706 // Prepare tag messages
707 //-----------------------------------------------------------------------------
708 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, uint16_t len
, uint8_t *parity
)
712 // Correction bit, might be removed when not needed
717 ToSendStuffBit(1); // 1
723 ToSend
[++ToSendMax
] = SEC_D
;
724 LastProxToAirDuration
= 8 * ToSendMax
- 4;
726 for(uint16_t i
= 0; i
< len
; i
++) {
730 for(uint16_t j
= 0; j
< 8; j
++) {
732 ToSend
[++ToSendMax
] = SEC_D
;
734 ToSend
[++ToSendMax
] = SEC_E
;
739 // Get the parity bit
740 if (parity
[i
>>3] & (0x80>>(i
&0x0007))) {
741 ToSend
[++ToSendMax
] = SEC_D
;
742 LastProxToAirDuration
= 8 * ToSendMax
- 4;
744 ToSend
[++ToSendMax
] = SEC_E
;
745 LastProxToAirDuration
= 8 * ToSendMax
;
750 ToSend
[++ToSendMax
] = SEC_F
;
752 // Convert from last byte pos to length
756 static void CodeIso14443aAsTag(const uint8_t *cmd
, uint16_t len
)
758 uint8_t par
[MAX_PARITY_SIZE
];
760 GetParity(cmd
, len
, par
);
761 CodeIso14443aAsTagPar(cmd
, len
, par
);
765 static void Code4bitAnswerAsTag(uint8_t cmd
)
771 // Correction bit, might be removed when not needed
776 ToSendStuffBit(1); // 1
782 ToSend
[++ToSendMax
] = SEC_D
;
785 for(i
= 0; i
< 4; i
++) {
787 ToSend
[++ToSendMax
] = SEC_D
;
788 LastProxToAirDuration
= 8 * ToSendMax
- 4;
790 ToSend
[++ToSendMax
] = SEC_E
;
791 LastProxToAirDuration
= 8 * ToSendMax
;
797 ToSend
[++ToSendMax
] = SEC_F
;
799 // Convert from last byte pos to length
803 //-----------------------------------------------------------------------------
804 // Wait for commands from reader
805 // Stop when button is pressed
806 // Or return TRUE when command is captured
807 //-----------------------------------------------------------------------------
808 static int GetIso14443aCommandFromReader(uint8_t *received
, uint8_t *parity
, int *len
)
810 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
811 // only, since we are receiving, not transmitting).
812 // Signal field is off with the appropriate LED
814 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
816 // Now run a `software UART' on the stream of incoming samples.
817 UartInit(received
, parity
);
820 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
825 if(BUTTON_PRESS()) return FALSE
;
827 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
828 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
829 if(MillerDecoding(b
, 0)) {
837 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
);
838 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
);
839 int EmSend4bit(uint8_t resp
);
840 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
);
841 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
);
842 int EmSendCmd(uint8_t *resp
, uint16_t respLen
);
843 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
);
844 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
845 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
);
847 static uint8_t* free_buffer_pointer
;
854 uint32_t ProxToAirDuration
;
855 } tag_response_info_t
;
857 bool prepare_tag_modulation(tag_response_info_t
* response_info
, size_t max_buffer_size
) {
858 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
859 // This will need the following byte array for a modulation sequence
860 // 144 data bits (18 * 8)
863 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
864 // 1 just for the case
866 // 166 bytes, since every bit that needs to be send costs us a byte
870 // Prepare the tag modulation bits from the message
871 CodeIso14443aAsTag(response_info
->response
,response_info
->response_n
);
873 // Make sure we do not exceed the free buffer space
874 if (ToSendMax
> max_buffer_size
) {
875 Dbprintf("Out of memory, when modulating bits for tag answer:");
876 Dbhexdump(response_info
->response_n
,response_info
->response
,false);
880 // Copy the byte array, used for this modulation to the buffer position
881 memcpy(response_info
->modulation
,ToSend
,ToSendMax
);
883 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
884 response_info
->modulation_n
= ToSendMax
;
885 response_info
->ProxToAirDuration
= LastProxToAirDuration
;
891 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
892 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
893 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
894 // -> need 273 bytes buffer
895 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
897 bool prepare_allocated_tag_modulation(tag_response_info_t
* response_info
) {
898 // Retrieve and store the current buffer index
899 response_info
->modulation
= free_buffer_pointer
;
901 // Determine the maximum size we can use from our buffer
902 size_t max_buffer_size
= ALLOCATED_TAG_MODULATION_BUFFER_SIZE
;
904 // Forward the prepare tag modulation function to the inner function
905 if (prepare_tag_modulation(response_info
, max_buffer_size
)) {
906 // Update the free buffer offset
907 free_buffer_pointer
+= ToSendMax
;
914 //-----------------------------------------------------------------------------
915 // Main loop of simulated tag: receive commands from reader, decide what
916 // response to send, and send it.
917 //-----------------------------------------------------------------------------
918 void SimulateIso14443aTag(int tagType
, int uid_1st
, int uid_2nd
, byte_t
* data
)
922 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
923 uint8_t response1
[2];
926 case 1: { // MIFARE Classic
927 // Says: I am Mifare 1k - original line
932 case 2: { // MIFARE Ultralight
933 // Says: I am a stupid memory tag, no crypto
938 case 3: { // MIFARE DESFire
939 // Says: I am a DESFire tag, ph33r me
944 case 4: { // ISO/IEC 14443-4
945 // Says: I am a javacard (JCOP)
950 case 5: { // MIFARE TNP3XXX
957 Dbprintf("Error: unkown tagtype (%d)",tagType
);
962 // The second response contains the (mandatory) first 24 bits of the UID
963 uint8_t response2
[5] = {0x00};
965 // Check if the uid uses the (optional) part
966 uint8_t response2a
[5] = {0x00};
970 num_to_bytes(uid_1st
,3,response2
+1);
971 num_to_bytes(uid_2nd
,4,response2a
);
972 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
974 // Configure the ATQA and SAK accordingly
975 response1
[0] |= 0x40;
978 num_to_bytes(uid_1st
,4,response2
);
979 // Configure the ATQA and SAK accordingly
980 response1
[0] &= 0xBF;
984 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
985 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
987 // Prepare the mandatory SAK (for 4 and 7 byte UID)
988 uint8_t response3
[3] = {0x00};
990 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
992 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
993 uint8_t response3a
[3] = {0x00};
994 response3a
[0] = sak
& 0xFB;
995 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
997 uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
998 uint8_t response6
[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
999 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1000 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1001 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1002 // TC(1) = 0x02: CID supported, NAD not supported
1003 ComputeCrc14443(CRC_14443_A
, response6
, 4, &response6
[4], &response6
[5]);
1005 #define TAG_RESPONSE_COUNT 7
1006 tag_response_info_t responses
[TAG_RESPONSE_COUNT
] = {
1007 { .response
= response1
, .response_n
= sizeof(response1
) }, // Answer to request - respond with card type
1008 { .response
= response2
, .response_n
= sizeof(response2
) }, // Anticollision cascade1 - respond with uid
1009 { .response
= response2a
, .response_n
= sizeof(response2a
) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1010 { .response
= response3
, .response_n
= sizeof(response3
) }, // Acknowledge select - cascade 1
1011 { .response
= response3a
, .response_n
= sizeof(response3a
) }, // Acknowledge select - cascade 2
1012 { .response
= response5
, .response_n
= sizeof(response5
) }, // Authentication answer (random nonce)
1013 { .response
= response6
, .response_n
= sizeof(response6
) }, // dummy ATS (pseudo-ATR), answer to RATS
1016 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1017 // Such a response is less time critical, so we can prepare them on the fly
1018 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1019 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1020 uint8_t dynamic_response_buffer
[DYNAMIC_RESPONSE_BUFFER_SIZE
];
1021 uint8_t dynamic_modulation_buffer
[DYNAMIC_MODULATION_BUFFER_SIZE
];
1022 tag_response_info_t dynamic_response_info
= {
1023 .response
= dynamic_response_buffer
,
1025 .modulation
= dynamic_modulation_buffer
,
1029 BigBuf_free_keep_EM();
1031 // allocate buffers:
1032 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
1033 uint8_t *receivedCmdPar
= BigBuf_malloc(MAX_PARITY_SIZE
);
1034 free_buffer_pointer
= BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE
);
1040 // Prepare the responses of the anticollision phase
1041 // there will be not enough time to do this at the moment the reader sends it REQA
1042 for (size_t i
=0; i
<TAG_RESPONSE_COUNT
; i
++) {
1043 prepare_allocated_tag_modulation(&responses
[i
]);
1048 // To control where we are in the protocol
1052 // Just to allow some checks
1057 // We need to listen to the high-frequency, peak-detected path.
