1 //----------------------------------------------------------------------------- 
   2 // Copyright (C) 2015, 2016 by piwi 
   4 // This code is licensed to you under the terms of the GNU GPL, version 2 or, 
   5 // at your option, any later version. See the LICENSE.txt file for the text of 
   7 //----------------------------------------------------------------------------- 
   8 // Implements a card only attack based on crypto text (encrypted nonces 
   9 // received during a nested authentication) only. Unlike other card only 
  10 // attacks this doesn't rely on implementation errors but only on the 
  11 // inherent weaknesses of the crypto1 cypher. Described in 
  12 //   Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened 
  13 //   Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on  
  14 //   Computer and Communications Security, 2015 
  15 //----------------------------------------------------------------------------- 
  17 #include "cmdhfmfhard.h" 
  27 #include "proxmark3.h" 
  31 #include "util_posix.h" 
  32 #include "crapto1/crapto1.h" 
  34 #include "hardnested/hardnested_bruteforce.h" 
  35 #include "hardnested/hardnested_bitarray_core.h" 
  37 #define NUM_CHECK_BITFLIPS_THREADS              (num_CPUs()) 
  38 #define NUM_REDUCTION_WORKING_THREADS   (num_CPUs()) 
  40 #define IGNORE_BITFLIP_THRESHOLD                0.99    // ignore bitflip arrays which have nearly only valid states 
  42 #define STATE_FILES_DIRECTORY                   "hardnested/tables/" 
  43 #define STATE_FILE_TEMPLATE                             "bitflip_%d_%03" PRIx16 "_states.bin" 
  45 #define DEBUG_KEY_ELIMINATION 
  46 // #define DEBUG_REDUCTION 
  48 static uint16_t sums
[NUM_SUMS
] = {0, 32, 56, 64, 80, 96, 104, 112, 120, 128, 136, 144, 152, 160, 176, 192, 200, 224, 256}; // possible sum property values 
  50 #define NUM_PART_SUMS                                   9               // number of possible partial sum property values 
  57 static uint32_t num_acquired_nonces 
= 0; 
  58 static uint64_t start_time 
= 0; 
  59 static uint16_t effective_bitflip
[2][0x400]; 
  60 static uint16_t num_effective_bitflips
[2] = {0, 0}; 
  61 static uint16_t all_effective_bitflip
[0x400]; 
  62 static uint16_t num_all_effective_bitflips 
= 0; 
  63 static uint16_t num_1st_byte_effective_bitflips 
= 0; 
  64 #define CHECK_1ST_BYTES                 0x01 
  65 #define CHECK_2ND_BYTES                 0x02 
  66 static uint8_t hardnested_stage 
= CHECK_1ST_BYTES
; 
  67 static uint64_t known_target_key
; 
  68 static uint32_t test_state
[2] = {0,0}; 
  69 static float brute_force_per_second
; 
  72 static void get_SIMD_instruction_set(char* instruction_set
) { 
  73 #if defined (__i386__) || defined (__x86_64__)   
  74         #if !defined(__APPLE__) || (defined(__APPLE__) && (__clang_major__ > 8)) 
  75                 #if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2) 
  76         if (__builtin_cpu_supports("avx512f")) strcpy(instruction_set
, "AVX512F"); 
  77         else if (__builtin_cpu_supports("avx2")) strcpy(instruction_set
, "AVX2"); 
  79         if (__builtin_cpu_supports("avx2")) strcpy(instruction_set
, "AVX2"); 
  81         else if (__builtin_cpu_supports("avx")) strcpy(instruction_set
, "AVX"); 
  82         else if (__builtin_cpu_supports("sse2")) strcpy(instruction_set
, "SSE2"); 
  83         else if (__builtin_cpu_supports("mmx")) strcpy(instruction_set
, "MMX"); 
  87                 strcpy(instruction_set
, "no"); 
  91 static void print_progress_header(void) { 
  92         char progress_text
[80]; 
  93         char instr_set
[12] = ""; 
  94         get_SIMD_instruction_set(instr_set
); 
  95         sprintf(progress_text
, "Start using %d threads and %s SIMD core", num_CPUs(), instr_set
); 
  97         PrintAndLog(" time    | #nonces | Activity                                                | expected to brute force"); 
  98         PrintAndLog("         |         |                                                         | #states         | time "); 
  99         PrintAndLog("------------------------------------------------------------------------------------------------------"); 
 100         PrintAndLog("       0 |       0 | %-55s |                 |", progress_text
); 
 104 void hardnested_print_progress(uint32_t nonces
, char *activity
, float brute_force
, uint64_t min_diff_print_time
) { 
 105         static uint64_t last_print_time 
= 0; 
 106         if (msclock() - last_print_time 
> min_diff_print_time
) { 
 107                 last_print_time 
= msclock(); 
 108                 uint64_t total_time 
= msclock() - start_time
; 
 109                 float brute_force_time 
= brute_force 
/ brute_force_per_second
; 
 110                 char brute_force_time_string
[20]; 
 111                 if (brute_force_time 
< 90) { 
 112                         sprintf(brute_force_time_string
, "%2.0fs", brute_force_time
); 
 113                 } else if (brute_force_time 
< 60 * 90) { 
 114                         sprintf(brute_force_time_string
, "%2.0fmin", brute_force_time
/60); 
 115                 } else if (brute_force_time 
< 60 * 60 * 36) { 
 116                         sprintf(brute_force_time_string
, "%2.0fh", brute_force_time
/(60*60)); 
 118                         sprintf(brute_force_time_string
, "%2.0fd", brute_force_time
/(60*60*24)); 
 120                 PrintAndLog(" %7.0f | %7d | %-55s | %15.0f | %5s", (float)total_time
/1000.0, nonces
, activity
, brute_force
, brute_force_time_string
); 
 125 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 126 // bitarray functions 
 128 static inline void clear_bitarray24(uint32_t *bitarray
) 
 130         memset(bitarray
, 0x00, sizeof(uint32_t) * (1<<19)); 
 134 static inline void set_bitarray24(uint32_t *bitarray
) 
 136         memset(bitarray
, 0xff, sizeof(uint32_t) * (1<<19)); 
 140 static inline void set_bit24(uint32_t *bitarray
, uint32_t index
) 
 142         bitarray
[index
>>5] |= 0x80000000>>(index
&0x0000001f); 
 146 static inline void clear_bit24(uint32_t *bitarray
, uint32_t index
) 
 148         bitarray
[index
>>5] &= ~(0x80000000>>(index
&0x0000001f)); 
 152 static inline uint32_t test_bit24(uint32_t *bitarray
, uint32_t index
) 
 154         return  bitarray
[index
>>5] & (0x80000000>>(index
&0x0000001f)); 
 158 static inline uint32_t next_state(uint32_t *bitarray
, uint32_t state
) 
 160         if (++state 
== 1<<24) return 1<<24; 
 161         uint32_t index 
= state 
>> 5; 
 162         uint_fast8_t bit 
= state 
& 0x1f; 
 163         uint32_t line 
= bitarray
[index
] << bit
; 
 164         while (bit 
<= 0x1f) { 
 165                 if (line 
& 0x80000000) return state
; 
 171         while (bitarray
[index
] == 0x00000000 && state 
< 1<<24) { 
 175         if (state 
>= 1<<24) return 1<<24; 
 177         return state 
+ __builtin_clz(bitarray
[index
]); 
 180         line 
= bitarray
[index
]; 
 181         while (bit 
<= 0x1f) { 
 182                 if (line 
& 0x80000000) return state
; 
 192 static inline uint32_t next_not_state(uint32_t *bitarray
, uint32_t state
) 
 194         if (++state 
== 1<<24) return 1<<24; 
 195         uint32_t index 
= state 
>> 5; 
 196         uint_fast8_t bit 
= state 
& 0x1f; 
 197         uint32_t line 
= bitarray
[index
] << bit
; 
 198         while (bit 
<= 0x1f) { 
 199                 if ((line 
& 0x80000000) == 0) return state
; 
 205         while (bitarray
[index
] == 0xffffffff && state 
< 1<<24) { 
 209         if (state 
>= 1<<24) return 1<<24; 
 211         return state 
+ __builtin_clz(~bitarray
[index
]); 
 214         line 
= bitarray
[index
]; 
 215         while (bit 
<= 0x1f) { 
 216                 if ((line 
& 0x80000000) == 0) return state
; 
 228 #define BITFLIP_2ND_BYTE                                0x0200 
 231 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 232 // bitflip property bitarrays 
 234 static uint32_t *bitflip_bitarrays
[2][0x400]; 
 235 static uint32_t count_bitflip_bitarrays
[2][0x400]; 
 237 static int compare_count_bitflip_bitarrays(const void *b1
, const void *b2
) 
 239         uint64_t count1 
= (uint64_t)count_bitflip_bitarrays
[ODD_STATE
][*(uint16_t *)b1
] * count_bitflip_bitarrays
[EVEN_STATE
][*(uint16_t *)b1
]; 
 240         uint64_t count2 
= (uint64_t)count_bitflip_bitarrays
[ODD_STATE
][*(uint16_t *)b2
] * count_bitflip_bitarrays
[EVEN_STATE
][*(uint16_t *)b2
]; 
 241         return (count1 
> count2
) - (count2 
> count1
); 
 245 static void init_bitflip_bitarrays(void) 
 247 #if defined (DEBUG_REDUCTION) 
 251         char state_files_path
[strlen(get_my_executable_directory()) + strlen(STATE_FILES_DIRECTORY
) + strlen(STATE_FILE_TEMPLATE
) + 1]; 
 252         char state_file_name
[strlen(STATE_FILE_TEMPLATE
)+1]; 
 254         for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
 255                 num_effective_bitflips
[odd_even
] = 0; 
 256                 for (uint16_t bitflip 
= 0x001; bitflip 
< 0x400; bitflip
++) { 
 257                         bitflip_bitarrays
[odd_even
][bitflip
] = NULL
; 
 258                         count_bitflip_bitarrays
[odd_even
][bitflip
] = 1<<24; 
 259                         sprintf(state_file_name
, STATE_FILE_TEMPLATE
, odd_even
, bitflip
); 
 260                         strcpy(state_files_path
, get_my_executable_directory()); 
 261                         strcat(state_files_path
, STATE_FILES_DIRECTORY
); 
 262                         strcat(state_files_path
, state_file_name
); 
 263                         FILE *statesfile 
= fopen(state_files_path
, "rb"); 
 264                         if (statesfile 
== NULL
) { 
 267                                 uint32_t *bitset 
= (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); 
 268                                 if (bitset 
== NULL
) { 
 269                                         printf("Out of memory error in init_bitflip_statelists(). Aborting...\n"); 
 273                                 size_t bytesread 
= fread(bitset
, 1, sizeof(uint32_t) * (1<<19), statesfile
); 
 274                                 if (bytesread 
!= sizeof(uint32_t) * (1<<19)) { 
 275                                         printf("File read error with %s. Aborting...", state_file_name
); 
 277                                         free_bitarray(bitset
); 
 281                                 uint32_t count 
= count_states(bitset
); 
 282                                 if ((float)count
/(1<<24) < IGNORE_BITFLIP_THRESHOLD
) { 
 283                                         effective_bitflip
[odd_even
][num_effective_bitflips
[odd_even
]++] = bitflip
; 
 284                                         bitflip_bitarrays
[odd_even
][bitflip
] = bitset
; 
 285                                         count_bitflip_bitarrays
[odd_even
][bitflip
] = count
; 
 286 #if defined (DEBUG_REDUCTION) 
 287                                         printf("(%03" PRIx16 
" %s:%5.1f%%) ", bitflip
, odd_even
?"odd ":"even", (float)count
/(1<<24)*100.0); 
 295                                         free_bitarray(bitset
); 
 299                 effective_bitflip
[odd_even
][num_effective_bitflips
[odd_even
]] = 0x400;  // EndOfList marker 
 304         num_all_effective_bitflips 
= 0; 
 305         num_1st_byte_effective_bitflips 
= 0; 
 306         while (i 
< num_effective_bitflips
[EVEN_STATE
] || j 
< num_effective_bitflips
[ODD_STATE
]) { 
 307                 if (effective_bitflip
[EVEN_STATE
][i
] < effective_bitflip
[ODD_STATE
][j
]) { 
 308                         all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[EVEN_STATE
][i
]; 
 310                 } else if (effective_bitflip
[EVEN_STATE
][i
] > effective_bitflip
[ODD_STATE
][j
]) { 
 311                         all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[ODD_STATE
][j
]; 
 314                         all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[EVEN_STATE
][i
]; 
 317                 if (!(all_effective_bitflip
[num_all_effective_bitflips
-1] & BITFLIP_2ND_BYTE
)) { 
 318                         num_1st_byte_effective_bitflips 
= num_all_effective_bitflips
; 
 321         qsort(all_effective_bitflip
, num_1st_byte_effective_bitflips
, sizeof(uint16_t), compare_count_bitflip_bitarrays
); 
 322 #if defined (DEBUG_REDUCTION) 
 323         printf("\n1st byte effective bitflips (%d): \n", num_1st_byte_effective_bitflips
); 
 324         for(uint16_t i 
= 0; i 
< num_1st_byte_effective_bitflips
; i
++) { 
 325                 printf("%03x ",  all_effective_bitflip
[i
]); 
 328         qsort(all_effective_bitflip
+num_1st_byte_effective_bitflips
, num_all_effective_bitflips 
- num_1st_byte_effective_bitflips
, sizeof(uint16_t), compare_count_bitflip_bitarrays
); 
 329 #if defined (DEBUG_REDUCTION) 
 330         printf("\n2nd byte effective bitflips (%d): \n", num_all_effective_bitflips 
- num_1st_byte_effective_bitflips
); 
 331         for(uint16_t i 
= num_1st_byte_effective_bitflips
; i 
< num_all_effective_bitflips
; i
++) { 
 332                 printf("%03x ",  all_effective_bitflip
[i
]); 
 335         char progress_text
[80]; 
 336         sprintf(progress_text
, "Using %d precalculated bitflip state tables", num_all_effective_bitflips
); 
 337         hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0); 
