1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
27 #include "lfsampling.h"
29 #include "mifareutil.h"
35 // Craig Young - 14a stand-alone code
36 #ifdef WITH_ISO14443a_StandAlone
37 #include "iso14443a.h"
38 #include "protocols.h"
41 #define abs(x) ( ((x)<0) ? -(x) : (x) )
43 //=============================================================================
44 // A buffer where we can queue things up to be sent through the FPGA, for
45 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
46 // is the order in which they go out on the wire.
47 //=============================================================================
49 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
50 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
53 struct common_area common_area
__attribute__((section(".commonarea")));
55 void ToSendReset(void)
61 void ToSendStuffBit(int b
) {
64 ToSend
[ToSendMax
] = 0;
69 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
73 if(ToSendMax
>= sizeof(ToSend
)) {
75 DbpString("ToSendStuffBit overflowed!");
79 //=============================================================================
80 // Debug print functions, to go out over USB, to the usual PC-side client.
81 //=============================================================================
83 void DbpStringEx(char *str
, uint32_t cmd
){
84 byte_t len
= strlen(str
);
85 cmd_send(CMD_DEBUG_PRINT_STRING
,len
, cmd
,0,(byte_t
*)str
,len
);
88 void DbpString(char *str
) {
93 void DbpIntegers(int x1
, int x2
, int x3
) {
94 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
97 void DbprintfEx(uint32_t cmd
, const char *fmt
, ...) {
98 // should probably limit size here; oh well, let's just use a big buffer
99 char output_string
[128] = {0x00};
103 kvsprintf(fmt
, output_string
, 10, ap
);
106 DbpStringEx(output_string
, cmd
);
109 void Dbprintf(const char *fmt
, ...) {
110 // should probably limit size here; oh well, let's just use a big buffer
111 char output_string
[128] = {0x00};
115 kvsprintf(fmt
, output_string
, 10, ap
);
118 DbpString(output_string
);
121 // prints HEX & ASCII
122 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
128 l
= (len
>8) ? 8 : len
;
135 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
138 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
140 Dbprintf("%*D",l
,d
," ");
147 //-----------------------------------------------------------------------------
148 // Read an ADC channel and block till it completes, then return the result
149 // in ADC units (0 to 1023). Also a routine to average 32 samples and
151 //-----------------------------------------------------------------------------
152 static int ReadAdc(int ch
)
156 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
157 AT91C_BASE_ADC
->ADC_MR
=
158 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
159 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
160 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
162 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
163 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
164 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
167 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
169 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
171 // Note: with the "historic" values in the comments above, the error was 34% !!!
173 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
175 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
177 while (!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) ;
179 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
183 int AvgAdc(int ch
) // was static - merlok
188 for(i
= 0; i
< 32; ++i
)
191 return (a
+ 15) >> 5;
194 void MeasureAntennaTuning(void) {
195 uint8_t LF_Results
[256];
196 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
197 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
202 * Sweeps the useful LF range of the proxmark from
203 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
204 * read the voltage in the antenna, the result left
205 * in the buffer is a graph which should clearly show
206 * the resonating frequency of your LF antenna
207 * ( hopefully around 95 if it is tuned to 125kHz!)
210 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
211 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
213 for (i
=255; i
>=19; i
--) {
215 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
217 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
218 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
219 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
221 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
222 if(LF_Results
[i
] > peak
) {
224 peak
= LF_Results
[i
];
230 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
233 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
234 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
235 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
237 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
239 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<<16), vHf
, peakf
| (peakv
<<16), LF_Results
, 256);
240 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
245 void MeasureAntennaTuningHf(void) {
246 int vHf
= 0; // in mV
247 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
248 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
249 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
251 while ( !BUTTON_PRESS() ){
253 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
254 //Dbprintf("%d mV",vHf);
255 DbprintfEx(CMD_MEASURE_ANTENNA_TUNING_HF
, "%d mV",vHf
);
257 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
258 DbpString("cancelled");
262 void ReadMem(int addr
) {
263 const uint8_t *data
= ((uint8_t *)addr
);
265 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
266 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
269 /* osimage version information is linked in */
270 extern struct version_information version_information
;
271 /* bootrom version information is pointed to from _bootphase1_version_pointer */
272 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
273 void SendVersion(void)
275 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
276 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
278 /* Try to find the bootrom version information. Expect to find a pointer at
279 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
280 * pointer, then use it.