1058 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1061 tag_response_info_t
* p_response
;
1065 // Clean receive command buffer
1067 if(!GetIso14443aCommandFromReader(receivedCmd
, receivedCmdPar
, &len
)) {
1068 DbpString("Button press");
1074 // Okay, look at the command now.
1076 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1077 p_response
= &responses
[0]; order
= 1;
1078 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1079 p_response
= &responses
[0]; order
= 6;
1080 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1081 p_response
= &responses
[1]; order
= 2;
1082 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1083 p_response
= &responses
[2]; order
= 20;
1084 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1085 p_response
= &responses
[3]; order
= 3;
1086 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1087 p_response
= &responses
[4]; order
= 30;
1088 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1089 EmSendCmdEx(data
+(4*receivedCmd
[1]),16,false);
1090 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1091 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1093 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1096 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1099 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1100 p_response
= &responses
[5]; order
= 7;
1101 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1102 if (tagType
== 1 || tagType
== 2) { // RATS not supported
1103 EmSend4bit(CARD_NACK_NA
);
1106 p_response
= &responses
[6]; order
= 70;
1108 } else if (order
== 7 && len
== 8) { // Received {nr] and {ar} (part of authentication)
1110 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1112 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1113 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1114 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr
,ar
);
1116 // Check for ISO 14443A-4 compliant commands, look at left nibble
1117 switch (receivedCmd
[0]) {
1120 case 0x0A: { // IBlock (command)
1121 dynamic_response_info
.response
[0] = receivedCmd
[0];
1122 dynamic_response_info
.response
[1] = 0x00;
1123 dynamic_response_info
.response
[2] = 0x90;
1124 dynamic_response_info
.response
[3] = 0x00;
1125 dynamic_response_info
.response_n
= 4;
1129 case 0x1B: { // Chaining command
1130 dynamic_response_info
.response
[0] = 0xaa | ((receivedCmd
[0]) & 1);
1131 dynamic_response_info
.response_n
= 2;
1136 dynamic_response_info
.response
[0] = receivedCmd
[0] ^ 0x11;
1137 dynamic_response_info
.response_n
= 2;
1141 memcpy(dynamic_response_info
.response
,"\xAB\x00",2);
1142 dynamic_response_info
.response_n
= 2;
1146 case 0xC2: { // Readers sends deselect command
1147 memcpy(dynamic_response_info
.response
,"\xCA\x00",2);
1148 dynamic_response_info
.response_n
= 2;
1152 // Never seen this command before
1154 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1156 Dbprintf("Received unknown command (len=%d):",len
);
1157 Dbhexdump(len
,receivedCmd
,false);
1159 dynamic_response_info
.response_n
= 0;
1163 if (dynamic_response_info
.response_n
> 0) {
1164 // Copy the CID from the reader query
1165 dynamic_response_info
.response
[1] = receivedCmd
[1];
1167 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1168 AppendCrc14443a(dynamic_response_info
.response
,dynamic_response_info
.response_n
);
1169 dynamic_response_info
.response_n
+= 2;
1171 if (prepare_tag_modulation(&dynamic_response_info
,DYNAMIC_MODULATION_BUFFER_SIZE
) == false) {
1172 Dbprintf("Error preparing tag response");
1174 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
1178 p_response
= &dynamic_response_info
;
1182 // Count number of wakeups received after a halt
1183 if(order
== 6 && lastorder
== 5) { happened
++; }
1185 // Count number of other messages after a halt
1186 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1188 if(cmdsRecvd
> 999) {
1189 DbpString("1000 commands later...");
1194 if (p_response
!= NULL
) {
1195 EmSendCmd14443aRaw(p_response
->modulation
, p_response
->modulation_n
, receivedCmd
[0] == 0x52);
1196 // do the tracing for the previous reader request and this tag answer:
1197 uint8_t par
[MAX_PARITY_SIZE
];
1198 GetParity(p_response
->response
, p_response
->response_n
, par
);
1200 EmLogTrace(Uart
.output
,
1202 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1203 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1205 p_response
->response
,
1206 p_response
->response_n
,
1207 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1208 (LastTimeProxToAirStart
+ p_response
->ProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1213 Dbprintf("Trace Full. Simulation stopped.");
1218 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1220 BigBuf_free_keep_EM();
1224 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1225 // of bits specified in the delay parameter.
1226 void PrepareDelayedTransfer(uint16_t delay
)
1228 uint8_t bitmask
= 0;
1229 uint8_t bits_to_shift
= 0;
1230 uint8_t bits_shifted
= 0;
1234 for (uint16_t i
= 0; i
< delay
; i
++) {
1235 bitmask
|= (0x01 << i
);
1237 ToSend
[ToSendMax
++] = 0x00;
1238 for (uint16_t i
= 0; i
< ToSendMax
; i
++) {
1239 bits_to_shift
= ToSend
[i
] & bitmask
;
1240 ToSend
[i
] = ToSend
[i
] >> delay
;
1241 ToSend
[i
] = ToSend
[i
] | (bits_shifted
<< (8 - delay
));
1242 bits_shifted
= bits_to_shift
;
1248 //-------------------------------------------------------------------------------------
1249 // Transmit the command (to the tag) that was placed in ToSend[].