 341 static void     free_bitflip_bitarrays(void) 
 343         for (int16_t bitflip 
= 0x3ff; bitflip 
> 0x000; bitflip
--) { 
 344                 free_bitarray(bitflip_bitarrays
[ODD_STATE
][bitflip
]); 
 346         for (int16_t bitflip 
= 0x3ff; bitflip 
> 0x000; bitflip
--) { 
 347                 free_bitarray(bitflip_bitarrays
[EVEN_STATE
][bitflip
]); 
 352 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 353 // sum property bitarrays 
 355 static uint32_t *part_sum_a0_bitarrays
[2][NUM_PART_SUMS
]; 
 356 static uint32_t *part_sum_a8_bitarrays
[2][NUM_PART_SUMS
]; 
 357 static uint32_t *sum_a0_bitarrays
[2][NUM_SUMS
];  
 359 static uint16_t PartialSumProperty(uint32_t state
, odd_even_t odd_even
) 
 362         for (uint16_t j 
= 0; j 
< 16; j
++) { 
 364                 uint16_t part_sum 
= 0; 
 365                 if (odd_even 
== ODD_STATE
) { 
 366                         for (uint16_t i 
= 0; i 
< 5; i
++) { 
 367                                 part_sum 
^= filter(st
); 
 368                                 st 
= (st 
<< 1) | ((j 
>> (3-i
)) & 0x01) ; 
 370                         part_sum 
^= 1;          // XOR 1 cancelled out for the other 8 bits 
 372                         for (uint16_t i 
= 0; i 
< 4; i
++) { 
 373                                 st 
= (st 
<< 1) | ((j 
>> (3-i
)) & 0x01) ; 
 374                                 part_sum 
^= filter(st
); 
 383 static void init_part_sum_bitarrays(void) 
 385         for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
 386                 for (uint16_t part_sum_a0 
= 0; part_sum_a0 
< NUM_PART_SUMS
; part_sum_a0
++) { 
 387                         part_sum_a0_bitarrays
[odd_even
][part_sum_a0
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); 
 388                         if (part_sum_a0_bitarrays
[odd_even
][part_sum_a0
] == NULL
) { 
 389                                 printf("Out of memory error in init_part_suma0_statelists(). Aborting...\n"); 
 392                         clear_bitarray24(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
]); 
 395         for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
 396                 //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a0);                         
 397                 for (uint32_t state 
= 0; state 
< (1<<20); state
++) { 
 398                         uint16_t part_sum_a0 
= PartialSumProperty(state
, odd_even
) / 2; 
 399                         for (uint16_t low_bits 
= 0; low_bits 
< 1<<4; low_bits
++) { 
 400                                 set_bit24(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
], state
<<4 | low_bits
); 
 405         for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
 406                 for (uint16_t part_sum_a8 
= 0; part_sum_a8 
< NUM_PART_SUMS
; part_sum_a8
++) { 
 407                         part_sum_a8_bitarrays
[odd_even
][part_sum_a8
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); 
 408                         if (part_sum_a8_bitarrays
[odd_even
][part_sum_a8
] == NULL
) { 
 409                                 printf("Out of memory error in init_part_suma8_statelists(). Aborting...\n"); 
 412                         clear_bitarray24(part_sum_a8_bitarrays
[odd_even
][part_sum_a8
]); 
 415         for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
 416                 //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a8);  
 417                 for (uint32_t state 
= 0; state 
< (1<<20); state
++) { 
 418                         uint16_t part_sum_a8 
= PartialSumProperty(state
, odd_even
) / 2; 
 419                         for (uint16_t high_bits 
= 0; high_bits 
< 1<<4; high_bits
++) { 
 420                                 set_bit24(part_sum_a8_bitarrays
[odd_even
][part_sum_a8
], state 
| high_bits
<<20); 
 427 static void free_part_sum_bitarrays(void)  
 429         for (int16_t part_sum_a8 
= (NUM_PART_SUMS
-1); part_sum_a8 
>= 0; part_sum_a8
--) { 
 430                 free_bitarray(part_sum_a8_bitarrays
[ODD_STATE
][part_sum_a8
]); 
 432         for (int16_t part_sum_a8 
= (NUM_PART_SUMS
-1); part_sum_a8 
>= 0; part_sum_a8
--) { 
 433                 free_bitarray(part_sum_a8_bitarrays
[EVEN_STATE
][part_sum_a8
]); 
 435         for (int16_t part_sum_a0 
= (NUM_PART_SUMS
-1); part_sum_a0 
>= 0; part_sum_a0
--) { 
 436                 free_bitarray(part_sum_a0_bitarrays
[ODD_STATE
][part_sum_a0
]); 
 438         for (int16_t part_sum_a0 
= (NUM_PART_SUMS
-1); part_sum_a0 
>= 0; part_sum_a0
--) { 
 439                 free_bitarray(part_sum_a0_bitarrays
[EVEN_STATE
][part_sum_a0
]); 
 444 static void init_sum_bitarrays(void) 
 446         for (uint16_t sum_a0 
= 0; sum_a0 
< NUM_SUMS
; sum_a0
++) { 
 447                 for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
 448                         sum_a0_bitarrays
[odd_even
][sum_a0
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); 
 449                         if (sum_a0_bitarrays
[odd_even
][sum_a0
] == NULL
) { 
 450                                 printf("Out of memory error in init_sum_bitarrays(). Aborting...\n"); 
 453                         clear_bitarray24(sum_a0_bitarrays
[odd_even
][sum_a0
]); 
 456         for (uint8_t p 
= 0; p 
< NUM_PART_SUMS
; p
++) { 
 457                 for (uint8_t q 
= 0; q 
< NUM_PART_SUMS
; q
++) { 
 458                         uint16_t sum_a0 
= 2*p
*(16-2*q
) + (16-2*p
)*2*q
; 
 459                         uint16_t sum_a0_idx 
= 0; 
 460                         while (sums
[sum_a0_idx
] != sum_a0
) sum_a0_idx
++; 
 461                         bitarray_OR(sum_a0_bitarrays
[EVEN_STATE
][sum_a0_idx
], part_sum_a0_bitarrays
[EVEN_STATE
][q
]); 
 462                         bitarray_OR(sum_a0_bitarrays
[ODD_STATE
][sum_a0_idx
], part_sum_a0_bitarrays
[ODD_STATE
][p
]); 
 465         // for (uint16_t sum_a0 = 0; sum_a0 < NUM_SUMS; sum_a0++) { 
 466                 // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { 
 467                         // uint32_t count = count_states(sum_a0_bitarrays[odd_even][sum_a0]); 
 468                         // printf("sum_a0_bitarray[%s][%d] has %d states (%5.2f%%)\n", odd_even==EVEN_STATE?"even":"odd ", sums[sum_a0], count, (float)count/(1<<24)*100.0); 
 474 static void free_sum_bitarrays(void) 
 476         for (int8_t sum_a0 
= NUM_SUMS
-1; sum_a0 
>= 0; sum_a0
--) { 
 477                 free_bitarray(sum_a0_bitarrays
[ODD_STATE
][sum_a0
]); 
 478                 free_bitarray(sum_a0_bitarrays
[EVEN_STATE
][sum_a0
]); 
 483 #ifdef DEBUG_KEY_ELIMINATION 
 484 char failstr
[250] = ""; 
 487 static const float p_K0
[NUM_SUMS
] = {           // the probability that a random nonce has a Sum Property K  
 488         0.0290, 0.0083, 0.0006, 0.0339, 0.0048, 0.0934, 0.0119, 0.0489, 0.0602, 0.4180, 0.0602, 0.0489, 0.0119, 0.0934, 0.0048, 0.0339, 0.0006, 0.0083, 0.0290  
 491 static float my_p_K
[NUM_SUMS
];  
 493 static const float *p_K
; 
 495 static uint32_t cuid
; 
 496 static noncelist_t nonces
[256]; 
 497 static uint8_t best_first_bytes
[256]; 
 498 static uint64_t maximum_states 
= 0; 
 499 static uint8_t best_first_byte_smallest_bitarray 
= 0; 
 500 static uint16_t first_byte_Sum 
= 0; 
 501 static uint16_t first_byte_num 
= 0; 
 502 static bool write_stats 
= false; 
 503 static FILE *fstats 
= NULL
; 
 504 static uint32_t *all_bitflips_bitarray
[2]; 
 505 static uint32_t num_all_bitflips_bitarray
[2]; 
 506 static bool all_bitflips_bitarray_dirty
[2]; 
 507 static uint64_t last_sample_clock 
= 0; 
 508 static uint64_t sample_period 
= 0; 
 509 static uint64_t num_keys_tested 
= 0; 
 510 static statelist_t 
*candidates 
= NULL
; 
 513 static int add_nonce(uint32_t nonce_enc
, uint8_t par_enc
)  
 515         uint8_t first_byte 
= nonce_enc 
>> 24; 
 516         noncelistentry_t 
*p1 
= nonces
[first_byte
].first
; 
 517         noncelistentry_t 
*p2 
= NULL
; 
 519         if (p1 
== NULL
) {                       // first nonce with this 1st byte 
 521                 first_byte_Sum 
+= evenparity32((nonce_enc 
& 0xff000000) | (par_enc 
& 0x08)); 
 524         while (p1 
!= NULL 
&& (p1
->nonce_enc 
& 0x00ff0000) < (nonce_enc 
& 0x00ff0000)) { 
 529         if (p1 
== NULL
) {                                                                                                                                       // need to add at the end of the list 
 530                 if (p2 
== NULL
) {                       // list is empty yet. Add first entry. 
 531                         p2 
= nonces
[first_byte
].first 
= malloc(sizeof(noncelistentry_t
)); 
 532                 } else {                                        // add new entry at end of existing list. 
 533                         p2 
= p2
->next 
= malloc(sizeof(noncelistentry_t
)); 
 535         } else if ((p1
->nonce_enc 
& 0x00ff0000) != (nonce_enc 
& 0x00ff0000)) {                          // found distinct 2nd byte. Need to insert. 
 536                 if (p2 
== NULL
) {                       // need to insert at start of list 
 537                         p2 
= nonces
[first_byte
].first 
= malloc(sizeof(noncelistentry_t
)); 
 539                         p2 
= p2
->next 
= malloc(sizeof(noncelistentry_t
)); 
 541         } else {                                                                                                                                                        // we have seen this 2nd byte before. Nothing to add or insert.  
 545         // add or insert new data 
 547         p2
->nonce_enc 
= nonce_enc
; 
 548         p2
->par_enc 
= par_enc
; 
 550         nonces
[first_byte
].num
++; 
 551         nonces
[first_byte
].Sum 
+= evenparity32((nonce_enc 
& 0x00ff0000) | (par_enc 
& 0x04)); 
 552         nonces
[first_byte
].sum_a8_guess_dirty 
= true;   // indicates that we need to recalculate the Sum(a8) probability for this first byte 
 553         return (1);                             // new nonce added 
 557 static void init_nonce_memory(void) 
 559         for (uint16_t i 
= 0; i 
< 256; i
++) { 
 562                 nonces
[i
].first 
= NULL
; 
 563                 for (uint16_t j 
= 0; j 
< NUM_SUMS
; j
++) { 
 564                         nonces
[i
].sum_a8_guess
[j
].sum_a8_idx 
= j
; 
 565                         nonces
[i
].sum_a8_guess
[j
].prob 
= 0.0; 
 567                 nonces
[i
].sum_a8_guess_dirty 
= false; 
 568                 for (uint16_t bitflip 
= 0x000; bitflip 
< 0x400; bitflip
++) { 
 569                         nonces
[i
].BitFlips
[bitflip
] = 0; 
 571                 nonces
[i
].states_bitarray
[EVEN_STATE
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); 
 572                 if (nonces
[i
].states_bitarray
[EVEN_STATE
] == NULL
) { 
 573                         printf("Out of memory error in init_nonce_memory(). Aborting...\n"); 
 576                 set_bitarray24(nonces
[i
].states_bitarray
[EVEN_STATE
]); 
 577                 nonces
[i
].num_states_bitarray
[EVEN_STATE
] = 1 << 24; 
 578                 nonces
[i
].states_bitarray
[ODD_STATE
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); 
 579                 if (nonces
[i
].states_bitarray
[ODD_STATE
] == NULL
) { 
 580                         printf("Out of memory error in init_nonce_memory(). Aborting...\n"); 
 583                 set_bitarray24(nonces
[i
].states_bitarray
[ODD_STATE
]); 
 584                 nonces
[i
].num_states_bitarray
[ODD_STATE
] = 1 << 24; 
 585                 nonces
[i
].all_bitflips_dirty
[EVEN_STATE
] = false; 
 586                 nonces
[i
].all_bitflips_dirty
[ODD_STATE
] = false; 
 593 static void free_nonce_list(noncelistentry_t 
*p
) 
 598                 free_nonce_list(p
->next
); 
 604 static void free_nonces_memory(void) 
 606         for (uint16_t i 
= 0; i 
< 256; i
++) { 
 607                 free_nonce_list(nonces
[i
].first
); 
 609         for (int i 
= 255; i 
>= 0; i
--) { 
 610                 free_bitarray(nonces
[i
].states_bitarray
[ODD_STATE
]); 
 611                 free_bitarray(nonces
[i
].states_bitarray
[EVEN_STATE
]); 
 616 // static double p_hypergeometric_cache[257][NUM_SUMS][257]; 
 618 // #define CACHE_INVALID -1.0 
 619 // static void init_p_hypergeometric_cache(void) 
 621         // for (uint16_t n = 0; n <= 256; n++) { 
 622                 // for (uint16_t i_K = 0; i_K < NUM_SUMS; i_K++) { 
 623                         // for (uint16_t k = 0; k <= 256; k++) { 
 624                                 // p_hypergeometric_cache[n][i_K][k] = CACHE_INVALID; 
 631 static double p_hypergeometric(uint16_t i_K
, uint16_t n
, uint16_t k
)  
 633         // for efficient computation we are using the recursive definition 
 635         // P(X=k) = P(X=k-1) * -------------------- 
 638         //           (N-K)*(N-K-1)*...*(N-K-n+1) 
 639         // P(X=0) = ----------------------------- 
 640         //               N*(N-1)*...*(N-n+1) 
 643         uint16_t const N 
= 256; 
 644         uint16_t K 
= sums
[i_K
]; 
 646         // if (p_hypergeometric_cache[n][i_K][k] != CACHE_INVALID) { 
 647                 // return p_hypergeometric_cache[n][i_K][k]; 
 650         if (n
-k 
> N
-K 
|| k 
> K
) return 0.0;     // avoids log(x<=0) in calculation below 
 652                 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!) 