282 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
284 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
285 strcat(VersionString
, "bootrom version information appears invalid\n");
287 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
288 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
291 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
292 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
294 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
295 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
297 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
298 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
300 // Send Chip ID and used flash memory
301 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
302 uint32_t compressed_data_section_size
= common_area
.arg1
;
303 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
306 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
307 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
308 void printUSBSpeed(void)
310 Dbprintf("USB Speed:");
311 Dbprintf(" Sending USB packets to client...");
313 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
314 uint8_t *test_data
= BigBuf_get_addr();
317 uint32_t start_time
= end_time
= GetTickCount();
318 uint32_t bytes_transferred
= 0;
321 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
322 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
323 end_time
= GetTickCount();
324 bytes_transferred
+= USB_CMD_DATA_SIZE
;
328 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
329 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
330 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
331 1000 * bytes_transferred
/ (end_time
- start_time
));
336 * Prints runtime information about the PM3.
338 void SendStatus(void) {
339 BigBuf_print_status();
341 printConfig(); //LF Sampling config
344 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
345 Dbprintf(" ToSendMax..........%d", ToSendMax
);
346 Dbprintf(" ToSendBit..........%d", ToSendBit
);
347 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE
);
349 cmd_send(CMD_ACK
,1,0,0,0,0);
352 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
355 void StandAloneMode()
357 DbpString("Stand-alone mode! No PC necessary.");
358 // Oooh pretty -- notify user we're in elite samy mode now
360 LED(LED_ORANGE
, 200);
362 LED(LED_ORANGE
, 200);
364 LED(LED_ORANGE
, 200);
366 LED(LED_ORANGE
, 200);
371 #ifdef WITH_ISO14443a_StandAlone
372 void StandAloneMode14a()
375 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
378 int playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
379 int cardRead
[OPTS
] = {0};
380 uint8_t readUID
[10] = {0};
381 uint32_t uid_1st
[OPTS
]={0};
382 uint32_t uid_2nd
[OPTS
]={0};
383 uint32_t uid_tmp1
= 0;
384 uint32_t uid_tmp2
= 0;
385 iso14a_card_select_t hi14a_card
[OPTS
];
387 uint8_t params
= (MAGIC_SINGLE
| MAGIC_DATAIN
);
389 LED(selected
+ 1, 0);
397 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
401 LED(selected
+ 1, 0);
405 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
406 /* need this delay to prevent catching some weird data */
408 /* Code for reading from 14a tag */
409 uint8_t uid
[10] = {0};
411 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
416 if (BUTTON_PRESS()) {
417 if (cardRead
[selected
]) {
418 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
421 else if (cardRead
[(selected
+1)%OPTS
]) {
422 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
423 selected
= (selected
+1)%OPTS
;
424 break; // playing = 1;
427 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
431 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0))
435 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
436 memcpy(readUID
,uid
,10*sizeof(uint8_t));
437 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
438 // Set UID byte order
439 for (int i
=0; i
<4; i
++)
441 dst
= (uint8_t *)&uid_tmp2
;
442 for (int i
=0; i
<4; i
++)
444 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
445 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
449 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
450 uid_1st
[selected
] = (uid_tmp1
)>>8;
451 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
454 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
455 uid_1st
[selected
] = uid_tmp1
;
456 uid_2nd
[selected
] = uid_tmp2
;
462 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
463 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
466 LED(LED_ORANGE
, 200);
468 LED(LED_ORANGE
, 200);
471 LED(selected
+ 1, 0);
473 // Next state is replay:
476 cardRead
[selected
] = 1;
478 /* MF Classic UID clone */
479 else if (iGotoClone
==1)
483 LED(selected
+ 1, 0);
484 LED(LED_ORANGE
, 250);
487 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
489 // wait for button to be released
490 // Delay cloning until card is in place
491 while(BUTTON_PRESS())
494 Dbprintf("Starting clone. [Bank: %u]", selected
);
495 // need this delay to prevent catching some weird data
497 // Begin clone function here:
498 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
499 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
500 memcpy(c.d.asBytes, data, 16);