1250 // Parameter timing:
1251 // if NULL: transfer at next possible time, taking into account
1252 // request guard time and frame delay time
1253 // if == 0: transfer immediately and return time of transfer
1254 // if != 0: delay transfer until time specified
1255 //-------------------------------------------------------------------------------------
1256 static void TransmitFor14443a(const uint8_t *cmd
, uint16_t len
, uint32_t *timing
)
1259 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1261 uint32_t ThisTransferTime
= 0;
1264 if(*timing
== 0) { // Measure time
1265 *timing
= (GetCountSspClk() + 8) & 0xfffffff8;
1267 PrepareDelayedTransfer(*timing
& 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1269 if(MF_DBGLEVEL
>= 4 && GetCountSspClk() >= (*timing
& 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1270 while(GetCountSspClk() < (*timing
& 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1271 LastTimeProxToAirStart
= *timing
;
1273 ThisTransferTime
= ((MAX(NextTransferTime
, GetCountSspClk()) & 0xfffffff8) + 8);
1274 while(GetCountSspClk() < ThisTransferTime
);
1275 LastTimeProxToAirStart
= ThisTransferTime
;
1279 AT91C_BASE_SSC
->SSC_THR
= SEC_Y
;
1283 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1284 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1292 NextTransferTime
= MAX(NextTransferTime
, LastTimeProxToAirStart
+ REQUEST_GUARD_TIME
);
1296 //-----------------------------------------------------------------------------
1297 // Prepare reader command (in bits, support short frames) to send to FPGA
1298 //-----------------------------------------------------------------------------
1299 void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd
, uint16_t bits
, const uint8_t *parity
)
1307 // Start of Communication (Seq. Z)
1308 ToSend
[++ToSendMax
] = SEC_Z
;
1309 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1312 size_t bytecount
= nbytes(bits
);
1313 // Generate send structure for the data bits
1314 for (i
= 0; i
< bytecount
; i
++) {
1315 // Get the current byte to send
1317 size_t bitsleft
= MIN((bits
-(i
*8)),8);
1319 for (j
= 0; j
< bitsleft
; j
++) {
1322 ToSend
[++ToSendMax
] = SEC_X
;
1323 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1328 ToSend
[++ToSendMax
] = SEC_Z
;
1329 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1332 ToSend
[++ToSendMax
] = SEC_Y
;
1339 // Only transmit parity bit if we transmitted a complete byte
1341 // Get the parity bit
1342 if (parity
[i
>>3] & (0x80 >> (i
&0x0007))) {
1344 ToSend
[++ToSendMax
] = SEC_X
;
1345 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1350 ToSend
[++ToSendMax
] = SEC_Z
;
1351 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1354 ToSend
[++ToSendMax
] = SEC_Y
;
1361 // End of Communication: Logic 0 followed by Sequence Y
1364 ToSend
[++ToSendMax
] = SEC_Z
;
1365 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1368 ToSend
[++ToSendMax
] = SEC_Y
;
1371 ToSend
[++ToSendMax
] = SEC_Y
;
1373 // Convert to length of command:
1377 //-----------------------------------------------------------------------------
1378 // Prepare reader command to send to FPGA
1379 //-----------------------------------------------------------------------------
1380 void CodeIso14443aAsReaderPar(const uint8_t *cmd
, uint16_t len
, const uint8_t *parity
)
1382 CodeIso14443aBitsAsReaderPar(cmd
, len
*8, parity
);
1386 //-----------------------------------------------------------------------------
1387 // Wait for commands from reader
1388 // Stop when button is pressed (return 1) or field was gone (return 2)
1389 // Or return 0 when command is captured
1390 //-----------------------------------------------------------------------------
1391 static int EmGetCmd(uint8_t *received
, uint16_t *len
, uint8_t *parity
)
1395 uint32_t timer
= 0, vtime
= 0;
1399 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1400 // only, since we are receiving, not transmitting).
1401 // Signal field is off with the appropriate LED
1403 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1405 // Set ADC to read field strength
1406 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1407 AT91C_BASE_ADC
->ADC_MR
=
1408 ADC_MODE_PRESCALE(63) |
1409 ADC_MODE_STARTUP_TIME(1) |
1410 ADC_MODE_SAMPLE_HOLD_TIME(15);
1411 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1413 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1415 // Now run a 'software UART' on the stream of incoming samples.
1416 UartInit(received
, parity
);
1419 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1424 if (BUTTON_PRESS()) return 1;
1426 // test if the field exists
1427 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1429 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1430 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1431 if (analogCnt
>= 32) {
1432 if ((MAX_ADC_HF_VOLTAGE
* (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1433 vtime
= GetTickCount();
1434 if (!timer
) timer
= vtime
;
1435 // 50ms no field --> card to idle state
1436 if (vtime
- timer
> 50) return 2;
1438 if (timer
) timer
= 0;
1444 // receive and test the miller decoding
1445 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1446 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1447 if(MillerDecoding(b
, 0)) {
1457 static int EmSendCmd14443aRaw(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
)
1461 uint32_t ThisTransferTime
;
1463 // Modulate Manchester
1464 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1466 // include correction bit if necessary
1467 if (Uart
.parityBits
& 0x01) {
1468 correctionNeeded
= TRUE
;
1470 if(correctionNeeded
) {
1471 // 1236, so correction bit needed
1477 // clear receiving shift register and holding register
1478 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1479 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1480 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1481 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1483 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1484 for (uint16_t j
= 0; j
< 5; j
++) { // allow timeout - better late than never
1485 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1486 if (AT91C_BASE_SSC
->SSC_RHR
) break;
1489 while ((ThisTransferTime
= GetCountSspClk()) & 0x00000007);
1492 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1495 for(; i
< respLen
; ) {
1496 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1497 AT91C_BASE_SSC
->SSC_THR
= resp
[i
++];
1498 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1501 if(BUTTON_PRESS()) {
1506 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1507 uint8_t fpga_queued_bits
= FpgaSendQueueDelay
>> 3;
1508 for (i
= 0; i
<= fpga_queued_bits
/8 + 1; ) {
1509 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1510 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1511 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1516 LastTimeProxToAirStart
= ThisTransferTime
+ (correctionNeeded
?8:0);
1521 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
){
1522 Code4bitAnswerAsTag(resp
);
1523 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1524 // do the tracing for the previous reader request and this tag answer:
1526 GetParity(&resp
, 1, par
);
1527 EmLogTrace(Uart
.output
,
1529 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1530 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1534 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1535 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1540 int EmSend4bit(uint8_t resp
){
1541 return EmSend4bitEx(resp
, false);
1544 int EmSendCmdExPar(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
, uint8_t *par
){
1545 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1546 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1547 // do the tracing for the previous reader request and this tag answer:
1548 EmLogTrace(Uart
.output
,
1550 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1551 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1555 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1556 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1561 int EmSendCmdEx(uint8_t *resp
, uint16_t respLen
, bool correctionNeeded
){
1562 uint8_t par
[MAX_PARITY_SIZE
];
1563 GetParity(resp
, respLen
, par
);
1564 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, par
);
1567 int EmSendCmd(uint8_t *resp
, uint16_t respLen
){
1568 uint8_t par
[MAX_PARITY_SIZE
];
1569 GetParity(resp
, respLen
, par
);
1570 return EmSendCmdExPar(resp
, respLen
, false, par
);
1573 int EmSendCmdPar(uint8_t *resp
, uint16_t respLen
, uint8_t *par
){
1574 return EmSendCmdExPar(resp
, respLen
, false, par
);
1577 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint8_t *reader_Parity
,
1578 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint8_t *tag_Parity
)
1581 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1582 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1583 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1584 uint16_t reader_modlen
= reader_EndTime
- reader_StartTime
;
1585 uint16_t approx_fdt
= tag_StartTime
- reader_EndTime
;
1586 uint16_t exact_fdt
= (approx_fdt
- 20 + 32)/64 * 64 + 20;
1587 reader_EndTime
= tag_StartTime
- exact_fdt
;
1588 reader_StartTime
= reader_EndTime
- reader_modlen
;
1589 if (!LogTrace(reader_data
, reader_len
, reader_StartTime
, reader_EndTime
, reader_Parity
, TRUE
)) {
1591 } else return(!LogTrace(tag_data
, tag_len
, tag_StartTime
, tag_EndTime
, tag_Parity
, FALSE
));
1597 //-----------------------------------------------------------------------------
1598 // Wait a certain time for tag response
1599 // If a response is captured return TRUE
1600 // If it takes too long return FALSE
1601 //-----------------------------------------------------------------------------
1602 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, uint8_t *receivedResponsePar
, uint16_t offset
)
1606 // Set FPGA mode to "reader listen mode", no modulation (listen
1607 // only, since we are receiving, not transmitting).