 653                 double log_result 
= 0.0; 
 654                 for (int16_t i 
= N
-K
; i 
>= N
-K
-n
+1; i
--) { 
 655                         log_result 
+= log(i
); 
 657                 for (int16_t i 
= N
; i 
>= N
-n
+1; i
--) { 
 658                         log_result 
-= log(i
); 
 660                 // p_hypergeometric_cache[n][i_K][k] = exp(log_result); 
 661                 return exp(log_result
); 
 663                 if (n
-k 
== N
-K
) {       // special case. The published recursion below would fail with a divide by zero exception 
 664                         double log_result 
= 0.0; 
 665                         for (int16_t i 
= k
+1; i 
<= n
; i
++) { 
 666                                 log_result 
+= log(i
); 
 668                         for (int16_t i 
= K
+1; i 
<= N
; i
++) { 
 669                                 log_result 
-= log(i
); 
 671                         // p_hypergeometric_cache[n][i_K][k] = exp(log_result); 
 672                         return exp(log_result
); 
 673                 } else {                        // recursion 
 674                         return (p_hypergeometric(i_K
, n
, k
-1) * (K
-k
+1) * (n
-k
+1) / (k 
* (N
-K
-n
+k
))); 
 680 static float sum_probability(uint16_t i_K
, uint16_t n
, uint16_t k
) 
 682         if (k 
> sums
[i_K
]) return 0.0; 
 684         double p_T_is_k_when_S_is_K 
= p_hypergeometric(i_K
, n
, k
); 
 685         double p_S_is_K 
= p_K
[i_K
]; 
 687         for (uint16_t i 
= 0; i 
< NUM_SUMS
; i
++) { 
 688                 p_T_is_k 
+= p_K
[i
] * p_hypergeometric(i
, n
, k
); 
 690         return(p_T_is_k_when_S_is_K 
* p_S_is_K 
/ p_T_is_k
); 
 694 static uint32_t part_sum_count
[2][NUM_PART_SUMS
][NUM_PART_SUMS
]; 
 696 static void init_allbitflips_array(void) 
 698         for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
 699                 uint32_t *bitset 
= all_bitflips_bitarray
[odd_even
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); 
 700                 if (bitset 
== NULL
) { 
 701                         printf("Out of memory in init_allbitflips_array(). Aborting..."); 
 704                 set_bitarray24(bitset
); 
 705                 all_bitflips_bitarray_dirty
[odd_even
] = false; 
 706                 num_all_bitflips_bitarray
[odd_even
] = 1<<24; 
 711 static void update_allbitflips_array(void) 
 713         if (hardnested_stage 
& CHECK_2ND_BYTES
) { 
 714                 for (uint16_t i 
= 0; i 
< 256; i
++) { 
 715                         for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
 716                                 if (nonces
[i
].all_bitflips_dirty
[odd_even
]) { 
 717                                         uint32_t old_count 
= num_all_bitflips_bitarray
[odd_even
]; 
 718                                         num_all_bitflips_bitarray
[odd_even
] = count_bitarray_low20_AND(all_bitflips_bitarray
[odd_even
], nonces
[i
].states_bitarray
[odd_even
]); 
 719                                         nonces
[i
].all_bitflips_dirty
[odd_even
] = false; 
 720                                         if (num_all_bitflips_bitarray
[odd_even
] != old_count
) { 
 721                                                 all_bitflips_bitarray_dirty
[odd_even
] = true; 
 730 static uint32_t estimated_num_states_part_sum_coarse(uint16_t part_sum_a0_idx
, uint16_t part_sum_a8_idx
, odd_even_t odd_even
)  
 732         return part_sum_count
[odd_even
][part_sum_a0_idx
][part_sum_a8_idx
]; 
 736 static uint32_t estimated_num_states_part_sum(uint8_t first_byte
, uint16_t part_sum_a0_idx
, uint16_t part_sum_a8_idx
, odd_even_t odd_even
)  
 738         if (odd_even 
== ODD_STATE
) { 
 739                 return count_bitarray_AND3(part_sum_a0_bitarrays
[odd_even
][part_sum_a0_idx
],  
 740                                            part_sum_a8_bitarrays
[odd_even
][part_sum_a8_idx
],  
 741                                                nonces
[first_byte
].states_bitarray
[odd_even
]); 
 743                 return count_bitarray_AND4(part_sum_a0_bitarrays
[odd_even
][part_sum_a0_idx
],  
 744                                            part_sum_a8_bitarrays
[odd_even
][part_sum_a8_idx
],  
 745                                                nonces
[first_byte
].states_bitarray
[odd_even
], 
 746                                            nonces
[first_byte
^0x80].states_bitarray
[odd_even
]); 
 749         // estimate reduction by all_bitflips_match() 
 751                 // float p_bitflip = (float)nonces[first_byte ^ 0x80].num_states_bitarray[ODD_STATE] / num_all_bitflips_bitarray[ODD_STATE]; 
 752                 // return (float)count * p_bitflip;             //(p_bitflip - 0.25*p_bitflip*p_bitflip); 
 759 static uint64_t estimated_num_states(uint8_t first_byte
, uint16_t sum_a0
, uint16_t sum_a8
) 
 761         uint64_t num_states 
= 0; 
 762         for (uint8_t p 
= 0; p 
< NUM_PART_SUMS
; p
++) { 
 763                 for (uint8_t q 
= 0; q 
< NUM_PART_SUMS
; q
++) { 
 764                         if (2*p
*(16-2*q
) + (16-2*p
)*2*q 
== sum_a0
) { 
 765                                 for (uint8_t r 
= 0; r 
< NUM_PART_SUMS
; r
++) { 
 766                                         for (uint8_t s 
= 0; s 
< NUM_PART_SUMS
; s
++) { 
 767                                                 if (2*r
*(16-2*s
) + (16-2*r
)*2*s 
== sum_a8
) { 
 768                                                         num_states 
+= (uint64_t)estimated_num_states_part_sum(first_byte
, p
, r
, ODD_STATE
)  
 769                                                                                 * estimated_num_states_part_sum(first_byte
, q
, s
, EVEN_STATE
); 
 780 static uint64_t estimated_num_states_coarse(uint16_t sum_a0
, uint16_t sum_a8
) 
 782         uint64_t num_states 
= 0; 
 783         for (uint8_t p 
= 0; p 
< NUM_PART_SUMS
; p
++) { 
 784                 for (uint8_t q 
= 0; q 
< NUM_PART_SUMS
; q
++) { 
 785                         if (2*p
*(16-2*q
) + (16-2*p
)*2*q 
== sum_a0
) { 
 786                                 for (uint8_t r 
= 0; r 
< NUM_PART_SUMS
; r
++) { 
 787                                         for (uint8_t s 
= 0; s 
< NUM_PART_SUMS
; s
++) { 
 788                                                 if (2*r
*(16-2*s
) + (16-2*r
)*2*s 
== sum_a8
) { 
 789                                                         num_states 
+= (uint64_t)estimated_num_states_part_sum_coarse(p
, r
, ODD_STATE
)  
 790                                                                                 * estimated_num_states_part_sum_coarse(q
, s
, EVEN_STATE
); 
 801 static void update_p_K(void) 
 803         if (hardnested_stage 
& CHECK_2ND_BYTES
) { 
 804                 uint64_t total_count 
= 0; 
 805                 uint16_t sum_a0 
= sums
[first_byte_Sum
]; 
 806                 for (uint8_t sum_a8_idx 
= 0; sum_a8_idx 
< NUM_SUMS
; sum_a8_idx
++) { 
 807                         uint16_t sum_a8 
= sums
[sum_a8_idx
]; 
 808                         total_count 
+= estimated_num_states_coarse(sum_a0
, sum_a8
); 
 810                 for (uint8_t sum_a8_idx 
= 0; sum_a8_idx 
< NUM_SUMS
; sum_a8_idx
++) { 
 811                         uint16_t sum_a8 
= sums
[sum_a8_idx
]; 
 812                         my_p_K
[sum_a8_idx
] = (float)estimated_num_states_coarse(sum_a0
, sum_a8
) / total_count
; 
 814                 // printf("my_p_K = ["); 
 815                 // for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) { 
 816                         // printf("%7.4f ", my_p_K[sum_a8_idx]); 
 823 static void update_sum_bitarrays(odd_even_t odd_even
) 
 825         if (all_bitflips_bitarray_dirty
[odd_even
]) { 
 826                 for (uint8_t part_sum 
= 0; part_sum 
< NUM_PART_SUMS
; part_sum
++) { 
 827                         bitarray_AND(part_sum_a0_bitarrays
[odd_even
][part_sum
], all_bitflips_bitarray
[odd_even
]); 
 828                         bitarray_AND(part_sum_a8_bitarrays
[odd_even
][part_sum
], all_bitflips_bitarray
[odd_even
]); 
 830                 for (uint16_t i 
= 0; i 
< 256; i
++) { 
 831                         nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], all_bitflips_bitarray
[odd_even
]); 
 833                 for (uint8_t part_sum_a0 
= 0; part_sum_a0 
< NUM_PART_SUMS
; part_sum_a0
++) { 
 834                         for (uint8_t part_sum_a8 
= 0; part_sum_a8 
< NUM_PART_SUMS
; part_sum_a8
++) { 
 835                                 part_sum_count
[odd_even
][part_sum_a0
][part_sum_a8
]  
 836                                     += count_bitarray_AND2(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
], part_sum_a8_bitarrays
[odd_even
][part_sum_a8
]); 
 839                 all_bitflips_bitarray_dirty
[odd_even
] = false; 
 844 static int compare_expected_num_brute_force(const void *b1
, const void *b2
) 
 846         uint8_t index1 
= *(uint8_t *)b1
; 
 847         uint8_t index2 
= *(uint8_t *)b2
; 
 848         float score1 
= nonces
[index1
].expected_num_brute_force
; 
 849         float score2 
= nonces
[index2
].expected_num_brute_force
; 
 850         return (score1 
> score2
) - (score1 
< score2
); 
 854 static int compare_sum_a8_guess(const void *b1
, const void *b2
) 
 856         float prob1 
= ((guess_sum_a8_t 
*)b1
)->prob
; 
 857         float prob2 
= ((guess_sum_a8_t 
*)b2
)->prob
; 
 858         return (prob1 
< prob2
) - (prob1 
> prob2
); 
 863 static float check_smallest_bitflip_bitarrays(void)  
 865         uint32_t num_odd
, num_even
; 
 866         uint64_t smallest 
= 1LL << 48; 
 867         // initialize best_first_bytes, do a rough estimation on remaining states 
 868         for (uint16_t i 
= 0; i 
< 256; i
++) { 
 869                 num_odd 
= nonces
[i
].num_states_bitarray
[ODD_STATE
]; 
 870                 num_even 
= nonces
[i
].num_states_bitarray
[EVEN_STATE
];   // * (float)nonces[i^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE]; 
 871                 if ((uint64_t)num_odd 
* num_even 
< smallest
) { 
 872                         smallest 
= (uint64_t)num_odd 
* num_even
; 
 873                         best_first_byte_smallest_bitarray 
= i
; 
 877 #if defined (DEBUG_REDUCTION) 
 878         num_odd 
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
]; 
 879         num_even 
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
];   // * (float)nonces[best_first_byte_smallest_bitarray^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE]; 
 880         printf("0x%02x: %8d * %8d = %12" PRIu64 
" (2^%1.1f)\n", best_first_byte_smallest_bitarray
, num_odd
, num_even
, (uint64_t)num_odd 
* num_even
, log((uint64_t)num_odd 
* num_even
)/log(2.0)); 
 882         return (float)smallest
/2.0; 
 886 static void update_expected_brute_force(uint8_t best_byte
) { 
 888         float total_prob 
= 0.0; 
 889         for (uint8_t i 
= 0; i 
< NUM_SUMS
; i
++) { 
 890                 total_prob 
+= nonces
[best_byte
].sum_a8_guess
[i
].prob
; 
 892         // linear adjust probabilities to result in total_prob = 1.0; 
 893         for (uint8_t i 
= 0; i 
< NUM_SUMS
; i
++) { 
 894                 nonces
[best_byte
].sum_a8_guess
[i
].prob 
/= total_prob
; 
 896         float prob_all_failed 
= 1.0; 
 897         nonces
[best_byte
].expected_num_brute_force 
= 0.0; 
 898         for (uint8_t i 
= 0; i 
< NUM_SUMS
; i
++) { 
 899                 nonces
[best_byte
].expected_num_brute_force 
+= nonces
[best_byte
].sum_a8_guess
[i
].prob 
* (float)nonces
[best_byte
].sum_a8_guess
[i
].num_states 
/ 2.0; 
 900                 prob_all_failed 
-= nonces
[best_byte
].sum_a8_guess
[i
].prob
; 
 901                 nonces
[best_byte
].expected_num_brute_force 
+= prob_all_failed 
* (float)nonces
[best_byte
].sum_a8_guess
[i
].num_states 
/ 2.0; 
 907 static float sort_best_first_bytes(void) 
 910         // initialize best_first_bytes, do a rough estimation on remaining states for each Sum_a8 property 
 911         // and the expected number of states to brute force 
 912         for (uint16_t i 
= 0; i 
< 256; i
++) { 
 913                 best_first_bytes
[i
] = i
; 
 914                 float prob_all_failed 
= 1.0; 
 915                 nonces
[i
].expected_num_brute_force 
= 0.0; 
 916                 for (uint8_t j 
= 0; j 
< NUM_SUMS
; j
++) { 
 917                         nonces
[i
].sum_a8_guess
[j
].num_states 
= estimated_num_states_coarse(sums
[first_byte_Sum
], sums
[nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
]); 
 918                         nonces
[i
].expected_num_brute_force 
+= nonces
[i
].sum_a8_guess
[j
].prob 
* (float)nonces
[i
].sum_a8_guess
[j
].num_states 
/ 2.0; 
 919                         prob_all_failed 
-= nonces
[i
].sum_a8_guess
[j
].prob
; 
 920                         nonces
[i
].expected_num_brute_force 
+= prob_all_failed 
* (float)nonces
[i
].sum_a8_guess
[j
].num_states 
/ 2.0; 
 924         // sort based on expected number of states to brute force 
 925         qsort(best_first_bytes
, 256, 1, compare_expected_num_brute_force
); 
 927         // printf("refine estimations: "); 
 928         #define NUM_REFINES     1 
 929         // refine scores for the best: 
 930         for (uint16_t i 
= 0; i 
< NUM_REFINES
; i
++) { 
 931                 // printf("%d...", i); 
 932                 uint16_t first_byte 
= best_first_bytes
[i
]; 
 933                 for (uint8_t j 
= 0; j 
< NUM_SUMS 
&& nonces
[first_byte
].sum_a8_guess
[j
].prob 
> 0.05; j
++) { 
 934                         nonces
[first_byte
].sum_a8_guess
[j
].num_states 
= estimated_num_states(first_byte
, sums
[first_byte_Sum
], sums
[nonces
[first_byte
].sum_a8_guess
[j
].sum_a8_idx
]); 
 936                 // while (nonces[first_byte].sum_a8_guess[0].num_states == 0 
 937                                 // || nonces[first_byte].sum_a8_guess[1].num_states == 0 
 938                                 // || nonces[first_byte].sum_a8_guess[2].num_states == 0) { 
 939                         // if (nonces[first_byte].sum_a8_guess[0].num_states == 0) { 
 940                                 // nonces[first_byte].sum_a8_guess[0].prob = 0.0; 
 941                                 // printf("(0x%02x,%d)", first_byte, 0); 
 943                         // if (nonces[first_byte].sum_a8_guess[1].num_states == 0) { 
 944                                 // nonces[first_byte].sum_a8_guess[1].prob = 0.0; 
 945                                 // printf("(0x%02x,%d)", first_byte, 1); 
 947                         // if (nonces[first_byte].sum_a8_guess[2].num_states == 0) { 
 948                                 // nonces[first_byte].sum_a8_guess[2].prob = 0.0; 