503 Block read is similar:
504 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
505 We need to imitate that call with blockNo 0 to set a uid.
507 The get and set commands are handled in this file:
508 // Work with "magic Chinese" card
509 case CMD_MIFARE_CSETBLOCK:
510 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
512 case CMD_MIFARE_CGETBLOCK:
513 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
516 mfCSetUID provides example logic for UID set workflow:
517 -Read block0 from card in field with MifareCGetBlock()
518 -Configure new values without replacing reserved bytes
519 memcpy(block0, uid, 4); // Copy UID bytes from byte array
521 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
522 Bytes 5-7 are reserved SAK and ATQA for mifare classic
523 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
525 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
526 // arg0 = Flags, arg1=blockNo
527 MifareCGetBlock(params
, 0, oldBlock0
);
528 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
529 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
533 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
534 memcpy(newBlock0
,oldBlock0
,16);
535 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
537 newBlock0
[0] = uid_1st
[selected
]>>24;
538 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
539 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
540 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
541 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
543 // arg0 = workFlags, arg1 = blockNo, datain
544 MifareCSetBlock(params
, 0, newBlock0
);
545 MifareCGetBlock(params
, 0, testBlock0
);
547 if (memcmp(testBlock0
, newBlock0
, 16)==0) {
548 DbpString("Cloned successfull!");
549 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
552 selected
= (selected
+ 1) % OPTS
;
554 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
559 LED(selected
+ 1, 0);
561 // Change where to record (or begin playing)
562 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
565 LED(selected
+ 1, 0);
567 // Begin transmitting
571 DbpString("Playing");
574 int button_action
= BUTTON_HELD(1000);
575 if (button_action
== 0) { // No button action, proceed with sim
576 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
577 uint8_t flags
= ( uid_2nd
[selected
] > 0x00 ) ? FLAG_7B_UID_IN_DATA
: FLAG_4B_UID_IN_DATA
;
578 num_to_bytes(uid_1st
[selected
], 3, data
);
579 num_to_bytes(uid_2nd
[selected
], 4, data
);
581 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
582 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
583 DbpString("Mifare Classic");
584 SimulateIso14443aTag(1, flags
, data
); // Mifare Classic
586 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
587 DbpString("Mifare Ultralight");
588 SimulateIso14443aTag(2, flags
, data
); // Mifare Ultralight
590 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
591 DbpString("Mifare DESFire");
592 SimulateIso14443aTag(3, flags
, data
); // Mifare DESFire
595 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
596 SimulateIso14443aTag(1, flags
, data
);
599 else if (button_action
== BUTTON_SINGLE_CLICK
) {
600 selected
= (selected
+ 1) % OPTS
;
601 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
605 else if (button_action
== BUTTON_HOLD
) {
606 Dbprintf("Playtime over. Begin cloning...");
613 /* We pressed a button so ignore it here with a delay */
616 LED(selected
+ 1, 0);
619 while(BUTTON_PRESS())
625 // samy's sniff and repeat routine
629 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
631 int high
[OPTS
], low
[OPTS
];
636 // Turn on selected LED
637 LED(selected
+ 1, 0);
643 // Was our button held down or pressed?
644 int button_pressed
= BUTTON_HELD(1000);
647 // Button was held for a second, begin recording
648 if (button_pressed
> 0 && cardRead
== 0)
651 LED(selected
+ 1, 0);
655 DbpString("Starting recording");
657 // wait for button to be released
658 while(BUTTON_PRESS())
661 /* need this delay to prevent catching some weird data */
664 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
665 Dbprintf("Recorded %x %x %08x", selected
, high
[selected
], low
[selected
]);
668 LED(selected
+ 1, 0);
669 // Finished recording
670 // If we were previously playing, set playing off
671 // so next button push begins playing what we recorded
675 else if (button_pressed
> 0 && cardRead
== 1) {
677 LED(selected
+ 1, 0);
681 Dbprintf("Cloning %x %x %08x", selected
, high
[selected
], low
[selected
]);
683 // wait for button to be released
684 while(BUTTON_PRESS())
687 /* need this delay to prevent catching some weird data */
690 CopyHIDtoT55x7(0, high
[selected
], low
[selected
], 0);
691 Dbprintf("Cloned %x %x %08x", selected
, high
[selected
], low
[selected
]);
694 LED(selected
+ 1, 0);
695 // Finished recording
697 // If we were previously playing, set playing off
698 // so next button push begins playing what we recorded
703 // Change where to record (or begin playing)
704 else if (button_pressed
) {
705 // Next option if we were previously playing
707 selected
= (selected
+ 1) % OPTS
;
711 LED(selected
+ 1, 0);
713 // Begin transmitting
717 DbpString("Playing");
718 // wait for button to be released
719 while(BUTTON_PRESS())
722 Dbprintf("%x %x %08x", selected
, high
[selected
], low
[selected
]);
723 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
724 DbpString("Done playing");
726 if (BUTTON_HELD(1000) > 0) {
727 DbpString("Exiting");
732 /* We pressed a button so ignore it here with a delay */
735 // when done, we're done playing, move to next option
736 selected
= (selected
+ 1) % OPTS
;
739 LED(selected
+ 1, 0);
742 while(BUTTON_PRESS())