1608 // Signal field is on with the appropriate LED
1610 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1612 // Now get the answer from the card
1613 DemodInit(receivedResponse
, receivedResponsePar
);
1616 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1622 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1623 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1624 if(ManchesterDecoding(b
, offset
, 0)) {
1625 NextTransferTime
= MAX(NextTransferTime
, Demod
.endTime
- (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/16 + FRAME_DELAY_TIME_PICC_TO_PCD
);
1627 } else if (c
++ > iso14a_timeout
&& Demod
.state
== DEMOD_UNSYNCD
) {
1634 void ReaderTransmitBitsPar(uint8_t* frame
, uint16_t bits
, uint8_t *par
, uint32_t *timing
)
1636 CodeIso14443aBitsAsReaderPar(frame
, bits
, par
);
1638 // Send command to tag
1639 TransmitFor14443a(ToSend
, ToSendMax
, timing
);
1643 // Log reader command in trace buffer
1645 LogTrace(frame
, nbytes(bits
), LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_READER
, (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_READER
, par
, TRUE
);
1649 void ReaderTransmitPar(uint8_t* frame
, uint16_t len
, uint8_t *par
, uint32_t *timing
)
1651 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1654 void ReaderTransmitBits(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1656 // Generate parity and redirect
1657 uint8_t par
[MAX_PARITY_SIZE
];
1658 GetParity(frame
, len
/8, par
);
1659 ReaderTransmitBitsPar(frame
, len
, par
, timing
);
1662 void ReaderTransmit(uint8_t* frame
, uint16_t len
, uint32_t *timing
)
1664 // Generate parity and redirect
1665 uint8_t par
[MAX_PARITY_SIZE
];
1666 GetParity(frame
, len
, par
);
1667 ReaderTransmitBitsPar(frame
, len
*8, par
, timing
);
1670 int ReaderReceiveOffset(uint8_t* receivedAnswer
, uint16_t offset
, uint8_t *parity
)
1672 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, offset
)) return FALSE
;
1674 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1679 int ReaderReceive(uint8_t *receivedAnswer
, uint8_t *parity
)
1681 if (!GetIso14443aAnswerFromTag(receivedAnswer
, parity
, 0)) return FALSE
;
1683 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, parity
, FALSE
);
1688 /* performs iso14443a anticollision procedure
1689 * fills the uid pointer unless NULL
1690 * fills resp_data unless NULL */
1691 int iso14443a_select_card(byte_t
*uid_ptr
, iso14a_card_select_t
*p_hi14a_card
, uint32_t *cuid_ptr
) {
1692 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1693 uint8_t sel_all
[] = { 0x93,0x20 };
1694 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1695 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1696 uint8_t resp
[MAX_FRAME_SIZE
]; // theoretically. A usual RATS will be much smaller
1697 uint8_t resp_par
[MAX_PARITY_SIZE
];
1699 size_t uid_resp_len
;
1701 uint8_t sak
= 0x04; // cascade uid
1702 int cascade_level
= 0;
1705 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1706 ReaderTransmitBitsPar(wupa
,7,0, NULL
);
1709 if(!ReaderReceive(resp
, resp_par
)) return 0;
1712 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1713 p_hi14a_card
->uidlen
= 0;
1714 memset(p_hi14a_card
->uid
,0,10);
1719 memset(uid_ptr
,0,10);
1722 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1723 // which case we need to make a cascade 2 request and select - this is a long UID
1724 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1725 for(; sak
& 0x04; cascade_level
++) {
1726 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1727 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1730 ReaderTransmit(sel_all
, sizeof(sel_all
), NULL
);
1731 if (!ReaderReceive(resp
, resp_par
)) return 0;
1733 if (Demod
.collisionPos
) { // we had a collision and need to construct the UID bit by bit
1734 memset(uid_resp
, 0, 4);
1735 uint16_t uid_resp_bits
= 0;
1736 uint16_t collision_answer_offset
= 0;
1737 // anti-collision-loop:
1738 while (Demod
.collisionPos
) {
1739 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod
.collisionPos
);
1740 for (uint16_t i
= collision_answer_offset
; i
< Demod
.collisionPos
; i
++, uid_resp_bits
++) { // add valid UID bits before collision point
1741 uint16_t UIDbit
= (resp
[i
/8] >> (i
% 8)) & 0x01;
1742 uid_resp
[uid_resp_bits
/ 8] |= UIDbit
<< (uid_resp_bits
% 8);
1744 uid_resp
[uid_resp_bits
/8] |= 1 << (uid_resp_bits
% 8); // next time select the card(s) with a 1 in the collision position
1746 // construct anticollosion command:
1747 sel_uid
[1] = ((2 + uid_resp_bits
/8) << 4) | (uid_resp_bits
& 0x07); // length of data in bytes and bits
1748 for (uint16_t i
= 0; i
<= uid_resp_bits
/8; i
++) {
1749 sel_uid
[2+i
] = uid_resp
[i
];
1751 collision_answer_offset
= uid_resp_bits
%8;
1752 ReaderTransmitBits(sel_uid
, 16 + uid_resp_bits
, NULL
);
1753 if (!ReaderReceiveOffset(resp
, collision_answer_offset
, resp_par
)) return 0;
1755 // finally, add the last bits and BCC of the UID
1756 for (uint16_t i
= collision_answer_offset
; i
< (Demod
.len
-1)*8; i
++, uid_resp_bits
++) {
1757 uint16_t UIDbit
= (resp
[i
/8] >> (i
%8)) & 0x01;
1758 uid_resp
[uid_resp_bits
/8] |= UIDbit
<< (uid_resp_bits
% 8);
1761 } else { // no collision, use the response to SELECT_ALL as current uid
1762 memcpy(uid_resp
, resp
, 4);
1766 // calculate crypto UID. Always use last 4 Bytes.