 949                                 // printf("(0x%02x,%d)", first_byte, 2); 
 952                         // qsort(nonces[first_byte].sum_a8_guess, NUM_SUMS, sizeof(guess_sum_a8_t), compare_sum_a8_guess); 
 953                         // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) { 
 954                                 // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]); 
 957                 // float fix_probs = 0.0; 
 958                 // for (uint8_t j = 0; j < NUM_SUMS; j++) { 
 959                         // fix_probs += nonces[first_byte].sum_a8_guess[j].prob; 
 961                 // for (uint8_t j = 0; j < NUM_SUMS; j++) { 
 962                         // nonces[first_byte].sum_a8_guess[j].prob /= fix_probs; 
 964                 // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) { 
 965                         // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]); 
 967                 float prob_all_failed 
= 1.0; 
 968                 nonces
[first_byte
].expected_num_brute_force 
= 0.0; 
 969                 for (uint8_t j 
= 0; j 
< NUM_SUMS
; j
++) { 
 970                         nonces
[first_byte
].expected_num_brute_force 
+= nonces
[first_byte
].sum_a8_guess
[j
].prob 
* (float)nonces
[first_byte
].sum_a8_guess
[j
].num_states 
/ 2.0; 
 971                         prob_all_failed 
-= nonces
[first_byte
].sum_a8_guess
[j
].prob
; 
 972                         nonces
[first_byte
].expected_num_brute_force 
+= prob_all_failed 
* (float)nonces
[first_byte
].sum_a8_guess
[j
].num_states 
/ 2.0; 
 976         // copy best byte to front: 
 977         float least_expected_brute_force 
= (1LL << 48); 
 978         uint8_t best_byte 
= 0; 
 979         for (uint16_t i 
= 0; i 
< 10; i
++) { 
 980                 uint16_t first_byte 
= best_first_bytes
[i
]; 
 981                 if (nonces
[first_byte
].expected_num_brute_force 
< least_expected_brute_force
) { 
 982                         least_expected_brute_force 
= nonces
[first_byte
].expected_num_brute_force
; 
 986         if (best_byte 
!= 0) { 
 987                 // printf("0x%02x <-> 0x%02x", best_first_bytes[0], best_first_bytes[best_byte]); 
 988                 uint8_t tmp 
= best_first_bytes
[0]; 
 989                 best_first_bytes
[0] = best_first_bytes
[best_byte
]; 
 990                 best_first_bytes
[best_byte
] = tmp
; 
 993         return nonces
[best_first_bytes
[0]].expected_num_brute_force
; 
 997 static float update_reduction_rate(float last
, bool init
)  
1000         static float queue
[QUEUE_LEN
]; 
1002         for (uint16_t i 
= 0; i 
< QUEUE_LEN
-1; i
++) { 
1004                         queue
[i
] = (float)(1LL << 48); 
1006                         queue
[i
] = queue
[i
+1]; 
1010                 queue
[QUEUE_LEN
-1] = (float)(1LL << 48); 
1012                 queue
[QUEUE_LEN
-1] = last
; 
1015         // linear regression 
1018         for (uint16_t i 
= 0; i 
< QUEUE_LEN
; i
++) { 
1027         for (uint16_t i 
= 0; i 
< QUEUE_LEN
; i
++) { 
1028                 dev_xy 
+= (i 
- avg_x
)*(queue
[i
] - avg_y
); 
1029                 dev_x2 
+= (i 
- avg_x
)*(i 
- avg_x
); 
1032         float reduction_rate 
= -1.0 * dev_xy 
/ dev_x2
;  // the negative slope of the linear regression 
1034 #if defined (DEBUG_REDUCTION)    
1035         printf("update_reduction_rate(%1.0f) = %1.0f per sample, brute_force_per_sample = %1.0f\n", last
, reduction_rate
, brute_force_per_second 
* (float)sample_period 
/ 1000.0); 
1037         return reduction_rate
; 
1041 static bool shrink_key_space(float *brute_forces
) 
1043 #if defined(DEBUG_REDUCTION) 
1044         printf("shrink_key_space() with stage = 0x%02x\n", hardnested_stage
); 
1046         float brute_forces1 
= check_smallest_bitflip_bitarrays(); 
1047         float brute_forces2 
= (float)(1LL << 47); 
1048         if (hardnested_stage 
& CHECK_2ND_BYTES
) { 
1049                 brute_forces2 
= sort_best_first_bytes(); 
1051         *brute_forces 
= MIN(brute_forces1
, brute_forces2
); 
1052         float reduction_rate 
= update_reduction_rate(*brute_forces
, false); 
1053         return ((hardnested_stage 
& CHECK_2ND_BYTES
)  
1054                 && reduction_rate 
>= 0.0 && reduction_rate 
< brute_force_per_second 
* sample_period 
/ 1000.0); 
1058 static void estimate_sum_a8(void)  
1060         if (first_byte_num 
== 256) { 
1061                 for (uint16_t i 
= 0; i 
< 256; i
++) { 
1062                         if (nonces
[i
].sum_a8_guess_dirty
) { 
1063                                 for (uint16_t j 
= 0; j 
< NUM_SUMS
; j
++ ) { 
1064                                         uint16_t sum_a8_idx 
= nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
; 
1065                                         nonces
[i
].sum_a8_guess
[j
].prob 
= sum_probability(sum_a8_idx
, nonces
[i
].num
, nonces
[i
].Sum
); 
1067                                 qsort(nonces
[i
].sum_a8_guess
, NUM_SUMS
, sizeof(guess_sum_a8_t
), compare_sum_a8_guess
); 
1068                                 nonces
[i
].sum_a8_guess_dirty 
= false; 
1075 static int read_nonce_file(void) 
1077         FILE *fnonces 
= NULL
; 
1081         uint8_t read_buf
[9]; 
1082         uint32_t nt_enc1
, nt_enc2
; 
1085         num_acquired_nonces 
= 0; 
1086         if ((fnonces 
= fopen("nonces.bin","rb")) == NULL
) {  
1087                 PrintAndLog("Could not open file nonces.bin"); 
1091         hardnested_print_progress(0, "Reading nonces from file nonces.bin...", (float)(1LL<<47), 0); 
1092         bytes_read 
= fread(read_buf
, 1, 6, fnonces
); 
1093         if (bytes_read 
!= 6) { 
1094                 PrintAndLog("File reading error."); 
1098         cuid 
= bytes_to_num(read_buf
, 4); 
1099         trgBlockNo 
= bytes_to_num(read_buf
+4, 1); 
1100         trgKeyType 
= bytes_to_num(read_buf
+5, 1); 
1102         bytes_read 
= fread(read_buf
, 1, 9, fnonces
); 
1103         while (bytes_read 
== 9) { 
1104                 nt_enc1 
= bytes_to_num(read_buf
, 4); 
1105                 nt_enc2 
= bytes_to_num(read_buf
+4, 4); 
1106                 par_enc 
= bytes_to_num(read_buf
+8, 1); 
1107                 add_nonce(nt_enc1
, par_enc 
>> 4); 
1108                 add_nonce(nt_enc2
, par_enc 
& 0x0f); 
1109                 num_acquired_nonces 
+= 2; 
1110                 bytes_read 
= fread(read_buf
, 1, 9, fnonces
); 
1114         char progress_string
[80]; 
1115         sprintf(progress_string
, "Read %d nonces from file. cuid=%08x", num_acquired_nonces
, cuid
);  
1116         hardnested_print_progress(num_acquired_nonces
, progress_string
, (float)(1LL<<47), 0); 
1117         sprintf(progress_string
, "Target Block=%d, Keytype=%c", trgBlockNo
, trgKeyType
==0?'A':'B'); 
1118         hardnested_print_progress(num_acquired_nonces
, progress_string
, (float)(1LL<<47), 0); 
1120         for (uint16_t i 
= 0; i 
< NUM_SUMS
; i
++) { 
1121                 if (first_byte_Sum 
== sums
[i
]) { 
1131 noncelistentry_t 
*SearchFor2ndByte(uint8_t b1
, uint8_t b2
) 
1133         noncelistentry_t 
*p 
= nonces
[b1
].first
; 
1135                 if ((p
->nonce_enc 
>> 16 & 0xff) == b2
) { 
1144 static bool timeout(void) 
1146         return (msclock() > last_sample_clock 
+ sample_period
); 
1150 static void *check_for_BitFlipProperties_thread(void *args
) 
1152         uint8_t first_byte 
= ((uint8_t *)args
)[0]; 
1153         uint8_t last_byte 
= ((uint8_t *)args
)[1]; 
1154         uint8_t time_budget 
= ((uint8_t *)args
)[2]; 
1156         if (hardnested_stage 
& CHECK_1ST_BYTES
) { 
1157                 // for (uint16_t bitflip = 0x001; bitflip < 0x200; bitflip++) { 
1158                 for (uint16_t bitflip_idx 
= 0; bitflip_idx 
< num_1st_byte_effective_bitflips
; bitflip_idx
++) { 
1159                         uint16_t bitflip 
= all_effective_bitflip
[bitflip_idx
]; 
1160                         if (time_budget 
& timeout()) { 
1161 #if defined (DEBUG_REDUCTION)                            
1162                                 printf("break at bitflip_idx %d...", bitflip_idx
); 
1166                         for (uint16_t i 
= first_byte
; i 
<= last_byte
; i
++) { 
1167                                 if (nonces
[i
].BitFlips
[bitflip
] == 0 && nonces
[i
].BitFlips
[bitflip 
^ 0x100] == 0 
1168                                         && nonces
[i
].first 
!= NULL 
&& nonces
[i
^(bitflip
&0xff)].first 
!= NULL
) { 
1169                                         uint8_t parity1 
= (nonces
[i
].first
->par_enc
) >> 3;                                      // parity of first byte 
1170                                         uint8_t parity2 
= (nonces
[i
^(bitflip
&0xff)].first
->par_enc
) >> 3;       // parity of nonce with bits flipped 
1171                                         if ((parity1 
== parity2 
&& !(bitflip 
& 0x100))                  // bitflip 
1172                                                 || (parity1 
!= parity2 
&& (bitflip 
& 0x100))) {         // not bitflip 
1173                                                 nonces
[i
].BitFlips
[bitflip
] = 1; 
1174                                                 for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
1175                                                         if (bitflip_bitarrays
[odd_even
][bitflip
] != NULL
) { 
1176                                                                 uint32_t old_count 
= nonces
[i
].num_states_bitarray
[odd_even
]; 
1177                                                                 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], bitflip_bitarrays
[odd_even
][bitflip
]); 
1178                                                                 if (nonces
[i
].num_states_bitarray
[odd_even
] != old_count
) { 
1179                                                                         nonces
[i
].all_bitflips_dirty
[odd_even
] = true; 
1181                                                                 // printf("bitflip: %d old: %d, new: %d ", bitflip, old_count, nonces[i].num_states_bitarray[odd_even]); 
1187                         ((uint8_t *)args
)[1] = num_1st_byte_effective_bitflips 
- bitflip_idx 
- 1;  // bitflips still to go in stage 1 
1191         ((uint8_t *)args
)[1] = 0;  // stage 1 definitely completed 
1193         if (hardnested_stage 
& CHECK_2ND_BYTES
) { 
1194                 for (uint16_t bitflip_idx 
= num_1st_byte_effective_bitflips
; bitflip_idx 
< num_all_effective_bitflips
; bitflip_idx
++) { 
1195                         uint16_t bitflip 
= all_effective_bitflip
[bitflip_idx
]; 
1196                         if (time_budget 
& timeout()) { 
1197 #if defined (DEBUG_REDUCTION) 
1198                                 printf("break at bitflip_idx %d...", bitflip_idx
); 
1202                         for (uint16_t i 
= first_byte
; i 
<= last_byte
; i
++) { 
1203                                 // Check for Bit Flip Property of 2nd bytes 
1204                                 if (nonces
[i
].BitFlips
[bitflip
] == 0) { 
1205                                         for (uint16_t j 
= 0; j 
< 256; j
++) {    // for each 2nd Byte 
1206                                                 noncelistentry_t 
*byte1 
= SearchFor2ndByte(i
, j
); 
1207                                                 noncelistentry_t 
*byte2 
= SearchFor2ndByte(i
, j
^(bitflip
&0xff)); 
1208                                                 if (byte1 
!= NULL 
&& byte2 
!= NULL
) { 
1209                                                         uint8_t parity1 
= byte1
->par_enc 
>> 2 & 0x01;   // parity of 2nd byte 
1210                                                         uint8_t parity2 
= byte2
->par_enc 
>> 2 & 0x01;   // parity of 2nd byte with bits flipped 
1211                                                         if ((parity1 
== parity2 
&& !(bitflip
&0x100))            // bitflip 
1212                                                                 || (parity1 
!= parity2 
&& (bitflip
&0x100))) { // not bitflip 
1213                                                                 nonces
[i
].BitFlips
[bitflip
] = 1; 
1214                                                                 for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
1215                                                                         if (bitflip_bitarrays
[odd_even
][bitflip
] != NULL
) { 
1216                                                                                 uint32_t old_count 
= nonces
[i
].num_states_bitarray
[odd_even
]; 
1217                                                                                 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], bitflip_bitarrays
[odd_even
][bitflip
]); 
1218                                                                                 if (nonces
[i
].num_states_bitarray
[odd_even
] != old_count
) { 
1219                                                                                         nonces
[i
].all_bitflips_dirty
[odd_even
] = true; 
1228                                 // printf("states_bitarray[0][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[EVEN_STATE])); 
1229                                 // printf("states_bitarray[1][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[ODD_STATE])); 
1238 static void check_for_BitFlipProperties(bool time_budget
) 
1240         // create and run worker threads 
1241         pthread_t thread_id
[NUM_CHECK_BITFLIPS_THREADS
]; 
1243         uint8_t args
[NUM_CHECK_BITFLIPS_THREADS
][3]; 
1244         uint16_t bytes_per_thread 
= (256 + (NUM_CHECK_BITFLIPS_THREADS
/2)) / NUM_CHECK_BITFLIPS_THREADS
;  
1245         for (uint8_t i 
= 0; i 
< NUM_CHECK_BITFLIPS_THREADS
; i
++) { 
1246                 args
[i
][0] = i 
* bytes_per_thread
; 
1247                 args
[i
][1] = MIN(args
[i
][0]+bytes_per_thread
-1, 255); 
1248                 args
[i
][2] = time_budget
; 
1250         args
[NUM_CHECK_BITFLIPS_THREADS
-1][1] = MAX(args
[NUM_CHECK_BITFLIPS_THREADS
-1][1], 255); 
1253         for (uint8_t i 
= 0; i 
< NUM_CHECK_BITFLIPS_THREADS
; i
++) { 
1254                 pthread_create(&thread_id
[i
], NULL
, check_for_BitFlipProperties_thread
, args
[i
]); 
1257         // wait for threads to terminate: 
1258         for (uint8_t i 
= 0; i 
< NUM_CHECK_BITFLIPS_THREADS
; i
++) { 
1259                 pthread_join(thread_id
[i
], NULL
); 
1262         if (hardnested_stage 
& CHECK_2ND_BYTES
) { 
1263                 hardnested_stage 
&= ~CHECK_1ST_BYTES
;   // we are done with 1st stage, except... 