751 Listen and detect an external reader. Determine the best location
755 Inside the ListenReaderField() function, there is two mode.
756 By default, when you call the function, you will enter mode 1.
757 If you press the PM3 button one time, you will enter mode 2.
758 If you press the PM3 button a second time, you will exit the function.
760 DESCRIPTION OF MODE 1:
761 This mode just listens for an external reader field and lights up green
762 for HF and/or red for LF. This is the original mode of the detectreader
765 DESCRIPTION OF MODE 2:
766 This mode will visually represent, using the LEDs, the actual strength of the
767 current compared to the maximum current detected. Basically, once you know
768 what kind of external reader is present, it will help you spot the best location to place
769 your antenna. You will probably not get some good results if there is a LF and a HF reader
770 at the same place! :-)
774 static const char LIGHT_SCHEME
[] = {
775 0x0, /* ---- | No field detected */
776 0x1, /* X--- | 14% of maximum current detected */
777 0x2, /* -X-- | 29% of maximum current detected */
778 0x4, /* --X- | 43% of maximum current detected */
779 0x8, /* ---X | 57% of maximum current detected */
780 0xC, /* --XX | 71% of maximum current detected */
781 0xE, /* -XXX | 86% of maximum current detected */
782 0xF, /* XXXX | 100% of maximum current detected */
784 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
786 void ListenReaderField(int limit
) {
789 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
791 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
792 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
793 int mode
=1, display_val
, display_max
, i
;
795 // switch off FPGA - we don't want to measure our own signal
796 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
797 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
801 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
803 if(limit
!= HF_ONLY
) {
804 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
808 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
810 if (limit
!= LF_ONLY
) {
811 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
816 if (BUTTON_PRESS()) {
821 DbpString("Signal Strength Mode");
825 DbpString("Stopped");
833 if (limit
!= HF_ONLY
) {
835 if (abs(lf_av
- lf_baseline
) > REPORT_CHANGE
)
841 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
842 // see if there's a significant change
843 if(abs(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
844 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
851 if (limit
!= LF_ONLY
) {
853 if (abs(hf_av
- hf_baseline
) > REPORT_CHANGE
)
859 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
860 // see if there's a significant change
861 if(abs(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
862 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
870 if (limit
== LF_ONLY
) {
872 display_max
= lf_max
;
873 } else if (limit
== HF_ONLY
) {
875 display_max
= hf_max
;
876 } else { /* Pick one at random */
877 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
879 display_max
= hf_max
;
882 display_max
= lf_max
;
885 for (i
=0; i
<LIGHT_LEN
; i
++) {
886 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
887 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
888 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
889 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
890 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
898 void UsbPacketReceived(uint8_t *packet
, int len
)
900 UsbCommand
*c
= (UsbCommand
*)packet
;
902 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
906 case CMD_SET_LF_SAMPLING_CONFIG
:
907 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
909 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
910 cmd_send(CMD_ACK
, SampleLF(c
->arg
[0]),0,0,0,0);
912 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
913 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
915 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
916 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
918 case CMD_HID_DEMOD_FSK
:
919 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
921 case CMD_HID_SIM_TAG
:
922 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
924 case CMD_FSK_SIM_TAG
:
925 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
927 case CMD_ASK_SIM_TAG
:
928 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
930 case CMD_PSK_SIM_TAG
:
931 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
933 case CMD_HID_CLONE_TAG
:
934 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
936 case CMD_IO_DEMOD_FSK
:
937 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
939 case CMD_IO_CLONE_TAG
:
940 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
942 case CMD_EM410X_DEMOD
:
943 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
945 case CMD_EM410X_WRITE_TAG
:
946 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
948 case CMD_READ_TI_TYPE
:
951 case CMD_WRITE_TI_TYPE
:
952 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
954 case CMD_SIMULATE_TAG_125K
:
956 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
959 case CMD_LF_SIMULATE_BIDIR
:
960 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
962 case CMD_INDALA_CLONE_TAG
:
963 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
