1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Sept 2005
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Utility functions used in many places, not specific to any piece of code.
9 //-----------------------------------------------------------------------------
13 void print_result(char *name
, uint8_t *buf
, size_t len
) {
16 if ( len
% 16 == 0 ) {
17 for(; p
-buf
< len
; p
+= 16)
18 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
22 p
[0], p
[1], p
[2], p
[3], p
[4], p
[5], p
[6], p
[7],p
[8], p
[9], p
[10], p
[11], p
[12], p
[13], p
[14], p
[15]
26 for(; p
-buf
< len
; p
+= 8)
27 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x",
31 p
[0], p
[1], p
[2], p
[3], p
[4], p
[5], p
[6], p
[7]);
35 size_t nbytes(size_t nbits
) {
36 return (nbits
>> 3)+((nbits
% 8) > 0);
39 uint32_t SwapBits(uint32_t value
, int nrbits
) {
40 uint32_t newvalue
= 0;
41 for(int i
= 0; i
< nrbits
; i
++) {
42 newvalue
^= ((value
>> i
) & 1) << (nrbits
- 1 - i
);
48 ref http://www.csm.ornl.gov/~dunigan/crc.html
49 Returns the value v with the bottom b [0,32] bits reflected.
50 Example: reflect(0x3e23L,3) == 0x3e26
52 uint32_t reflect(uint32_t v
, int b
) {
54 for ( int i
= 0; i
< b
; ++i
) {
56 v
|= BITMASK((b
-1)-i
);
58 v
&= ~BITMASK((b
-1)-i
);
64 void num_to_bytes(uint64_t n
, size_t len
, uint8_t* dest
) {
66 dest
[len
] = (uint8_t) n
;
71 uint64_t bytes_to_num(uint8_t* src
, size_t len
) {
74 num
= (num
<< 8) | (*src
);
80 // RotateLeft - Ultralight, Desfire
81 void rol(uint8_t *data
, const size_t len
) {
82 uint8_t first
= data
[0];
83 for (size_t i
= 0; i
< len
-1; i
++) {
89 void lsl (uint8_t *data
, size_t len
) {
90 for (size_t n
= 0; n
< len
- 1; n
++) {
91 data
[n
] = (data
[n
] << 1) | (data
[n
+1] >> 7);
96 int32_t le24toh (uint8_t data
[3]) {
97 return (data
[2] << 16) | (data
[1] << 8) | data
[0];
107 // LEDs: R(C) O(A) G(B) -- R(D) [1, 2, 4 and 8]
108 void LED(int led
, int ms
) {
111 if (led
& LED_ORANGE
)
125 if (led
& LED_ORANGE
)
133 // Determine if a button is double clicked, single clicked,
134 // not clicked, or held down (for ms || 1sec)
135 // In general, don't use this function unless you expect a
136 // double click, otherwise it will waste 500ms -- use BUTTON_HELD instead
137 int BUTTON_CLICKED(int ms
) {
138 // Up to 500ms in between clicks to mean a double click
139 int ticks
= (48000 * (ms
? ms
: 1000)) >> 10;
141 // If we're not even pressed, forget about it!
143 return BUTTON_NO_CLICK
;
145 // Borrow a PWM unit for my real-time clock
146 AT91C_BASE_PWMC
->PWMC_ENA
= PWM_CHANNEL(0);
147 // 48 MHz / 1024 gives 46.875 kHz
148 AT91C_BASE_PWMC_CH0
->PWMC_CMR
= PWM_CH_MODE_PRESCALER(10);
149 AT91C_BASE_PWMC_CH0
->PWMC_CDTYR
= 0;
150 AT91C_BASE_PWMC_CH0
->PWMC_CPRDR
= 0xffff;
152 uint16_t start
= AT91C_BASE_PWMC_CH0
->PWMC_CCNTR
;
157 uint16_t now
= AT91C_BASE_PWMC_CH0
->PWMC_CCNTR
;
159 // We haven't let off the button yet
162 // We just let it off!
167 // reset our timer for 500ms
168 start
= AT91C_BASE_PWMC_CH0
->PWMC_CCNTR
;
169 ticks
= (48000 * (500)) >> 10;
172 // Still haven't let it off
174 // Have we held down a full second?