1768 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1771 // Construct SELECT UID command
1772 sel_uid
[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1773 memcpy(sel_uid
+2, uid_resp
, 4); // the UID
1774 sel_uid
[6] = sel_uid
[2] ^ sel_uid
[3] ^ sel_uid
[4] ^ sel_uid
[5]; // calculate and add BCC
1775 AppendCrc14443a(sel_uid
, 7); // calculate and add CRC
1776 ReaderTransmit(sel_uid
, sizeof(sel_uid
), NULL
);
1779 if (!ReaderReceive(resp
, resp_par
)) return 0;
1782 // Test if more parts of the uid are coming
1783 if ((sak
& 0x04) /* && uid_resp[0] == 0x88 */) {
1784 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1785 // http://www.nxp.com/documents/application_note/AN10927.pdf
1786 uid_resp
[0] = uid_resp
[1];
1787 uid_resp
[1] = uid_resp
[2];
1788 uid_resp
[2] = uid_resp
[3];
1794 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1798 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1799 p_hi14a_card
->uidlen
+= uid_resp_len
;
1804 p_hi14a_card
->sak
= sak
;
1805 p_hi14a_card
->ats_len
= 0;
1808 // non iso14443a compliant tag
1809 if( (sak
& 0x20) == 0) return 2;
1811 // Request for answer to select
1812 AppendCrc14443a(rats
, 2);
1813 ReaderTransmit(rats
, sizeof(rats
), NULL
);
1815 if (!(len
= ReaderReceive(resp
, resp_par
))) return 0;
1819 memcpy(p_hi14a_card
->ats
, resp
, sizeof(p_hi14a_card
->ats
));
1820 p_hi14a_card
->ats_len
= len
;
1823 // reset the PCB block number
1824 iso14_pcb_blocknum
= 0;
1826 // set default timeout based on ATS
1827 iso14a_set_ATS_timeout(resp
);
1832 void iso14443a_setup(uint8_t fpga_minor_mode
) {
1833 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1834 // Set up the synchronous serial port
1836 // connect Demodulated Signal to ADC:
1837 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1839 // Signal field is on with the appropriate LED
1840 if (fpga_minor_mode
== FPGA_HF_ISO14443A_READER_MOD
1841 || fpga_minor_mode
== FPGA_HF_ISO14443A_READER_LISTEN
) {
1846 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| fpga_minor_mode
);
1853 NextTransferTime
= 2*DELAY_ARM2AIR_AS_READER
;
1854 iso14a_set_timeout(1050); // 10ms default
1857 int iso14_apdu(uint8_t *cmd
, uint16_t cmd_len
, void *data
) {
1858 uint8_t parity
[MAX_PARITY_SIZE
];
1859 uint8_t real_cmd
[cmd_len
+4];
1860 real_cmd
[0] = 0x0a; //I-Block
1861 // put block number into the PCB
1862 real_cmd
[0] |= iso14_pcb_blocknum
;
1863 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1864 memcpy(real_cmd
+2, cmd
, cmd_len
);
1865 AppendCrc14443a(real_cmd
,cmd_len
+2);
1867 ReaderTransmit(real_cmd
, cmd_len
+4, NULL
);
1868 size_t len
= ReaderReceive(data
, parity
);
1869 uint8_t *data_bytes
= (uint8_t *) data
;
1871 return 0; //DATA LINK ERROR
1872 // if we received an I- or R(ACK)-Block with a block number equal to the
1873 // current block number, toggle the current block number
1874 else if (len
>= 4 // PCB+CID+CRC = 4 bytes
1875 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
1876 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1877 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
1879 iso14_pcb_blocknum
^= 1;
1885 //-----------------------------------------------------------------------------
1886 // Read an ISO 14443a tag. Send out commands and store answers.
1888 //-----------------------------------------------------------------------------
1889 void ReaderIso14443a(UsbCommand
*c
)
1891 iso14a_command_t param
= c
->arg
[0];
1892 uint8_t *cmd
= c
->d
.asBytes
;
1893 size_t len
= c
->arg
[1] & 0xffff;
1894 size_t lenbits
= c
->arg
[1] >> 16;
1895 uint32_t timeout
= c
->arg
[2];
1897 byte_t buf
[USB_CMD_DATA_SIZE
];
1898 uint8_t par
[MAX_PARITY_SIZE
];
1900 if(param
& ISO14A_CONNECT
) {
1906 if(param
& ISO14A_REQUEST_TRIGGER
) {
1907 iso14a_set_trigger(TRUE
);
1910 if(param
& ISO14A_CONNECT
) {
1911 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN
);
1912 if(!(param
& ISO14A_NO_SELECT
)) {
1913 iso14a_card_select_t
*card
= (iso14a_card_select_t
*)buf
;
1914 arg0
= iso14443a_select_card(NULL
,card
,NULL
);
1915 cmd_send(CMD_ACK
,arg0
,card
->uidlen
,0,buf
,sizeof(iso14a_card_select_t
));
1919 if(param
& ISO14A_SET_TIMEOUT
) {
1920 iso14a_set_timeout(timeout
);
1923 if(param
& ISO14A_APDU
) {
1924 arg0
= iso14_apdu(cmd
, len
, buf
);
1925 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1928 if(param
& ISO14A_RAW
) {
1929 if(param
& ISO14A_APPEND_CRC
) {
1930 AppendCrc14443a(cmd
,len
);
1932 if (lenbits
) lenbits
+= 16;
1935 GetParity(cmd
, lenbits
/8, par
);
1936 ReaderTransmitBitsPar(cmd
, lenbits
, par
, NULL
);
1938 ReaderTransmit(cmd
,len
, NULL
);
1940 arg0
= ReaderReceive(buf
, par
);
1941 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1944 if(param
& ISO14A_REQUEST_TRIGGER
) {
1945 iso14a_set_trigger(FALSE
);
1948 if(param
& ISO14A_NO_DISCONNECT
) {
1952 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1957 // Determine the distance between two nonces.
1958 // Assume that the difference is small, but we don't know which is first.
1959 // Therefore try in alternating directions.
1960 int32_t dist_nt(uint32_t nt1
, uint32_t nt2
) {
1963 uint32_t nttmp1
, nttmp2
;
1965 if (nt1
== nt2
) return 0;
1970 for (i
= 1; i
< 32768; i
++) {
1971 nttmp1
= prng_successor(nttmp1
, 1);
1972 if (nttmp1
== nt2
) return i
;
1973 nttmp2
= prng_successor(nttmp2
, 1);
1974 if (nttmp2
== nt1
) return -i
;
1977 return(-99999); // either nt1 or nt2 are invalid nonces
1981 //-----------------------------------------------------------------------------
1982 // Recover several bits of the cypher stream. This implements (first stages of)
1983 // the algorithm described in "The Dark Side of Security by Obscurity and
1984 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
1985 // (article by Nicolas T. Courtois, 2009)
1986 //-----------------------------------------------------------------------------
1987 void ReaderMifare(bool first_try
)
1990 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
1991 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1992 static uint8_t mf_nr_ar3
;
1994 uint8_t receivedAnswer
[MAX_MIFARE_FRAME_SIZE
];
1995 uint8_t receivedAnswerPar
[MAX_MIFARE_PARITY_SIZE
];
1997 // free eventually allocated BigBuf memory. We want all for tracing.