965 case CMD_INDALA_CLONE_TAG_L
:
966 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
968 case CMD_T55XX_READ_BLOCK
:
969 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
971 case CMD_T55XX_WRITE_BLOCK
:
972 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
974 case CMD_T55XX_WAKEUP
:
975 T55xxWakeUp(c
->arg
[0]);
977 case CMD_T55XX_RESET_READ
:
980 case CMD_PCF7931_READ
:
983 case CMD_PCF7931_WRITE
:
984 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
986 case CMD_EM4X_READ_WORD
:
987 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
989 case CMD_EM4X_WRITE_WORD
:
990 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
992 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
993 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
995 case CMD_VIKING_CLONE_TAG
:
996 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1001 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1002 SnoopHitag(c
->arg
[0]);
1004 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1005 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1007 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1008 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1010 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1011 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1013 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1014 check_challenges((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1016 case CMD_READ_HITAG_S
://Reader for only Hitag S tags, args = key or challenge
1017 ReadHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1019 case CMD_WR_HITAG_S
://writer for Hitag tags args=data to write,page and key or challenge
1020 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1024 #ifdef WITH_ISO15693
1025 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1026 AcquireRawAdcSamplesIso15693();
1028 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1029 RecordRawAdcSamplesIso15693();
1032 case CMD_ISO_15693_COMMAND
:
1033 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1036 case CMD_ISO_15693_FIND_AFI
:
1037 BruteforceIso15693Afi(c
->arg
[0]);
1040 case CMD_ISO_15693_DEBUG
:
1041 SetDebugIso15693(c
->arg
[0]);
1044 case CMD_READER_ISO_15693
:
1045 ReaderIso15693(c
->arg
[0]);
1047 case CMD_SIMTAG_ISO_15693
:
1048 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1053 case CMD_SIMULATE_TAG_LEGIC_RF
:
1054 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1057 case CMD_WRITER_LEGIC_RF
:
1058 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1061 case CMD_READER_LEGIC_RF
:
1062 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1066 #ifdef WITH_ISO14443b
1067 case CMD_READ_SRI512_TAG
:
1068 ReadSTMemoryIso14443b(0x0F);
1070 case CMD_READ_SRIX4K_TAG
:
1071 ReadSTMemoryIso14443b(0x7F);
1073 case CMD_SNOOP_ISO_14443B
:
1076 case CMD_SIMULATE_TAG_ISO_14443B
:
1077 SimulateIso14443bTag();
1079 case CMD_ISO_14443B_COMMAND
:
1080 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1084 #ifdef WITH_ISO14443a
1085 case CMD_SNOOP_ISO_14443a
:
1086 SniffIso14443a(c
->arg
[0]);
1088 case CMD_READER_ISO_14443a
:
1091 case CMD_SIMULATE_TAG_ISO_14443a
:
1092 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1095 case CMD_EPA_PACE_COLLECT_NONCE
:
1096 EPA_PACE_Collect_Nonce(c
);
1098 case CMD_EPA_PACE_REPLAY
:
1102 case CMD_READER_MIFARE
:
1103 ReaderMifare(c
->arg
[0], c
->arg
[1]);
1105 case CMD_MIFARE_READBL
:
1106 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1108 case CMD_MIFAREU_READBL
:
1109 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1111 case CMD_MIFAREUC_AUTH
:
1112 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1114 case CMD_MIFAREU_READCARD
:
1115 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1117 case CMD_MIFAREUC_SETPWD
:
1118 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1120 case CMD_MIFARE_READSC
:
1121 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1123 case CMD_MIFARE_WRITEBL
:
1124 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1126 //case CMD_MIFAREU_WRITEBL_COMPAT:
1127 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1129 case CMD_MIFAREU_WRITEBL
:
1130 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1132 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1133 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1135 case CMD_MIFARE_NESTED
:
1136 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1138 case CMD_MIFARE_CHKKEYS
:
1139 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1141 case CMD_SIMULATE_MIFARE_CARD
:
1142 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1146 case CMD_MIFARE_SET_DBGMODE
:
1147 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1149 case CMD_MIFARE_EML_MEMCLR
:
1150 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1152 case CMD_MIFARE_EML_MEMSET
:
1153 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1155 case CMD_MIFARE_EML_MEMGET
:
1156 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1158 case CMD_MIFARE_EML_CARDLOAD
:
1159 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1162 // Work with "magic Chinese" card
1163 case CMD_MIFARE_CSETBLOCK
:
1164 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1166 case CMD_MIFARE_CGETBLOCK
:
1167 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1169 case CMD_MIFARE_CIDENT
:
1174 case CMD_MIFARE_SNIFFER