1264                 for (uint16_t i 
= 0; i 
< NUM_CHECK_BITFLIPS_THREADS
; i
++) { 
1265                         if (args
[i
][1] != 0) { 
1266                                 hardnested_stage 
|= CHECK_1ST_BYTES
;  // ... when any of the threads didn't complete in time 
1271 #if defined (DEBUG_REDUCTION)    
1272         if (hardnested_stage 
& CHECK_1ST_BYTES
) printf("stage 1 not completed yet\n"); 
1277 static void update_nonce_data(bool time_budget
) 
1279         check_for_BitFlipProperties(time_budget
); 
1280         update_allbitflips_array(); 
1281         update_sum_bitarrays(EVEN_STATE
); 
1282         update_sum_bitarrays(ODD_STATE
); 
1288 static void apply_sum_a0(void) 
1290         uint32_t old_count 
= num_all_bitflips_bitarray
[EVEN_STATE
]; 
1291         num_all_bitflips_bitarray
[EVEN_STATE
] = count_bitarray_AND(all_bitflips_bitarray
[EVEN_STATE
], sum_a0_bitarrays
[EVEN_STATE
][first_byte_Sum
]); 
1292         if (num_all_bitflips_bitarray
[EVEN_STATE
] != old_count
) { 
1293                 all_bitflips_bitarray_dirty
[EVEN_STATE
] = true; 
1295         old_count 
= num_all_bitflips_bitarray
[ODD_STATE
]; 
1296         num_all_bitflips_bitarray
[ODD_STATE
] = count_bitarray_AND(all_bitflips_bitarray
[ODD_STATE
], sum_a0_bitarrays
[ODD_STATE
][first_byte_Sum
]); 
1297         if (num_all_bitflips_bitarray
[ODD_STATE
] != old_count
) { 
1298                 all_bitflips_bitarray_dirty
[ODD_STATE
] = true; 
1303 static void simulate_MFplus_RNG(uint32_t test_cuid
, uint64_t test_key
, uint32_t *nt_enc
, uint8_t *par_enc
) 
1305         struct Crypto1State sim_cs 
= {0, 0}; 
1307         // init cryptostate with key: 
1308         for(int8_t i 
= 47; i 
> 0; i 
-= 2) { 
1309                 sim_cs
.odd  
= sim_cs
.odd  
<< 1 | BIT(test_key
, (i 
- 1) ^ 7); 
1310                 sim_cs
.even 
= sim_cs
.even 
<< 1 | BIT(test_key
, i 
^ 7); 
1314         uint32_t nt 
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff); 
1315         for (int8_t byte_pos 
= 3; byte_pos 
>= 0; byte_pos
--) { 
1316                 uint8_t nt_byte_dec 
= (nt 
>> (8*byte_pos
)) & 0xff; 
1317                 uint8_t nt_byte_enc 
= crypto1_byte(&sim_cs
, nt_byte_dec 
^ (test_cuid 
>> (8*byte_pos
)), false) ^ nt_byte_dec
;    // encode the nonce byte 
1318                 *nt_enc 
= (*nt_enc 
<< 8) | nt_byte_enc
;          
1319                 uint8_t ks_par 
= filter(sim_cs
.odd
);                                                                                    // the keystream bit to encode/decode the parity bit 
1320                 uint8_t nt_byte_par_enc 
= ks_par 
^ oddparity8(nt_byte_dec
);                                             // determine the nt byte's parity and encode it 
1321                 *par_enc 
= (*par_enc 
<< 1) | nt_byte_par_enc
; 
1327 static void simulate_acquire_nonces() 
1329         time_t time1 
= time(NULL
); 
1330         last_sample_clock 
= 0; 
1331         sample_period 
= 1000;           // for simulation 
1332         hardnested_stage 
= CHECK_1ST_BYTES
; 
1333         bool acquisition_completed 
= false; 
1334         uint32_t total_num_nonces 
= 0; 
1336         bool reported_suma8 
= false; 
1338         cuid 
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff); 
1339         if (known_target_key 
== -1) { 
1340                 known_target_key 
= ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff); 
1343         char progress_text
[80]; 
1344         sprintf(progress_text
, "Simulating key %012" PRIx64 
", cuid %08" PRIx32 
" ...", known_target_key
, cuid
); 
1345         hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0); 
1346         fprintf(fstats
, "%012" PRIx64 
";%" PRIx32 
";", known_target_key
, cuid
); 
1348         num_acquired_nonces 
= 0; 
1351                 uint32_t nt_enc 
= 0; 
1352                 uint8_t par_enc 
= 0; 
1354                 for (uint16_t i 
= 0; i 
< 113; i
++) { 
1355                         simulate_MFplus_RNG(cuid
, known_target_key
, &nt_enc
, &par_enc
); 
1356                         num_acquired_nonces 
+= add_nonce(nt_enc
, par_enc
); 
1360                 last_sample_clock 
= msclock(); 
1362                 if (first_byte_num 
== 256 ) { 
1363                         if (hardnested_stage 
== CHECK_1ST_BYTES
) { 
1364                                 for (uint16_t i 
= 0; i 
< NUM_SUMS
; i
++) { 
1365                                         if (first_byte_Sum 
== sums
[i
]) { 
1370                                 hardnested_stage 
|= CHECK_2ND_BYTES
; 
1373                         update_nonce_data(true); 
1374                         acquisition_completed 
= shrink_key_space(&brute_force
); 
1375                         if (!reported_suma8
) { 
1376                                 char progress_string
[80]; 
1377                                 sprintf(progress_string
, "Apply Sum property. Sum(a0) = %d", sums
[first_byte_Sum
]); 
1378                                 hardnested_print_progress(num_acquired_nonces
, progress_string
, brute_force
, 0); 
1379                                 reported_suma8 
= true; 
1381                                 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0); 
1384                         update_nonce_data(true); 
1385                         acquisition_completed 
= shrink_key_space(&brute_force
); 
1386                         hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0); 
1388         } while (!acquisition_completed
); 
1390         time_t end_time 
= time(NULL
); 
1391         // PrintAndLog("Acquired a total of %" PRId32" nonces in %1.0f seconds (%1.0f nonces/minute)",  
1392                 // num_acquired_nonces,  
1393                 // difftime(end_time, time1),  
1394                 // difftime(end_time, time1)!=0.0?(float)total_num_nonces*60.0/difftime(end_time, time1):INFINITY 
1397         fprintf(fstats
, "%" PRId32 
";%" PRId32 
";%1.0f;", total_num_nonces
, num_acquired_nonces
, difftime(end_time
,time1
)); 
1402 static int acquire_nonces(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, bool nonce_file_write
, bool slow
) 
1404         last_sample_clock 
= msclock(); 
1405         sample_period 
= 2000;   // initial rough estimate. Will be refined. 
1406         bool initialize 
= true; 
1407         bool field_off 
= false; 
1408         hardnested_stage 
= CHECK_1ST_BYTES
; 
1409         bool acquisition_completed 
= false; 
1411         uint8_t write_buf
[9]; 
1412         uint32_t total_num_nonces 
= 0; 
1414         bool reported_suma8 
= false; 
1415         FILE *fnonces 
= NULL
; 
1418         num_acquired_nonces 
= 0; 
1420         clearCommandBuffer(); 
1424                 flags 
|= initialize 
? 0x0001 : 0; 
1425                 flags 
|= slow 
? 0x0002 : 0; 
1426                 flags 
|= field_off 
? 0x0004 : 0; 
1427                 UsbCommand c 
= {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
, {blockNo 
+ keyType 
* 0x100, trgBlockNo 
+ trgKeyType 
* 0x100, flags
}}; 
1428                 memcpy(c
.d
.asBytes
, key
, 6); 
1432                 if (field_off
) break; 
1435                         if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) return 1; 
1437                         if (resp
.arg
[0]) return resp
.arg
[0];  // error during nested_hard 
1440                         // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);  
1441                         if (nonce_file_write 
&& fnonces 
== NULL
) { 
1442                                 if ((fnonces 
= fopen("nonces.bin","wb")) == NULL
) {  
1443                                         PrintAndLog("Could not create file nonces.bin"); 
1446                                 hardnested_print_progress(0, "Writing acquired nonces to binary file nonces.bin", (float)(1LL<<47), 0); 
1447                                 num_to_bytes(cuid
, 4, write_buf
); 
1448                                 fwrite(write_buf
, 1, 4, fnonces
); 
1449                                 fwrite(&trgBlockNo
, 1, 1, fnonces
); 
1450                                 fwrite(&trgKeyType
, 1, 1, fnonces
); 
1455                         uint32_t nt_enc1
, nt_enc2
; 
1457                         uint16_t num_sampled_nonces 
= resp
.arg
[2]; 
1458                         uint8_t *bufp 
= resp
.d
.asBytes
; 
1459                         for (uint16_t i 
= 0; i 
< num_sampled_nonces
; i
+=2) { 
1460                                 nt_enc1 
= bytes_to_num(bufp
, 4); 
1461                                 nt_enc2 
= bytes_to_num(bufp
+4, 4); 
1462                                 par_enc 
= bytes_to_num(bufp
+8, 1); 
1464                                 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4); 
1465                                 num_acquired_nonces 
+= add_nonce(nt_enc1
, par_enc 
>> 4); 
1466                                 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f); 
1467                                 num_acquired_nonces 
+= add_nonce(nt_enc2
, par_enc 
& 0x0f); 
1469                                 if (nonce_file_write
) { 
1470                                         fwrite(bufp
, 1, 9, fnonces
); 
1474                         total_num_nonces 
+= num_sampled_nonces
; 
1476                         if (first_byte_num 
== 256 ) { 
1477                                 if (hardnested_stage 
== CHECK_1ST_BYTES
) { 
1478                                         for (uint16_t i 
= 0; i 
< NUM_SUMS
; i
++) { 
1479                                                 if (first_byte_Sum 
== sums
[i
]) { 
1484                                         hardnested_stage 
|= CHECK_2ND_BYTES
; 
1487                                 update_nonce_data(true); 
1488                                 acquisition_completed 
= shrink_key_space(&brute_force
); 
1489                                 if (!reported_suma8
) { 
1490                                         char progress_string
[80]; 
1491                                         sprintf(progress_string
, "Apply Sum property. Sum(a0) = %d", sums
[first_byte_Sum
]); 
1492                                         hardnested_print_progress(num_acquired_nonces
, progress_string
, brute_force
, 0); 
1493                                         reported_suma8 
= true; 
1495                                         hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0); 
1498                                 update_nonce_data(true); 
1499                                 acquisition_completed 
= shrink_key_space(&brute_force
); 
1500                                 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0); 
1504                 if (acquisition_completed
) { 
1505                         field_off 
= true;       // switch off field with next SendCommand and then finish 
1509                         if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) { 
1510                                 if (nonce_file_write
) { 
1516                                 if (nonce_file_write
) { 
1519                                 return resp
.arg
[0];  // error during nested_hard 
1525                 if (msclock() - last_sample_clock 
< sample_period
) { 
1526                         sample_period 
= msclock() - last_sample_clock
; 
1528                 last_sample_clock 
= msclock(); 
1530         } while (!acquisition_completed 
|| field_off
); 
1532         if (nonce_file_write
) { 
1536         // PrintAndLog("Sampled a total of %d nonces in %d seconds (%0.0f nonces/minute)",  
1537                 // total_num_nonces,  
1538                 // time(NULL)-time1,  
1539                 // (float)total_num_nonces*60.0/(time(NULL)-time1)); 
1545 static inline bool invariant_holds(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
) 
1547         uint_fast8_t j_1_bit_mask 
= 0x01 << (bit
-1); 
1548         uint_fast8_t bit_diff 
= byte_diff 
& j_1_bit_mask
;                                                                               // difference of (j-1)th bit 
1549         uint_fast8_t filter_diff 
= filter(state1 
>> (4-state_bit
)) ^ filter(state2 
>> (4-state_bit
));   // difference in filter function 
1550         uint_fast8_t mask_y12_y13 
= 0xc0 >> state_bit
; 
1551         uint_fast8_t state_bits_diff 
= (state1 
^ state2
) & mask_y12_y13
;                                                // difference in state bits 12 and 13 
1552         uint_fast8_t all_diff 
= evenparity8(bit_diff 
^ state_bits_diff 
^ filter_diff
);                  // use parity function to XOR all bits 
1557 static inline bool invalid_state(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
) 
1559         uint_fast8_t j_bit_mask 
= 0x01 << bit
; 
1560         uint_fast8_t bit_diff 
= byte_diff 
& j_bit_mask
;                                                                                 // difference of jth bit 
1561         uint_fast8_t mask_y13_y16 
= 0x48 >> state_bit
; 
1562         uint_fast8_t state_bits_diff 
= (state1 
^ state2
) & mask_y13_y16
;                                                // difference in state bits 13 and 16 
1563         uint_fast8_t all_diff 
= evenparity8(bit_diff 
^ state_bits_diff
);                                                // use parity function to XOR all bits 
1568 static inline bool remaining_bits_match(uint_fast8_t num_common_bits
, uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, odd_even_t odd_even
) 
1572                 switch (num_common_bits
) { 
1573                         case 0: if (!invariant_holds(byte_diff
, state1
, state2
, 1, 0)) return true; 
1574                         case 1: if (invalid_state(byte_diff
, state1
, state2
, 1, 0)) return false; 
1575                         case 2: if (!invariant_holds(byte_diff
, state1
, state2
, 3, 1)) return true; 
1576                         case 3: if (invalid_state(byte_diff
, state1
, state2
, 3, 1)) return false; 
1577                         case 4: if (!invariant_holds(byte_diff
, state1
, state2
, 5, 2)) return true; 
1578                         case 5: if (invalid_state(byte_diff
, state1
, state2
, 5, 2)) return false; 
1579                         case 6: if (!invariant_holds(byte_diff
, state1
, state2
, 7, 3)) return true; 
1580                         case 7: if (invalid_state(byte_diff
, state1
, state2
, 7, 3)) return false; 
1584                 switch (num_common_bits
) {       
1585                         case 0: if (invalid_state(byte_diff
, state1
, state2
, 0, 0)) return false; 