2004 uint8_t par
[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2005 static byte_t par_low
= 0;
2007 uint8_t uid
[10] ={0};
2011 uint32_t previous_nt
= 0;
2012 static uint32_t nt_attacked
= 0;
2013 byte_t par_list
[8] = {0x00};
2014 byte_t ks_list
[8] = {0x00};
2016 static uint32_t sync_time
;
2017 static uint32_t sync_cycles
;
2018 int catch_up_cycles
= 0;
2019 int last_catch_up
= 0;
2020 uint16_t consecutive_resyncs
= 0;
2025 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
2026 sync_time
= GetCountSspClk() & 0xfffffff8;
2027 sync_cycles
= 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2033 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2035 mf_nr_ar
[3] = mf_nr_ar3
;
2044 for(uint16_t i
= 0; TRUE
; i
++) {
2048 // Test if the action was cancelled
2049 if(BUTTON_PRESS()) {
2055 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
2056 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Can't select card");
2060 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
+ catch_up_cycles
;
2061 catch_up_cycles
= 0;
2063 // if we missed the sync time already, advance to the next nonce repeat
2064 while(GetCountSspClk() > sync_time
) {
2065 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
;
2068 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2069 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
2071 // Receive the (4 Byte) "random" nonce
2072 if (!ReaderReceive(receivedAnswer
, receivedAnswerPar
)) {
2073 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2078 nt
= bytes_to_num(receivedAnswer
, 4);
2080 // Transmit reader nonce with fake par
2081 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
), par
, NULL
);
2083 if (first_try
&& previous_nt
&& !nt_attacked
) { // we didn't calibrate our clock yet
2084 int nt_distance
= dist_nt(previous_nt
, nt
);
2085 if (nt_distance
== 0) {
2089 if (nt_distance
== -99999) { // invalid nonce received, try again
2092 sync_cycles
= (sync_cycles
- nt_distance
);
2093 if (MF_DBGLEVEL
>= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i
, nt_distance
, sync_cycles
);
2098 if ((nt
!= nt_attacked
) && nt_attacked
) { // we somehow lost sync. Try to catch up again...
2099 catch_up_cycles
= -dist_nt(nt_attacked
, nt
);
2100 if (catch_up_cycles
== 99999) { // invalid nonce received. Don't resync on that one.
2101 catch_up_cycles
= 0;
2104 if (catch_up_cycles
== last_catch_up
) {
2105 consecutive_resyncs
++;
2108 last_catch_up
= catch_up_cycles
;
2109 consecutive_resyncs
= 0;
2111 if (consecutive_resyncs
< 3) {
2112 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i
, -catch_up_cycles
, consecutive_resyncs
);
2115 sync_cycles
= sync_cycles
+ catch_up_cycles
;
2116 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i
, -catch_up_cycles
, sync_cycles
);
2121 consecutive_resyncs
= 0;
2123 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2124 if (ReaderReceive(receivedAnswer
, receivedAnswerPar
))
2126 catch_up_cycles
= 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2130 par_low
= par
[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2134 if(led_on
) LED_B_ON(); else LED_B_OFF();
2136 par_list
[nt_diff
] = SwapBits(par
[0], 8);
2137 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
2139 // Test if the information is complete
2140 if (nt_diff
== 0x07) {
2145 nt_diff
= (nt_diff
+ 1) & 0x07;
2146 mf_nr_ar
[3] = (mf_nr_ar
[3] & 0x1F) | (nt_diff
<< 5);
2149 if (nt_diff
== 0 && first_try
)
2153 par
[0] = ((par
[0] & 0x1F) + 1) | par_low
;
2159 mf_nr_ar
[3] &= 0x1F;
2162 memcpy(buf
+ 0, uid
, 4);
2163 num_to_bytes(nt
, 4, buf
+ 4);
2164 memcpy(buf
+ 8, par_list
, 8);
2165 memcpy(buf
+ 16, ks_list
, 8);
2166 memcpy(buf
+ 24, mf_nr_ar
, 4);
2168 cmd_send(CMD_ACK
,isOK
,0,0,buf
,28);
2171 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2178 *MIFARE 1K simulate.
2181 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2182 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2183 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2184 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2185 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2187 void Mifare1ksim(uint8_t flags
, uint8_t exitAfterNReads
, uint8_t arg2
, uint8_t *datain
)
2189 int cardSTATE
= MFEMUL_NOFIELD
;
2191 int vHf
= 0; // in mV
2193 uint32_t selTimer
= 0;
2194 uint32_t authTimer
= 0;
2196 uint8_t cardWRBL
= 0;
2197 uint8_t cardAUTHSC
= 0;
2198 uint8_t cardAUTHKEY
= 0xff; // no authentication
2199 uint32_t cardRr
= 0;
2201 //uint32_t rn_enc = 0;
2203 uint32_t cardINTREG
= 0;
2204 uint8_t cardINTBLOCK
= 0;
2205 struct Crypto1State mpcs
= {0, 0};
2206 struct Crypto1State
*pcs
;
2208 uint32_t numReads
= 0;//Counts numer of times reader read a block
2209 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
];
2210 uint8_t receivedCmd_par
[MAX_MIFARE_PARITY_SIZE
];
2211 uint8_t response
[MAX_MIFARE_FRAME_SIZE
];
2212 uint8_t response_par
[MAX_MIFARE_PARITY_SIZE
];
2214 uint8_t rATQA
[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2215 uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2216 uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2217 uint8_t rSAK
[] = {0x08, 0xb6, 0xdd};
2218 uint8_t rSAK1
[] = {0x04, 0xda, 0x17};
2220 uint8_t rAUTH_NT
[] = {0x01, 0x02, 0x03, 0x04};
2221 uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
2223 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2224 // This can be used in a reader-only attack.
2225 // (it can also be retrieved via 'hf 14a list', but hey...
2226 uint32_t ar_nr_responses
[] = {0,0,0,0,0,0,0,0};
2227 uint8_t ar_nr_collected
= 0;
2229 // free eventually allocated BigBuf memory but keep Emulator Memory
2230 BigBuf_free_keep_EM();
2236 // Authenticate response - nonce
2237 uint32_t nonce
= bytes_to_num(rAUTH_NT
, 4);
2239 //-- Determine the UID
2240 // Can be set from emulator memory, incoming data
2241 // and can be 7 or 4 bytes long
2242 if (flags
& FLAG_4B_UID_IN_DATA
)
2244 // 4B uid comes from data-portion of packet
2245 memcpy(rUIDBCC1
,datain
,4);
2246 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2248 } else if (flags
& FLAG_7B_UID_IN_DATA
) {
2249 // 7B uid comes from data-portion of packet
2250 memcpy(&rUIDBCC1
[1],datain
,3);
2251 memcpy(rUIDBCC2
, datain
+3, 4);
2254 // get UID from emul memory
2255 emlGetMemBt(receivedCmd
, 7, 1);
2256 _7BUID
= !(receivedCmd
[0] == 0x00);
2257 if (!_7BUID
) { // ---------- 4BUID
2258 emlGetMemBt(rUIDBCC1
, 0, 4);
2259 } else { // ---------- 7BUID
2260 emlGetMemBt(&rUIDBCC1
[1], 0, 3);
2261 emlGetMemBt(rUIDBCC2
, 3, 4);
2266 * Regardless of what method was used to set the UID, set fifth byte and modify
2267 * the ATQA for 4 or 7-byte UID
2269 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2273 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2276 // We need to listen to the high-frequency, peak-detected path.