:
1175 SniffMifare(c
->arg
[0]);
1179 case CMD_MIFARE_DESFIRE_READBL
: break;
1180 case CMD_MIFARE_DESFIRE_WRITEBL
: break;
1181 case CMD_MIFARE_DESFIRE_AUTH1
:
1182 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1184 case CMD_MIFARE_DESFIRE_AUTH2
:
1185 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1187 case CMD_MIFARE_DES_READER
:
1188 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1190 case CMD_MIFARE_DESFIRE_INFO
:
1191 MifareDesfireGetInformation();
1193 case CMD_MIFARE_DESFIRE
:
1194 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1197 case CMD_MIFARE_COLLECT_NONCES
:
1201 case CMD_EMV_TRANSACTION
:
1204 case CMD_EMV_GET_RANDOM_NUM
:
1207 case CMD_EMV_LOAD_VALUE
:
1208 EMVloadvalue(c
->arg
[0], c
->d
.asBytes
);
1210 case CMD_EMV_DUMP_CARD
:
1214 // Makes use of ISO14443a FPGA Firmware
1215 case CMD_SNOOP_ICLASS
:
1218 case CMD_SIMULATE_TAG_ICLASS
:
1219 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1221 case CMD_READER_ICLASS
:
1222 ReaderIClass(c
->arg
[0]);
1224 case CMD_READER_ICLASS_REPLAY
:
1225 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1227 case CMD_ICLASS_EML_MEMSET
:
1228 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1230 case CMD_ICLASS_WRITEBLOCK
:
1231 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1233 case CMD_ICLASS_READCHECK
: // auth step 1
1234 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1236 case CMD_ICLASS_READBLOCK
:
1237 iClass_ReadBlk(c
->arg
[0]);
1239 case CMD_ICLASS_AUTHENTICATION
: //check
1240 iClass_Authentication(c
->d
.asBytes
);
1242 case CMD_ICLASS_DUMP
:
1243 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1245 case CMD_ICLASS_CLONE
:
1246 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1250 case CMD_HF_SNIFFER
:
1251 HfSnoop(c
->arg
[0], c
->arg
[1]);
1255 case CMD_BUFF_CLEAR
:
1259 case CMD_MEASURE_ANTENNA_TUNING
:
1260 MeasureAntennaTuning();
1263 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1264 MeasureAntennaTuningHf();
1267 case CMD_LISTEN_READER_FIELD
:
1268 ListenReaderField(c
->arg
[0]);
1271 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1272 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1274 LED_D_OFF(); // LED D indicates field ON or OFF
1277 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1280 uint8_t *BigBuf
= BigBuf_get_addr();
1282 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1283 len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1284 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1286 // Trigger a finish downloading signal with an ACK frame
1287 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1291 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1292 uint8_t *b
= BigBuf_get_addr();
1293 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1294 cmd_send(CMD_ACK
,0,0,0,0,0);
1301 case CMD_SET_LF_DIVISOR
:
1302 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1303 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1306 case CMD_SET_ADC_MUX
:
1308 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1309 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1310 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1311 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1322 cmd_send(CMD_ACK
,0,0,0,0,0);
1332 case CMD_SETUP_WRITE
:
1333 case CMD_FINISH_WRITE
:
1334 case CMD_HARDWARE_RESET
:
1337 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1339 // We're going to reset, and the bootrom will take control.
1343 case CMD_START_FLASH
:
1344 if(common_area
.flags
.bootrom_present
) {
1345 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1348 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1352 case CMD_DEVICE_INFO
: {
1353 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1354 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1355 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1359 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1364 void __attribute__((noreturn
)) AppMain(void)
1368 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1369 /* Initialize common area */
1370 memset(&common_area
, 0, sizeof(common_area
));
1371 common_area
.magic
= COMMON_AREA_MAGIC
;
1372 common_area
.version
= 1;
1374 common_area
.flags
.osimage_present
= 1;
1384 // The FPGA gets its clock from us from PCK0 output, so set that up.
1385 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1386 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1387 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1388 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1389 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1390 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1391 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1394 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1396 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1398 // Load the FPGA image, which we have stored in our flash.
1399 // (the HF version by default)
1400 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1408 byte_t rx
[sizeof(UsbCommand
)];
1413 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1415 UsbPacketReceived(rx
,rx_len
);
1420 #ifndef WITH_ISO14443a_StandAlone
1421 if (BUTTON_HELD(1000) > 0)
1425 #ifdef WITH_ISO14443a
1426 #ifdef WITH_ISO14443a_StandAlone
1427 if (BUTTON_HELD(1000) > 0)
1428 StandAloneMode14a();