1586                         case 1: if (!invariant_holds(byte_diff
, state1
, state2
, 2, 1)) return true; 
1587                         case 2: if (invalid_state(byte_diff
, state1
, state2
, 2, 1)) return false; 
1588                         case 3: if (!invariant_holds(byte_diff
, state1
, state2
, 4, 2)) return true; 
1589                         case 4: if (invalid_state(byte_diff
, state1
, state2
, 4, 2)) return false; 
1590                         case 5: if (!invariant_holds(byte_diff
, state1
, state2
, 6, 3)) return true; 
1591                         case 6: if (invalid_state(byte_diff
, state1
, state2
, 6, 3)) return false; 
1595         return true;                                    // valid state 
1599 static pthread_mutex_t statelist_cache_mutex
; 
1600 static pthread_mutex_t book_of_work_mutex
; 
1609 static struct sl_cache_entry 
{ 
1612         work_status_t cache_status
; 
1613         } sl_cache
[NUM_PART_SUMS
][NUM_PART_SUMS
][2]; 
1616 static void init_statelist_cache(void) 
1618         pthread_mutex_lock(&statelist_cache_mutex
); 
1619         for (uint16_t i 
= 0; i 
< NUM_PART_SUMS
; i
++) { 
1620                 for (uint16_t j 
= 0; j 
< NUM_PART_SUMS
; j
++) { 
1621                         for (uint16_t k 
= 0; k 
< 2; k
++) { 
1622                                 sl_cache
[i
][j
][k
].sl 
= NULL
; 
1623                                 sl_cache
[i
][j
][k
].len 
= 0; 
1624                                 sl_cache
[i
][j
][k
].cache_status 
= TO_BE_DONE
; 
1628         pthread_mutex_unlock(&statelist_cache_mutex
); 
1632 static void free_statelist_cache(void) 
1634         pthread_mutex_lock(&statelist_cache_mutex
); 
1635         for (uint16_t i 
= 0; i 
< NUM_PART_SUMS
; i
++) { 
1636                 for (uint16_t j 
= 0; j 
< NUM_PART_SUMS
; j
++) { 
1637                         for (uint16_t k 
= 0; k 
< 2; k
++) { 
1638                                 free(sl_cache
[i
][j
][k
].sl
); 
1642         pthread_mutex_unlock(&statelist_cache_mutex
); 
1646 #ifdef DEBUG_KEY_ELIMINATION 
1647 static inline bool bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
, bool quiet
) 
1649 static inline bool bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
) 
1652         uint32_t *bitset 
= nonces
[byte
].states_bitarray
[odd_even
]; 
1653         bool possible 
= test_bit24(bitset
, state
); 
1655 #ifdef DEBUG_KEY_ELIMINATION 
1656                 if (!quiet 
&& known_target_key 
!= -1 && state 
== test_state
[odd_even
]) { 
1657                         printf("Initial state lists: %s test state eliminated by bitflip property.\n", odd_even
==EVEN_STATE
?"even":"odd"); 
1658                         sprintf(failstr
, "Initial %s Byte Bitflip property", odd_even
==EVEN_STATE
?"even":"odd"); 
1668 static uint_fast8_t reverse(uint_fast8_t byte
) 
1670         uint_fast8_t rev_byte 
= 0; 
1672         for (uint8_t i 
= 0; i 
< 8; i
++) { 
1674                 rev_byte 
|= (byte 
>> i
) & 0x01; 
1681 static bool all_bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
)  
1683         uint32_t masks
[2][8] = {{0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe, 0x00ffffff}, 
1684                                                         {0x00fffff0, 0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe} }; 
1686         for (uint16_t i 
= 1; i 
< 256; i
++) { 
1687                 uint_fast8_t bytes_diff 
= reverse(i
);   // start with most common bits 
1688                 uint_fast8_t byte2 
= byte 
^ bytes_diff
; 
1689                 uint_fast8_t num_common 
= trailing_zeros(bytes_diff
); 
1690                 uint32_t mask 
= masks
[odd_even
][num_common
]; 
1691                 bool found_match 
= false; 
1692                 for (uint8_t remaining_bits 
= 0; remaining_bits 
<= (~mask 
& 0xff); remaining_bits
++) { 
1693                         if (remaining_bits_match(num_common
, bytes_diff
, state
, (state 
& mask
) | remaining_bits
, odd_even
)) { 
1694 #ifdef DEBUG_KEY_ELIMINATION 
1695                                 if (bitflips_match(byte2
, (state 
& mask
) | remaining_bits
, odd_even
, true)) { 
1697                                 if (bitflips_match(byte2
, (state 
& mask
) | remaining_bits
, odd_even
)) { 
1705 #ifdef DEBUG_KEY_ELIMINATION                             
1706                         if (known_target_key 
!= -1 && state 
== test_state
[odd_even
]) { 
1707                                 printf("all_bitflips_match() 1st Byte: %s test state (0x%06x): Eliminated. Bytes = %02x, %02x, Common Bits = %d\n",  
1708                                         odd_even
==ODD_STATE
?"odd":"even", 
1709                                         test_state
[odd_even
], 
1710                                         byte
, byte2
, num_common
); 
1711                                 if (failstr
[0] == '\0') { 
1712                                         sprintf(failstr
, "Other 1st Byte %s, all_bitflips_match(), no match", odd_even
?"odd":"even"); 
1724 static void     bitarray_to_list(uint8_t byte
, uint32_t *bitarray
, uint32_t *state_list
, uint32_t *len
, odd_even_t odd_even
) 
1726         uint32_t *p 
= state_list
; 
1727         for (uint32_t state 
= next_state(bitarray
, -1L); state 
< (1<<24); state 
= next_state(bitarray
, state
)) { 
1728                 if (all_bitflips_match(byte
, state
, odd_even
)) { 
1732         // add End Of List marker 
1734         *len 
= p 
- state_list
; 
1738 static void add_cached_states(statelist_t 
*candidates
, uint16_t part_sum_a0
, uint16_t part_sum_a8
, odd_even_t odd_even
) 
1740         candidates
->states
[odd_even
] = sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].sl
; 
1741         candidates
->len
[odd_even
] = sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].len
; 
1746 static void add_matching_states(statelist_t 
*candidates
, uint8_t part_sum_a0
, uint8_t part_sum_a8
, odd_even_t odd_even
) 
1748         uint32_t worstcase_size 
= 1<<20; 
1749         candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
); 
1750         if (candidates
->states
[odd_even
] == NULL
) { 
1751                 PrintAndLog("Out of memory error in add_matching_states() - statelist.\n"); 
1754         uint32_t *candidates_bitarray 
= (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19)); 
1755         if (candidates_bitarray 
== NULL
) { 
1756                 PrintAndLog("Out of memory error in add_matching_states() - bitarray.\n"); 
1757                 free(candidates
->states
[odd_even
]); 
1761         uint32_t *bitarray_a0 
= part_sum_a0_bitarrays
[odd_even
][part_sum_a0
/2]; 
1762         uint32_t *bitarray_a8 
= part_sum_a8_bitarrays
[odd_even
][part_sum_a8
/2]; 
1763         uint32_t *bitarray_bitflips 
= nonces
[best_first_bytes
[0]].states_bitarray
[odd_even
]; 
1765         // for (uint32_t i = 0; i < (1<<19); i++) { 
1766                 // candidates_bitarray[i] = bitarray_a0[i] & bitarray_a8[i] & bitarray_bitflips[i]; 
1768         bitarray_AND4(candidates_bitarray
, bitarray_a0
, bitarray_a8
, bitarray_bitflips
); 
1770         bitarray_to_list(best_first_bytes
[0], candidates_bitarray
, candidates
->states
[odd_even
], &(candidates
->len
[odd_even
]), odd_even
); 
1771         if (candidates
->len
[odd_even
] == 0) { 
1772                 free(candidates
->states
[odd_even
]); 
1773                 candidates
->states
[odd_even
] = NULL
; 
1774         } else if (candidates
->len
[odd_even
] + 1 < worstcase_size
) { 
1775                 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1)); 
1777         free_bitarray(candidates_bitarray
); 
1780         pthread_mutex_lock(&statelist_cache_mutex
); 
1781         sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].sl 
= candidates
->states
[odd_even
]; 
1782         sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].len 
= candidates
->len
[odd_even
]; 
1783         sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].cache_status 
= COMPLETED
; 
1784         pthread_mutex_unlock(&statelist_cache_mutex
); 
1790 static statelist_t 
*add_more_candidates(void) 
1792         statelist_t 
*new_candidates 
= candidates
; 
1793         if (candidates 
== NULL
) { 
1794                 candidates 
= (statelist_t 
*)malloc(sizeof(statelist_t
)); 
1795                 new_candidates 
= candidates
; 
1797                 new_candidates 
= candidates
; 
1798                 while (new_candidates
->next 
!= NULL
) { 
1799                         new_candidates 
= new_candidates
->next
; 
1801                 new_candidates 
= new_candidates
->next 
= (statelist_t 
*)malloc(sizeof(statelist_t
)); 
1803         new_candidates
->next 
= NULL
; 
1804         new_candidates
->len
[ODD_STATE
] = 0; 
1805         new_candidates
->len
[EVEN_STATE
] = 0; 
1806         new_candidates
->states
[ODD_STATE
] = NULL
; 
1807         new_candidates
->states
[EVEN_STATE
] = NULL
; 
1808         return new_candidates
; 
1812 static void add_bitflip_candidates(uint8_t byte
) 
1814         statelist_t 
*candidates 
= add_more_candidates(); 
1816         for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
1817                 uint32_t worstcase_size 
= nonces
[byte
].num_states_bitarray
[odd_even
] + 1; 
1818                 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
); 
1819                 if (candidates
->states
[odd_even
] == NULL
) { 
1820                         PrintAndLog("Out of memory error in add_bitflip_candidates().\n"); 
1824                 bitarray_to_list(byte
, nonces
[byte
].states_bitarray
[odd_even
], candidates
->states
[odd_even
], &(candidates
->len
[odd_even
]), odd_even
); 
1826                 if (candidates
->len
[odd_even
] + 1 < worstcase_size
) { 
1827                         candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1)); 
1834 static bool TestIfKeyExists(uint64_t key
) 
1836         struct Crypto1State 
*pcs
; 
1837         pcs 
= crypto1_create(key
); 
1838         crypto1_byte(pcs
, (cuid 
>> 24) ^ best_first_bytes
[0], true); 
1840         uint32_t state_odd 
= pcs
->odd 
& 0x00ffffff; 
1841         uint32_t state_even 
= pcs
->even 
& 0x00ffffff; 
1844         for (statelist_t 
*p 
= candidates
; p 
!= NULL
; p 
= p
->next
) { 
1845                 bool found_odd 
= false; 
1846                 bool found_even 
= false; 
1847                 uint32_t *p_odd 
= p
->states
[ODD_STATE
]; 
1848                 uint32_t *p_even 
= p
->states
[EVEN_STATE
]; 
1849                 if (p_odd 
!= NULL 
&& p_even 
!= NULL
) { 
1850                         while (*p_odd 
!= 0xffffffff) { 
1851                                 if ((*p_odd 
& 0x00ffffff) == state_odd
) { 
1857                         while (*p_even 
!= 0xffffffff) { 
1858                                 if ((*p_even 
& 0x00ffffff) == state_even
) { 
1863                         count 
+= (uint64_t)(p_odd 
- p
->states
[ODD_STATE
]) * (uint64_t)(p_even 
- p
->states
[EVEN_STATE
]); 
1865                 if (found_odd 
&& found_even
) { 
1866                         num_keys_tested 
+= count
; 
1867                         hardnested_print_progress(num_acquired_nonces
, "(Test: Key found)", 0.0, 0); 
1868                         crypto1_destroy(pcs
); 
1873         num_keys_tested 
+= count
; 
1874         hardnested_print_progress(num_acquired_nonces
, "(Test: Key NOT found)", 0.0, 0); 
1876         crypto1_destroy(pcs
); 
1881 static work_status_t book_of_work
[NUM_PART_SUMS
][NUM_PART_SUMS
][NUM_PART_SUMS
][NUM_PART_SUMS
]; 
1884 static void init_book_of_work(void) 
1886         for (uint8_t p 
= 0; p 
< NUM_PART_SUMS
; p
++) { 
1887                 for (uint8_t q 
= 0; q 
< NUM_PART_SUMS
; q
++) { 
1888                         for (uint8_t r 
= 0; r 
< NUM_PART_SUMS
; r
++) { 
1889                                 for (uint8_t s 
= 0; s 
< NUM_PART_SUMS
; s
++) { 
1890                                         book_of_work
[p
][q
][r
][s
] = TO_BE_DONE
; 
1898 static void *generate_candidates_worker_thread(void *args
) 
1900         uint16_t *sum_args 
= (uint16_t *)args
; 
1901         uint16_t sum_a0 
= sums
[sum_args
[0]]; 
1902         uint16_t sum_a8 
= sums
[sum_args
[1]]; 
1903         // uint16_t my_thread_number = sums[2]; 
1905         bool there_might_be_more_work 
= true; 
1907                 there_might_be_more_work 
= false; 
1908                 for (uint8_t p 
= 0; p 
< NUM_PART_SUMS
; p
++) { 
1909                         for (uint8_t q 
= 0; q 
< NUM_PART_SUMS
; q
++) { 
1910                                 if (2*p
*(16-2*q
) + (16-2*p
)*2*q 
== sum_a0
) { 
1911                                         // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",  
1912                                                         // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]); 
1913                                         for (uint8_t r 
= 0; r 
< NUM_PART_SUMS
; r
++) { 
1914                                                 for (uint8_t s 
= 0; s 
< NUM_PART_SUMS
; s
++) { 
1915                                                         if (2*r
*(16-2*s
) + (16-2*r
)*2*s 
== sum_a8
) { 
1916                                                                 pthread_mutex_lock(&book_of_work_mutex
); 
1917                                                                 if (book_of_work
[p
][q
][r
][s
] != TO_BE_DONE
) {  // this has been done or is currently been done by another thread. Look for some other work. 
1918                                                                         pthread_mutex_unlock(&book_of_work_mutex
); 
1922                                                                 pthread_mutex_lock(&statelist_cache_mutex
); 
1923                                                                 if (sl_cache
[p
][r
][ODD_STATE
].cache_status 
== WORK_IN_PROGRESS
 
1924                                                                         || sl_cache
[q
][s
][EVEN_STATE
].cache_status 
== WORK_IN_PROGRESS
) { // defer until not blocked by another thread. 
1925                                                                         pthread_mutex_unlock(&statelist_cache_mutex
); 
1926                                                                         pthread_mutex_unlock(&book_of_work_mutex
); 
1927                                                                         there_might_be_more_work 
= true; 
1931                                                                 // we finally can do some work. 