2277 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2280 if (MF_DBGLEVEL
>= 1) {
2282 Dbprintf("4B UID: %02x%02x%02x%02x",
2283 rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3]);
2285 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2286 rUIDBCC1
[0], rUIDBCC1
[1], rUIDBCC1
[2], rUIDBCC1
[3],
2287 rUIDBCC2
[0], rUIDBCC2
[1] ,rUIDBCC2
[2], rUIDBCC2
[3]);
2291 bool finished
= FALSE
;
2292 while (!BUTTON_PRESS() && !finished
) {
2295 // find reader field
2296 if (cardSTATE
== MFEMUL_NOFIELD
) {
2297 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
2298 if (vHf
> MF_MINFIELDV
) {
2299 cardSTATE_TO_IDLE();
2303 if(cardSTATE
== MFEMUL_NOFIELD
) continue;
2305 res
= EmGetCmd(receivedCmd
, &len
, receivedCmd_par
);
2306 if (res
== 2) { //Field is off!
2307 cardSTATE
= MFEMUL_NOFIELD
;
2310 } else if (res
== 1) {
2311 break; //return value 1 means button press
2314 // REQ or WUP request in ANY state and WUP in HALTED state
2315 if (len
== 1 && ((receivedCmd
[0] == 0x26 && cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == 0x52)) {
2316 selTimer
= GetTickCount();
2317 EmSendCmdEx(rATQA
, sizeof(rATQA
), (receivedCmd
[0] == 0x52));
2318 cardSTATE
= MFEMUL_SELECT1
;
2320 // init crypto block
2323 crypto1_destroy(pcs
);
2328 switch (cardSTATE
) {
2329 case MFEMUL_NOFIELD
:
2332 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2335 case MFEMUL_SELECT1
:{
2337 if (len
== 2 && (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x20)) {
2338 if (MF_DBGLEVEL
>= 4) Dbprintf("SELECT ALL received");
2339 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2343 if (MF_DBGLEVEL
>= 4 && len
== 9 && receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 )
2345 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd
[2],receivedCmd
[3],receivedCmd
[4],receivedCmd
[5]);
2349 (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2350 EmSendCmd(_7BUID
?rSAK1
:rSAK
, _7BUID
?sizeof(rSAK1
):sizeof(rSAK
));
2351 cuid
= bytes_to_num(rUIDBCC1
, 4);
2353 cardSTATE
= MFEMUL_WORK
;
2355 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2358 cardSTATE
= MFEMUL_SELECT2
;
2366 cardSTATE_TO_IDLE();
2367 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2371 uint32_t ar
= bytes_to_num(receivedCmd
, 4);
2372 uint32_t nr
= bytes_to_num(&receivedCmd
[4], 4);
2375 if(ar_nr_collected
< 2 && cardAUTHSC
== 2){
2376 if(ar_nr_responses
[2] != ar
)
2377 {// Avoid duplicates... probably not necessary, ar should vary.
2378 ar_nr_responses
[ar_nr_collected
*4] = cuid
;
2379 ar_nr_responses
[ar_nr_collected
*4+1] = nonce
;
2380 ar_nr_responses
[ar_nr_collected
*4+2] = ar
;
2381 ar_nr_responses
[ar_nr_collected
*4+3] = nr
;
2384 // Interactive mode flag, means we need to send ACK
2385 if(flags
& FLAG_INTERACTIVE
&& ar_nr_collected
== 2)
2392 crypto1_word(pcs
, ar
, 1);
2393 cardRr
= nr
^ crypto1_word(pcs
, 0, 0);
2396 if (cardRr
!= prng_successor(nonce
, 64)){
2397 if (MF_DBGLEVEL
>= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2398 cardAUTHSC
, cardAUTHKEY
== 0 ? 'A' : 'B',
2399 cardRr
, prng_successor(nonce
, 64));
2400 // Shouldn't we respond anything here?
2401 // Right now, we don't nack or anything, which causes the
2402 // reader to do a WUPA after a while. /Martin
2403 // -- which is the correct response. /piwi
2404 cardSTATE_TO_IDLE();
2405 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2409 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2411 num_to_bytes(ans
, 4, rAUTH_AT
);
2413 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2415 cardSTATE
= MFEMUL_WORK
;
2416 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2417 cardAUTHSC
, cardAUTHKEY
== 0 ? 'A' : 'B',
2418 GetTickCount() - authTimer
);
2421 case MFEMUL_SELECT2
:{
2423 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2426 if (len
== 2 && (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x20)) {
2427 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2433 (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0)) {
2434 EmSendCmd(rSAK
, sizeof(rSAK
));
2435 cuid
= bytes_to_num(rUIDBCC2
, 4);
2436 cardSTATE
= MFEMUL_WORK
;
2438 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2442 // i guess there is a command). go into the work state.
2444 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2447 cardSTATE
= MFEMUL_WORK
;
2449 //intentional fall-through to the next case-stmt
2454 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2458 bool encrypted_data
= (cardAUTHKEY
!= 0xFF) ;
2460 if(encrypted_data
) {
2462 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2465 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2466 authTimer
= GetTickCount();
2467 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2468 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2469 crypto1_destroy(pcs
);//Added by martin
2470 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2472 if (!encrypted_data
) { // first authentication
2473 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2475 crypto1_word(pcs
, cuid
^ nonce
, 0);//Update crypto state
2476 num_to_bytes(nonce
, 4, rAUTH_AT
); // Send nonce
2477 } else { // nested authentication
2478 if (MF_DBGLEVEL
>= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2479 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2480 num_to_bytes(ans
, 4, rAUTH_AT
);
2483 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2484 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2485 cardSTATE
= MFEMUL_AUTH1
;
2489 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2490 // BUT... ACK --> NACK
2491 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2492 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2496 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2497 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2498 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2503 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2507 if(receivedCmd
[0] == 0x30 // read block
2508 || receivedCmd
[0] == 0xA0 // write block
2509 || receivedCmd
[0] == 0xC0 // inc
2510 || receivedCmd
[0] == 0xC1 // dec
2511 || receivedCmd
[0] == 0xC2 // restore
2512 || receivedCmd
[0] == 0xB0) { // transfer
2513 if (receivedCmd
[1] >= 16 * 4) {
2514 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2515 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2519 if (receivedCmd
[1] / 4 != cardAUTHSC
) {
2520 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2521 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],cardAUTHSC
);
2526 if (receivedCmd
[0] == 0x30) {
2527 if (MF_DBGLEVEL
>= 4) {
2528 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd
[1],receivedCmd
[1]);
2530 emlGetMem(response
, receivedCmd
[1], 1);
2531 AppendCrc14443a(response
, 16);
2532 mf_crypto1_encrypt(pcs
, response
, 18, response_par
);
2533 EmSendCmdPar(response
, 18, response_par
);
2535 if(exitAfterNReads
> 0 && numReads
>= exitAfterNReads
) {
2536 Dbprintf("%d reads done, exiting", numReads
);
2542 if (receivedCmd
[0] == 0xA0) {
2543 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd
[1],receivedCmd
[1]);
2544 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2545 cardSTATE
= MFEMUL_WRITEBL2
;
2546 cardWRBL
= receivedCmd
[1];
2549 // increment, decrement, restore
2550 if (receivedCmd
[0] == 0xC0 || receivedCmd
[0] == 0xC1 || receivedCmd
[0] == 0xC2) {
2551 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2552 if (emlCheckValBl(receivedCmd
[1])) {
2553 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2554 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2557 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2558 if (receivedCmd
[0] == 0xC1)
2559 cardSTATE
= MFEMUL_INTREG_INC
;
2560 if (receivedCmd
[0] == 0xC0)
2561 cardSTATE
= MFEMUL_INTREG_DEC
;
2562 if (receivedCmd
[0] == 0xC2)
2563 cardSTATE
= MFEMUL_INTREG_REST
;
2564 cardWRBL
= receivedCmd
[1];
2568 if (receivedCmd
[0] == 0xB0) {
2569 if (MF_DBGLEVEL
>= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2570 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2571 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2573 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2577 if (receivedCmd
[0] == 0x50 && receivedCmd
[1] == 0x00) {
2580 cardSTATE
= MFEMUL_HALTED
;
2581 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2582 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2586 if (receivedCmd
[0] == 0xe0) {//RATS
2587 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2590 // command not allowed
2591 if (MF_DBGLEVEL
>= 4) Dbprintf("Received command not allowed, nacking");
2592 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2595 case MFEMUL_WRITEBL2
:{
2597 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2598 emlSetMem(receivedCmd
, cardWRBL
, 1);
2599 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2600 cardSTATE
= MFEMUL_WORK
;
2602 cardSTATE_TO_IDLE();
2603 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2608 case MFEMUL_INTREG_INC
:{
2609 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2610 memcpy(&ans
, receivedCmd
, 4);
2611 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2612 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2613 cardSTATE_TO_IDLE();
2616 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2617 cardINTREG
= cardINTREG
+ ans
;
2618 cardSTATE
= MFEMUL_WORK
;
2621 case MFEMUL_INTREG_DEC
:{
2622 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2623 memcpy(&ans
, receivedCmd
, 4);
2624 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2625 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2626 cardSTATE_TO_IDLE();
2629 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2630 cardINTREG
= cardINTREG
- ans
;
2631 cardSTATE
= MFEMUL_WORK
;
2634 case MFEMUL_INTREG_REST
:{
2635 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2636 memcpy(&ans
, receivedCmd
, 4);
2637 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2638 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2639 cardSTATE_TO_IDLE();
2642 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parity
, TRUE
);
2643 cardSTATE
= MFEMUL_WORK
;
2649 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2652 if(flags
& FLAG_INTERACTIVE
)// Interactive mode flag, means we need to send ACK
2654 //May just aswell send the collected ar_nr in the response aswell
2655 cmd_send(CMD_ACK
,CMD_SIMULATE_MIFARE_CARD
,1,0,&ar_nr_responses
,ar_nr_collected
*4*4);
2658 if(flags
& FLAG_NR_AR_ATTACK
&& MF_DBGLEVEL
>= 1 )
2660 if(ar_nr_collected
> 1 ) {
2661 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2662 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
2663 ar_nr_responses
[0], // UID
2664 ar_nr_responses
[1], //NT
2665 ar_nr_responses
[2], //AR1
2666 ar_nr_responses
[3], //NR1
2667 ar_nr_responses
[6], //AR2
2668 ar_nr_responses
[7] //NR2
2671 Dbprintf("Failed to obtain two AR/NR pairs!");
2672 if(ar_nr_collected
> 0 ) {
2673 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2674 ar_nr_responses
[0], // UID
2675 ar_nr_responses
[1], //NT
2676 ar_nr_responses
[2], //AR1
2677 ar_nr_responses
[3] //NR1
2682 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, BigBuf_get_traceLen());
2688 //-----------------------------------------------------------------------------
2691 //-----------------------------------------------------------------------------
2692 void RAMFUNC
SniffMifare(uint8_t param
) {
2694 // bit 0 - trigger from first card answer
2695 // bit 1 - trigger from first reader 7-bit request
2697 // C(red) A(yellow) B(green)
2699 // init trace buffer
2703 // The command (reader -> tag) that we're receiving.
2704 // The length of a received command will in most cases be no more than 18 bytes.
2705 // So 32 should be enough!
2706 uint8_t receivedCmd
[MAX_MIFARE_FRAME_SIZE
];
2707 uint8_t receivedCmdPar
[MAX_MIFARE_PARITY_SIZE
];
2708 // The response (tag -> reader) that we're receiving.
2709 uint8_t receivedResponse
[MAX_MIFARE_FRAME_SIZE
];
2710 uint8_t receivedResponsePar
[MAX_MIFARE_PARITY_SIZE
];
2712 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2713 // into trace, along with its length and other annotations.
2714 //uint8_t *trace = (uint8_t *)BigBuf;
2716 // free eventually allocated BigBuf memory
2718 // allocate the DMA buffer, used to stream samples from the FPGA
2719 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
2720 uint8_t *data
= dmaBuf
;
2721 uint8_t previous_data
= 0;
2724 bool ReaderIsActive
= FALSE
;
2725 bool TagIsActive
= FALSE
;
2727 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
2729 // Set up the demodulator for tag -> reader responses.
2730 DemodInit(receivedResponse
, receivedResponsePar
);
2732 // Set up the demodulator for the reader -> tag commands
2733 UartInit(receivedCmd
, receivedCmdPar
);
2735 // Setup for the DMA.
2736 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2743 // And now we loop, receiving samples.
2744 for(uint32_t sniffCounter
= 0; TRUE
; ) {
2746 if(BUTTON_PRESS()) {
2747 DbpString("cancelled by button");
2754 if ((sniffCounter
& 0x0000FFFF) == 0) { // from time to time
2755 // check if a transaction is completed (timeout after 2000ms).
2756 // if yes, stop the DMA transfer and send what we have so far to the client
2757 if (MfSniffSend(2000)) {
2758 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2762 ReaderIsActive
= FALSE
;
2763 TagIsActive
= FALSE
;
2764 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2768 int register readBufDataP
= data
- dmaBuf
; // number of bytes we have processed so far
2769 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
; // number of bytes already transferred
2770 if (readBufDataP
<= dmaBufDataP
){ // we are processing the same block of data which is currently being transferred
2771 dataLen
= dmaBufDataP
- readBufDataP
; // number of bytes still to be processed
2773 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
; // number of bytes still to be processed
2775 // test for length of buffer
2776 if(dataLen
> maxDataLen
) { // we are more behind than ever...
2777 maxDataLen
= dataLen
;
2778 if(dataLen
> (9 * DMA_BUFFER_SIZE
/ 10)) {
2779 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
2783 if(dataLen
< 1) continue;
2785 // primary buffer was stopped ( <-- we lost data!
2786 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
2787 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
2788 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
2789 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
2791 // secondary buffer sets as primary, secondary buffer was stopped
2792 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
2793 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
2794 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
2799 if (sniffCounter
& 0x01) {
2801 if(!TagIsActive
) { // no need to try decoding tag data if the reader is sending
2802 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
2803 if(MillerDecoding(readerdata
, (sniffCounter
-1)*4)) {
2805 if (MfSniffLogic(receivedCmd
, Uart
.len
, Uart
.parity
, Uart
.bitCount
, TRUE
)) break;
2807 /* And ready to receive another command. */
2810 /* And also reset the demod code */
2813 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
2816 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending
2817 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
2818 if(ManchesterDecoding(tagdata
, 0, (sniffCounter
-1)*4)) {
2821 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parity
, Demod
.bitCount
, FALSE
)) break;
2823 // And ready to receive another response.
2826 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
2830 previous_data
= *data
;
2833 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
2839 DbpString("COMMAND FINISHED");
2841 FpgaDisableSscDma();
2844 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen
, Uart
.state
, Uart
.len
);