1932                                                                 book_of_work
[p
][q
][r
][s
] = WORK_IN_PROGRESS
; 
1933                                                                 statelist_t 
*current_candidates 
= add_more_candidates(); 
1935                                                                 // Check for cached results and add them first 
1936                                                                 bool odd_completed 
= false; 
1937                                                                 if (sl_cache
[p
][r
][ODD_STATE
].cache_status 
== COMPLETED
) { 
1938                                                                         add_cached_states(current_candidates
, 2*p
, 2*r
, ODD_STATE
); 
1939                                                                         odd_completed 
= true; 
1941                                                                 bool even_completed 
= false; 
1942                                                                 if (sl_cache
[q
][s
][EVEN_STATE
].cache_status 
== COMPLETED
) { 
1943                                                                         add_cached_states(current_candidates
, 2*q
, 2*s
, EVEN_STATE
); 
1944                                                                         even_completed 
= true; 
1947                                                                 bool work_required 
= true; 
1949                                                                 // if there had been two cached results, there is no more work to do 
1950                                                                 if (even_completed 
&& odd_completed
) { 
1951                                                                         work_required 
= false; 
1954                                                                 // if there had been one cached empty result, there is no need to calculate the other part: 
1955                                                                 if (work_required
) { 
1956                                                                         if (even_completed 
&& !current_candidates
->len
[EVEN_STATE
]) { 
1957                                                                                 current_candidates
->len
[ODD_STATE
] = 0; 
1958                                                                                 current_candidates
->states
[ODD_STATE
] = NULL
; 
1959                                                                                 work_required 
= false; 
1961                                                                         if (odd_completed 
&& !current_candidates
->len
[ODD_STATE
]) { 
1962                                                                                 current_candidates
->len
[EVEN_STATE
] = 0; 
1963                                                                                 current_candidates
->states
[EVEN_STATE
] = NULL
; 
1964                                                                                 work_required 
= false; 
1968                                                                 if (!work_required
) { 
1969                                                                         pthread_mutex_unlock(&statelist_cache_mutex
); 
1970                                                                         pthread_mutex_unlock(&book_of_work_mutex
); 
1972                                                                         // we really need to calculate something 
1973                                                                         if (even_completed
) { // we had one cache hit with non-zero even states 
1974                                                                                 // printf("Thread #%u: start working on  odd states p=%2d, r=%2d...\n", my_thread_number, p, r); 
1975                                                                                 sl_cache
[p
][r
][ODD_STATE
].cache_status 
= WORK_IN_PROGRESS
; 
1976                                                                                 pthread_mutex_unlock(&statelist_cache_mutex
); 
1977                                                                                 pthread_mutex_unlock(&book_of_work_mutex
); 
1978                                                                                 add_matching_states(current_candidates
, 2*p
, 2*r
, ODD_STATE
); 
1979                                                                                 work_required 
= false; 
1980                                                                         } else if (odd_completed
) { // we had one cache hit with non-zero odd_states 
1981                                                                                 // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s); 
1982                                                                                 sl_cache
[q
][s
][EVEN_STATE
].cache_status 
= WORK_IN_PROGRESS
; 
1983                                                                                 pthread_mutex_unlock(&statelist_cache_mutex
); 
1984                                                                                 pthread_mutex_unlock(&book_of_work_mutex
); 
1985                                                                                 add_matching_states(current_candidates
, 2*q
, 2*s
, EVEN_STATE
); 
1986                                                                                 work_required 
= false; 
1990                                                                 if (work_required
) { // we had no cached result. Need to calculate both odd and even 
1991                                                                         sl_cache
[p
][r
][ODD_STATE
].cache_status 
= WORK_IN_PROGRESS
; 
1992                                                                         sl_cache
[q
][s
][EVEN_STATE
].cache_status 
= WORK_IN_PROGRESS
; 
1993                                                                         pthread_mutex_unlock(&statelist_cache_mutex
); 
1994                                                                         pthread_mutex_unlock(&book_of_work_mutex
); 
1996                                                                         add_matching_states(current_candidates
, 2*p
, 2*r
, ODD_STATE
); 
1997                                                                         if(current_candidates
->len
[ODD_STATE
]) { 
1998                                                                                 // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s); 
1999                                                                                 add_matching_states(current_candidates
, 2*q
, 2*s
, EVEN_STATE
); 
2000                                                                         } else { // no need to calculate even states yet 
2001                                                                                 pthread_mutex_lock(&statelist_cache_mutex
); 
2002                                                                                 sl_cache
[q
][s
][EVEN_STATE
].cache_status 
= TO_BE_DONE
; 
2003                                                                                 pthread_mutex_unlock(&statelist_cache_mutex
); 
2004                                                                                 current_candidates
->len
[EVEN_STATE
] = 0; 
2005                                                                                 current_candidates
->states
[EVEN_STATE
] = NULL
; 
2009                                                                 // update book of work 
2010                                                                 pthread_mutex_lock(&book_of_work_mutex
); 
2011                                                                 book_of_work
[p
][q
][r
][s
] = COMPLETED
; 
2012                                                                 pthread_mutex_unlock(&book_of_work_mutex
); 
2014                                                                 // if ((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE]) { 
2015                                                                         // printf("Candidates for p=%2u, q=%2u, r=%2u, s=%2u: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n", 
2016                                                                                 // 2*p, 2*q, 2*r, 2*s, current_candidates->len[ODD_STATE], current_candidates->len[EVEN_STATE], 
2017                                                                                 // (uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE], 
2018                                                                                 // log((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE])/log(2)); 
2019                                                                         // uint32_t estimated_odd = estimated_num_states_part_sum(best_first_bytes[0], p, r, ODD_STATE); 
2020                                                                         // uint32_t estimated_even= estimated_num_states_part_sum(best_first_bytes[0], q, s, EVEN_STATE); 
2021                                                                         // uint64_t estimated_total = (uint64_t)estimated_odd * estimated_even;  
2022                                                                         // printf("Estimated: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n", estimated_odd, estimated_even, estimated_total, log(estimated_total) / log(2)); 
2023                                                                         // if (estimated_odd < current_candidates->len[ODD_STATE] || estimated_even < current_candidates->len[EVEN_STATE]) { 
2024                                                                                 // printf("############################################################################ERROR! ESTIMATED < REAL !!!\n");  
2034         } while (there_might_be_more_work
); 
2040 static void generate_candidates(uint8_t sum_a0_idx
, uint8_t sum_a8_idx
) 
2042         // printf("Generating crypto1 state candidates... \n"); 
2044         // estimate maximum candidate states 
2045         // maximum_states = 0; 
2046         // for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) { 
2047                 // for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) { 
2048                         // if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) { 
2049                                 // maximum_states += (uint64_t)count_states(part_sum_a0_bitarrays[EVEN_STATE][sum_even/2])  
2050                                                                 // * count_states(part_sum_a0_bitarrays[ODD_STATE][sum_odd/2]); 
2054         // printf("Number of possible keys with Sum(a0) = %d: %" PRIu64 " (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0)); 
2056         init_statelist_cache(); 
2057         init_book_of_work(); 
2059         // create mutexes for accessing the statelist cache and our "book of work" 
2060         pthread_mutex_init(&statelist_cache_mutex
, NULL
); 
2061         pthread_mutex_init(&book_of_work_mutex
, NULL
); 
2063         // create and run worker threads 
2064         pthread_t thread_id
[NUM_REDUCTION_WORKING_THREADS
]; 
2066         uint16_t sums
[NUM_REDUCTION_WORKING_THREADS
][3]; 
2067         for (uint16_t i 
= 0; i 
< NUM_REDUCTION_WORKING_THREADS
; i
++) { 
2068                 sums
[i
][0] = sum_a0_idx
; 
2069                 sums
[i
][1] = sum_a8_idx
; 
2071                 pthread_create(thread_id 
+ i
, NULL
, generate_candidates_worker_thread
, sums
[i
]); 
2074         // wait for threads to terminate: 
2075         for (uint16_t i 
= 0; i 
< NUM_REDUCTION_WORKING_THREADS
; i
++) { 
2076                 pthread_join(thread_id
[i
], NULL
); 
2080         pthread_mutex_destroy(&statelist_cache_mutex
); 
2083         for (statelist_t 
*sl 
= candidates
; sl 
!= NULL
; sl 
= sl
->next
) { 
2084                 maximum_states 
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
]; 
2087         for (uint8_t i 
= 0; i 
< NUM_SUMS
; i
++) { 
2088                 if (nonces
[best_first_bytes
[0]].sum_a8_guess
[i
].sum_a8_idx 
== sum_a8_idx
) { 
2089                         nonces
[best_first_bytes
[0]].sum_a8_guess
[i
].num_states 
= maximum_states
; 
2093         update_expected_brute_force(best_first_bytes
[0]); 
2095         hardnested_print_progress(num_acquired_nonces
, "Apply Sum(a8) and all bytes bitflip properties", nonces
[best_first_bytes
[0]].expected_num_brute_force
, 0); 
2099 static void     free_candidates_memory(statelist_t 
*sl
) 
2104                 free_candidates_memory(sl
->next
); 
2110 static void pre_XOR_nonces(void) 
2112         // prepare acquired nonces for faster brute forcing.  
2114         // XOR the cryptoUID and its parity 
2115         for (uint16_t i 
= 0; i 
< 256; i
++) { 
2116                 noncelistentry_t 
*test_nonce 
= nonces
[i
].first
; 
2117                 while (test_nonce 
!= NULL
) { 
2118                         test_nonce
->nonce_enc 
^= cuid
; 
2119                         test_nonce
->par_enc 
^= oddparity8(cuid 
>>  0 & 0xff) << 0; 
2120                         test_nonce
->par_enc 
^= oddparity8(cuid 
>>  8 & 0xff) << 1; 
2121                         test_nonce
->par_enc 
^= oddparity8(cuid 
>> 16 & 0xff) << 2; 
2122                         test_nonce
->par_enc 
^= oddparity8(cuid 
>> 24 & 0xff) << 3; 
2123                         test_nonce 
= test_nonce
->next
; 
2129 static bool brute_force(void) 
2131         if (known_target_key 
!= -1) { 
2132                 TestIfKeyExists(known_target_key
); 
2134         return brute_force_bs(NULL
, candidates
, cuid
, num_acquired_nonces
, maximum_states
, nonces
, best_first_bytes
); 
2138 static uint16_t SumProperty(struct Crypto1State 
*s
) 
2140         uint16_t sum_odd 
= PartialSumProperty(s
->odd
, ODD_STATE
); 
2141         uint16_t sum_even 
= PartialSumProperty(s
->even
, EVEN_STATE
); 
2142         return (sum_odd
*(16-sum_even
) + (16-sum_odd
)*sum_even
); 
2149 /*      #define NUM_STATISTICS 100000 
2150         uint32_t statistics_odd[17]; 
2151         uint64_t statistics[257]; 
2152         uint32_t statistics_even[17]; 
2153         struct Crypto1State cs; 
2154         uint64_t time1 = msclock(); 
2156         for (uint16_t i = 0; i < 257; i++) { 
2159         for (uint16_t i = 0; i < 17; i++) { 
2160                 statistics_odd[i] = 0; 
2161                 statistics_even[i] = 0; 
2164         for (uint64_t i = 0; i < NUM_STATISTICS; i++) { 
2165                 cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff); 
2166                 cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff); 
2167                 uint16_t sum_property = SumProperty(&cs); 
2168                 statistics[sum_property] += 1; 
2169                 sum_property = PartialSumProperty(cs.even, EVEN_STATE); 
2170                 statistics_even[sum_property]++; 
2171                 sum_property = PartialSumProperty(cs.odd, ODD_STATE); 
2172                 statistics_odd[sum_property]++; 
2173                 if (i%(NUM_STATISTICS/100) == 0) printf(".");  
2176         printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0); 
2177         for (uint16_t i = 0; i < 257; i++) { 
2178                 if (statistics[i] != 0) { 
2179                         printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS); 
2182         for (uint16_t i = 0; i <= 16; i++) { 
2183                 if (statistics_odd[i] != 0) { 
2184                         printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS); 
2187         for (uint16_t i = 0; i <= 16; i++) { 
2188                 if (statistics_odd[i] != 0) { 
2189                         printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS); 
2194 /*      #define NUM_STATISTICS 100000000LL 
2195         uint64_t statistics_a0[257]; 
2196         uint64_t statistics_a8[257][257]; 
2197         struct Crypto1State cs; 
2198         uint64_t time1 = msclock(); 
2200         for (uint16_t i = 0; i < 257; i++) { 
2201                 statistics_a0[i] = 0; 
2202                 for (uint16_t j = 0; j < 257; j++) { 
2203                         statistics_a8[i][j] = 0; 
2207         for (uint64_t i = 0; i < NUM_STATISTICS; i++) { 
2208                 cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff); 
2209                 cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff); 
2210                 uint16_t sum_property_a0 = SumProperty(&cs); 
2211                 statistics_a0[sum_property_a0]++; 
2212                 uint8_t first_byte = rand() & 0xff; 
2213                 crypto1_byte(&cs, first_byte, true); 
2214                 uint16_t sum_property_a8 = SumProperty(&cs); 
2215                 statistics_a8[sum_property_a0][sum_property_a8] += 1; 
2216                 if (i%(NUM_STATISTICS/100) == 0) printf(".");  
2219         printf("\nTests: Probability Distribution of a8 depending on a0:\n"); 
2221         for (uint16_t i = 0; i < NUM_SUMS; i++) { 
2222                 printf("%7d ", sums[i]); 
2224         printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n"); 
2226         for (uint16_t i = 0; i < NUM_SUMS; i++) { 
2227                 printf("%7.5f ", (float)statistics_a0[sums[i]] / NUM_STATISTICS); 
2230         for (uint16_t i = 0; i < NUM_SUMS; i++) { 
2231                 printf("%3d   ", sums[i]); 
2232                 for (uint16_t j = 0; j < NUM_SUMS; j++) { 
2233                         printf("%7.5f ", (float)statistics_a8[sums[i]][sums[j]] / statistics_a0[sums[i]]); 
2237         printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0); 
2240 /*      #define NUM_STATISTICS 100000LL 
2241         uint64_t statistics_a8[257]; 
2242         struct Crypto1State cs; 
2243         uint64_t time1 = msclock(); 
2245         printf("\nTests: Probability Distribution of a8 depending on first byte:\n"); 
2247         for (uint16_t i = 0; i < NUM_SUMS; i++) { 
2248                 printf("%7d ", sums[i]); 
2250         printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n"); 
2251         for (uint16_t first_byte = 0; first_byte < 256; first_byte++) { 
2252                 for (uint16_t i = 0; i < 257; i++) { 
2253                         statistics_a8[i] = 0; 
2255                 for (uint64_t i = 0; i < NUM_STATISTICS; i++) { 
2256                         cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff); 
2257                         cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff); 
2258                         crypto1_byte(&cs, first_byte, true); 
2259                         uint16_t sum_property_a8 = SumProperty(&cs); 
2260                         statistics_a8[sum_property_a8] += 1; 
2262                 printf("%03x   ", first_byte); 
2263                 for (uint16_t j = 0; j < NUM_SUMS; j++) { 
2264                         printf("%7.5f ", (float)statistics_a8[sums[j]] / NUM_STATISTICS); 
2268         printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0); 
2271 /*      printf("Tests: Sum Probabilities based on Partial Sums\n"); 
2272         for (uint16_t i = 0; i < 257; i++) { 
2275         uint64_t num_states = 0; 
2276         for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) { 
2277                 for (uint16_t evensum = 0; evensum <= 16; evensum += 2) { 
2278                         uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum; 
2279                         statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8); 
2280                         num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8); 
2283         printf("num_states = %"lld", expected %"lld"\n", num_states, (1LL<<48)); 
2284         for (uint16_t i = 0; i < 257; i++) { 
2285                 if (statistics[i] != 0) { 
2286                         printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states); 
2291 /*      struct Crypto1State *pcs; 
2292         pcs = crypto1_create(0xffffffffffff); 
2293         printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n",  
2294                 SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); 
2295         crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); 
2296         printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n", 
2297                 best_first_bytes[0], 
2299                 pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); 
2300         //test_state_odd = pcs->odd & 0x00ffffff; 
2301         //test_state_even = pcs->even & 0x00ffffff; 
2302         crypto1_destroy(pcs); 
2303         pcs = crypto1_create(0xa0a1a2a3a4a5); 
2304         printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n", 
2305                 SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); 
2306         crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); 
2307         printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n", 
2308                 best_first_bytes[0], 
2310                 pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); 
2311         //test_state_odd = pcs->odd & 0x00ffffff; 
2312         //test_state_even = pcs->even & 0x00ffffff; 
2313         crypto1_destroy(pcs); 
2314         pcs = crypto1_create(0xa6b9aa97b955); 
2315         printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n", 
2316                 SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); 
2317         crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); 
2318         printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n", 
2319                 best_first_bytes[0], 
2321                 pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); 
2322         test_state_odd = pcs->odd & 0x00ffffff; 
2323         test_state_even = pcs->even & 0x00ffffff; 
2324         crypto1_destroy(pcs); 
2327         // printf("\nTests: Sorted First Bytes:\n"); 
2328         // for (uint16_t i = 0; i < 20; i++) { 
2329                 // uint8_t best_byte = best_first_bytes[i]; 
2330                 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%\n",  
2331                 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8) = ", i, best_byte, nonces[best_byte].num, nonces[best_byte].Sum); 
2332                 // for (uint16_t j = 0; j < 3; j++) { 
2333                         // printf("%3d @ %4.1f%%, ", sums[nonces[best_byte].sum_a8_guess[j].sum_a8_idx], nonces[best_byte].sum_a8_guess[j].prob * 100.0); 
2335                 // printf(" %12" PRIu64 ", %12" PRIu64 ", %12" PRIu64 ", exp_brute: %12.0f\n",  
2336                         // nonces[best_byte].sum_a8_guess[0].num_states,  
2337                         // nonces[best_byte].sum_a8_guess[1].num_states, 
2338                         // nonces[best_byte].sum_a8_guess[2].num_states, 
2339                         // nonces[best_byte].expected_num_brute_force); 
2342         // printf("\nTests: Actual BitFlipProperties of best byte:\n"); 
2343         // printf("[%02x]:", best_first_bytes[0]); 
2344         // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) { 
2345                 // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx]; 
2346                 // if (nonces[best_first_bytes[0]].BitFlips[bitflip_prop]) { 
2347                         // printf(" %03" PRIx16 , bitflip_prop); 
2352         // printf("\nTests2: Actual BitFlipProperties of first_byte_smallest_bitarray:\n"); 
2353         // printf("[%02x]:", best_first_byte_smallest_bitarray); 
2354         // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) { 
2355                 // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx]; 
2356                 // if (nonces[best_first_byte_smallest_bitarray].BitFlips[bitflip_prop]) { 
2357                         // printf(" %03" PRIx16 , bitflip_prop); 
2362         if (known_target_key 
!= -1) { 
2363                 for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
2364                         uint32_t *bitset 
= nonces
[best_first_bytes
[0]].states_bitarray
[odd_even
]; 
2365                         if (!test_bit24(bitset
, test_state
[odd_even
])) { 
2366                                 printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n",  
2367                                         odd_even
==EVEN_STATE
?"even":"odd ",  
2368                                         best_first_bytes
[0]); 
2373         if (known_target_key 
!= -1) { 
2374                 for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
2375                         uint32_t *bitset 
= all_bitflips_bitarray
[odd_even
]; 
2376                         if (!test_bit24(bitset
, test_state
[odd_even
])) { 
2377                                 printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n",  
2378                                         odd_even
==EVEN_STATE
?"even":"odd "); 
2383         // if (known_target_key != -1) { 
2384                 // int16_t p = -1, q = -1, r = -1, s = -1; 
2386                 // printf("\nTests: known target key is member of these partial sum_a0 bitsets:\n"); 
2387                 // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { 
2388                         // printf("%s", odd_even==EVEN_STATE?"even:":"odd: "); 
2389                         // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) { 
2390                                 // uint32_t *bitset = part_sum_a0_bitarrays[odd_even][i]; 
2391                                 // if (test_bit24(bitset, test_state[odd_even])) { 
2392                                         // printf("%d ", i); 
2393                                         // if (odd_even == ODD_STATE) { 
2403                 // printf("\nTests: known target key is member of these partial sum_a8 bitsets:\n"); 
2404                 // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { 
2405                         // printf("%s", odd_even==EVEN_STATE?"even:":"odd: "); 
2406                         // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) { 
2407                                 // uint32_t *bitset = part_sum_a8_bitarrays[odd_even][i]; 
2408                                 // if (test_bit24(bitset, test_state[odd_even])) { 
2409                                         // printf("%d ", i); 
2410                                         // if (odd_even == ODD_STATE) { 
2420                 // printf("Sum(a0) = p*(16-q) + (16-p)*q = %d*(16-%d) + (16-%d)*%d = %d\n", p, q, p, q, p*(16-q)+(16-p)*q); 
2421                 // printf("Sum(a8) = r*(16-s) + (16-r)*s = %d*(16-%d) + (16-%d)*%d = %d\n", r, s, r, s, r*(16-s)+(16-r)*s); 
2424         /*      printf("\nTests: parity performance\n"); 
2425         uint64_t time1p = msclock(); 
2426         uint32_t par_sum = 0; 
2427         for (uint32_t i = 0; i < 100000000; i++) { 
2428                 par_sum += parity(i); 
2430         printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0); 
2434         for (uint32_t i = 0; i < 100000000; i++) { 
2435                 par_sum += evenparity32(i); 
2437         printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0); 
2443 static void Tests2(void)  
2445         if (known_target_key 
!= -1) { 
2446                 for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
2447                         uint32_t *bitset 
= nonces
[best_first_byte_smallest_bitarray
].states_bitarray
[odd_even
]; 
2448                         if (!test_bit24(bitset
, test_state
[odd_even
])) { 
2449                                 printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n", 
2450                                         odd_even
==EVEN_STATE
?"even":"odd ",  
2451                                         best_first_byte_smallest_bitarray
); 
2456         if (known_target_key 
!= -1) { 
2457                 for (odd_even_t odd_even 
= EVEN_STATE
; odd_even 
<= ODD_STATE
; odd_even
++) { 
2458                         uint32_t *bitset 
= all_bitflips_bitarray
[odd_even
]; 
2459                         if (!test_bit24(bitset
, test_state
[odd_even
])) { 
2460                                 printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n",  
2461                                         odd_even
==EVEN_STATE
?"even":"odd "); 
2469 static uint16_t real_sum_a8 
= 0; 
2471 static void set_test_state(uint8_t byte
)  
2473         struct Crypto1State 
*pcs
; 
2474         pcs 
= crypto1_create(known_target_key
); 
2475         crypto1_byte(pcs
, (cuid 
>> 24) ^ byte
, true); 
2476         test_state
[ODD_STATE
] = pcs
->odd 
& 0x00ffffff; 
2477         test_state
[EVEN_STATE
] = pcs
->even 
& 0x00ffffff; 
2478         real_sum_a8 
= SumProperty(pcs
); 
2479         crypto1_destroy(pcs
); 
2483 int mfnestedhard(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, uint8_t *trgkey
, bool nonce_file_read
, bool nonce_file_write
, bool slow
, int tests
)  
2485         char progress_text
[80]; 
2487         srand((unsigned) time(NULL
)); 
2488         brute_force_per_second 
= brute_force_benchmark(); 
2489         write_stats 
= false; 
2492                 // set the correct locale for the stats printing 
2494                 setlocale(LC_NUMERIC
, ""); 
2495                 if ((fstats 
= fopen("hardnested_stats.txt","a")) == NULL
) {  
2496                         PrintAndLog("Could not create/open file hardnested_stats.txt"); 
2499                 for (uint32_t i 
= 0; i 
< tests
; i
++) { 
2500                         start_time 
= msclock(); 
2501                         print_progress_header(); 
2502                         sprintf(progress_text
, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second
/1000000, log(brute_force_per_second
)/log(2.0)); 
2503                         hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0); 
2504                         sprintf(progress_text
, "Starting Test #%" PRIu32 
" ...", i
+1); 
2505                         hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0); 
2506                         if (trgkey 
!= NULL
) { 
2507                                 known_target_key 
= bytes_to_num(trgkey
, 6); 
2509                                 known_target_key 
= -1; 
2512                         init_bitflip_bitarrays(); 
2513                         init_part_sum_bitarrays(); 
2514                         init_sum_bitarrays(); 
2515                         init_allbitflips_array(); 
2516                         init_nonce_memory(); 
2517                         update_reduction_rate(0.0, true); 
2519                         simulate_acquire_nonces(); 
2521                         set_test_state(best_first_bytes
[0]); 
2524                         free_bitflip_bitarrays(); 
2526                         fprintf(fstats
, "%" PRIu16 
";%1.1f;", sums
[first_byte_Sum
], log(p_K0
[first_byte_Sum
])/log(2.0)); 
2527                         fprintf(fstats
, "%" PRIu16 
";%1.1f;", sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[0].sum_a8_idx
], log(p_K
[nonces
[best_first_bytes
[0]].sum_a8_guess
[0].sum_a8_idx
])/log(2.0)); 
2528                         fprintf(fstats
, "%" PRIu16 
";", real_sum_a8
); 
2530 #ifdef DEBUG_KEY_ELIMINATION 
2533                         bool key_found 
= false; 
2534                         num_keys_tested 
= 0; 
2535                         uint32_t num_odd 
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
]; 
2536                         uint32_t num_even 
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
]; 
2537                         float expected_brute_force1 
= (float)num_odd 
* num_even 
/ 2.0; 
2538                         float expected_brute_force2 
= nonces
[best_first_bytes
[0]].expected_num_brute_force
; 
2539                         fprintf(fstats
, "%1.1f;%1.1f;", log(expected_brute_force1
)/log(2.0), log(expected_brute_force2
)/log(2.0)); 
2540                         if (expected_brute_force1 
< expected_brute_force2
) { 
2541                                 hardnested_print_progress(num_acquired_nonces
, "(Ignoring Sum(a8) properties)", expected_brute_force1
, 0); 
2542                                 set_test_state(best_first_byte_smallest_bitarray
); 
2543                                 add_bitflip_candidates(best_first_byte_smallest_bitarray
); 
2546                                 for (statelist_t 
*sl 
= candidates
; sl 
!= NULL
; sl 
= sl
->next
) { 
2547                                         maximum_states 
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
]; 
2549                                 //printf("Number of remaining possible keys: %" PRIu64 " (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0)); 
2550                                 // fprintf("fstats, "%" PRIu64 ";", maximum_states); 
2551                                 best_first_bytes
[0] = best_first_byte_smallest_bitarray
; 
2553                                 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]); 
2554                                 key_found 
= brute_force(); 
2555                                 free(candidates
->states
[ODD_STATE
]); 
2556                                 free(candidates
->states
[EVEN_STATE
]); 
2557                                 free_candidates_memory(candidates
); 
2561                                 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]); 
2562                                 for (uint8_t j 
= 0; j 
< NUM_SUMS 
&& !key_found
; j
++) { 
2563                                         float expected_brute_force 
= nonces
[best_first_bytes
[0]].expected_num_brute_force
; 
2564                                         sprintf(progress_text
, "(%d. guess: Sum(a8) = %" PRIu16 
")", j
+1, sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
]); 
2565                                         hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);  
2566                                         if (sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
] != real_sum_a8
) { 
2567                                                 sprintf(progress_text
, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16 
")", real_sum_a8
); 
2568                                                 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0); 
2570                                         // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0)); 
2571                                         generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
); 
2572                                         // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0); 
2573                                         key_found 
= brute_force(); 
2574                                         free_statelist_cache(); 
2575                                         free_candidates_memory(candidates
); 
2578                                                 // update the statistics 
2579                                                 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].prob 
= 0; 
2580                                                 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].num_states 
= 0; 
2581                                                 // and calculate new expected number of brute forces 
2582                                                 update_expected_brute_force(best_first_bytes
[0]); 
2586                         #ifdef DEBUG_KEY_ELIMINATION 
2587                         fprintf(fstats
, "%1.1f;%1.0f;%d;%s\n", log(num_keys_tested
)/log(2.0), (float)num_keys_tested
/brute_force_per_second
, key_found
, failstr
); 
2589                         fprintf(fstats
, "%1.0f;%d\n", log(num_keys_tested
)/log(2.0), (float)num_keys_tested
/brute_force_per_second
, key_found
); 
2592                         free_nonces_memory(); 
2593                         free_bitarray(all_bitflips_bitarray
[ODD_STATE
]); 
2594                         free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]); 
2595                         free_sum_bitarrays(); 
2596                         free_part_sum_bitarrays(); 
2600                 start_time 
= msclock(); 
2601                 print_progress_header(); 
2602                 sprintf(progress_text
, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second
/1000000, log(brute_force_per_second
)/log(2.0)); 
2603                 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0); 
2604                 init_bitflip_bitarrays(); 
2605                 init_part_sum_bitarrays(); 
2606                 init_sum_bitarrays(); 
2607                 init_allbitflips_array(); 
2608                 init_nonce_memory(); 
2609                 update_reduction_rate(0.0, true); 
2611                 if (nonce_file_read
) {          // use pre-acquired data from file nonces.bin 
2612                         if (read_nonce_file() != 0) { 
2615                         hardnested_stage 
= CHECK_1ST_BYTES 
| CHECK_2ND_BYTES
; 
2616                         update_nonce_data(false); 
2618                         shrink_key_space(&brute_force
); 
2619                 } else {                                        // acquire nonces. 
2620                         uint16_t is_OK 
= acquire_nonces(blockNo
, keyType
, key
, trgBlockNo
, trgKeyType
, nonce_file_write
, slow
); 
2626                 if (trgkey 
!= NULL
) { 
2627                         known_target_key 
= bytes_to_num(trgkey
, 6); 
2628                         set_test_state(best_first_bytes
[0]); 
2630                         known_target_key 
= -1; 
2635                 free_bitflip_bitarrays(); 
2636                 bool key_found 
= false; 
2637                 num_keys_tested 
= 0; 
2638                 uint32_t num_odd 
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
]; 
2639                 uint32_t num_even 
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
]; 
2640                 float expected_brute_force1 
= (float)num_odd 
* num_even 
/ 2.0; 
2641                 float expected_brute_force2 
= nonces
[best_first_bytes
[0]].expected_num_brute_force
; 
2642                 if (expected_brute_force1 
< expected_brute_force2
) { 
2643                         hardnested_print_progress(num_acquired_nonces
, "(Ignoring Sum(a8) properties)", expected_brute_force1
, 0); 
2644                         set_test_state(best_first_byte_smallest_bitarray
); 
2645                         add_bitflip_candidates(best_first_byte_smallest_bitarray
); 
2648                         for (statelist_t 
*sl 
= candidates
; sl 
!= NULL
; sl 
= sl
->next
) { 
2649                                 maximum_states 
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
]; 
2651                         printf("Number of remaining possible keys: %" PRIu64 
" (2^%1.1f)\n", maximum_states
, log(maximum_states
)/log(2.0)); 
2652                         best_first_bytes
[0] = best_first_byte_smallest_bitarray
; 
2654                         prepare_bf_test_nonces(nonces
, best_first_bytes
[0]); 
2655                         key_found 
= brute_force(); 
2656                         free(candidates
->states
[ODD_STATE
]); 
2657                         free(candidates
->states
[EVEN_STATE
]); 
2658                         free_candidates_memory(candidates
); 
2662                         prepare_bf_test_nonces(nonces
, best_first_bytes
[0]); 
2663                         for (uint8_t j 
= 0; j 
< NUM_SUMS 
&& !key_found
; j
++) { 
2664                                 float expected_brute_force 
= nonces
[best_first_bytes
[0]].expected_num_brute_force
; 
2665                                 sprintf(progress_text
, "(%d. guess: Sum(a8) = %" PRIu16 
")", j
+1, sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
]); 
2666                                 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);  
2667                                 if (trgkey 
!= NULL 
&& sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
] != real_sum_a8
) { 
2668                                         sprintf(progress_text
, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16 
")", real_sum_a8
); 
2669                                         hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0); 
2671                                 // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0)); 
2672                                 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
); 
2673                                 // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0); 
2674                                 key_found 
= brute_force(); 
2675                                 free_statelist_cache(); 
2676                                 free_candidates_memory(candidates
); 
2679                                         // update the statistics 
2680                                         nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].prob 
= 0; 
2681                                         nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].num_states 
= 0; 
2682                                         // and calculate new expected number of brute forces 
2683                                         update_expected_brute_force(best_first_bytes
[0]); 
2689                 free_nonces_memory(); 
2690                 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]); 
2691                 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]); 
2692                 free_sum_bitarrays(); 
2693                 free_part_sum_bitarrays();