175 if (now
== (uint16_t)(start
+ ticks
))
179 // We already let off, did we click again?
181 // Sweet, double click!
183 return BUTTON_DOUBLE_CLICK
;
185 // Have we ran out of time to double click?
187 if (now
== (uint16_t)(start
+ ticks
))
188 // At least we did a single click
189 return BUTTON_SINGLE_CLICK
;
194 // We should never get here
198 // Determine if a button is held down
199 int BUTTON_HELD(int ms
) {
200 // If button is held for one second
201 int ticks
= (48000 * (ms
? ms
: 1000)) >> 10;
203 // If we're not even pressed, forget about it!
205 return BUTTON_NO_CLICK
;
207 // Borrow a PWM unit for my real-time clock
208 AT91C_BASE_PWMC
->PWMC_ENA
= PWM_CHANNEL(0);
209 // 48 MHz / 1024 gives 46.875 kHz
210 AT91C_BASE_PWMC_CH0
->PWMC_CMR
= PWM_CH_MODE_PRESCALER(10);
211 AT91C_BASE_PWMC_CH0
->PWMC_CDTYR
= 0;
212 AT91C_BASE_PWMC_CH0
->PWMC_CPRDR
= 0xffff;
214 uint16_t start
= AT91C_BASE_PWMC_CH0
->PWMC_CCNTR
;
218 uint16_t now
= AT91C_BASE_PWMC_CH0
->PWMC_CCNTR
;
220 // As soon as our button let go, we didn't hold long enough
222 return BUTTON_SINGLE_CLICK
;
224 // Have we waited the full second?
226 if (now
== (uint16_t)(start
+ ticks
))
232 // We should never get here
236 // attempt at high resolution microsecond timer
237 // beware: timer counts in 21.3uS increments (1024/48Mhz)
238 void SpinDelayUs(int us
) {
239 int ticks
= (48*us
) >> 10;
241 // Borrow a PWM unit for my real-time clock
242 AT91C_BASE_PWMC
->PWMC_ENA
= PWM_CHANNEL(0);
243 // 48 MHz / 1024 gives 46.875 kHz
244 AT91C_BASE_PWMC_CH0
->PWMC_CMR
= PWM_CH_MODE_PRESCALER(10);
245 AT91C_BASE_PWMC_CH0
->PWMC_CDTYR
= 0;
246 AT91C_BASE_PWMC_CH0
->PWMC_CPRDR
= 0xffff;
248 uint16_t start
= AT91C_BASE_PWMC_CH0
->PWMC_CCNTR
;
251 uint16_t now
= AT91C_BASE_PWMC_CH0
->PWMC_CCNTR
;
252 if (now
== (uint16_t)(start
+ ticks
))
259 void SpinDelay(int ms
) {
260 // convert to uS and call microsecond delay function
261 SpinDelayUs(ms
*1000);
264 /* Similar to FpgaGatherVersion this formats stored version information
265 * into a string representation. It takes a pointer to the struct version_information,
266 * verifies the magic properties, then stores a formatted string, prefixed by
269 void FormatVersionInformation(char *dst
, int len
, const char *prefix
, void *version_information
) {
270 struct version_information
*v
= (struct version_information
*)version_information
;
272 strncat(dst
, prefix
, len
-1);
273 if(v
->magic
!= VERSION_INFORMATION_MAGIC
) {
274 strncat(dst
, "Missing/Invalid version information\n", len
- strlen(dst
) - 1);
277 if(v
->versionversion
!= 1) {
278 strncat(dst
, "Version information not understood\n", len
- strlen(dst
) - 1);
282 strncat(dst
, "Version information not available\n", len
- strlen(dst
) - 1);
286 strncat(dst
, v
->gitversion
, len
- strlen(dst
) - 1);
288 strncat(dst
, "-unclean", len
- strlen(dst
) - 1);
289 } else if(v
->clean
== 2) {
290 strncat(dst
, "-suspect", len
- strlen(dst
) - 1);
293 strncat(dst
, " ", len
- strlen(dst
) - 1);
294 strncat(dst
, v
->buildtime
, len
- strlen(dst
) - 1);
295 strncat(dst
, "\n", len
- strlen(dst
) - 1);
298 // -------------------------------------------------------------------------
300 // -------------------------------------------------------------------------
303 // ti = GetTickCount();
305 // ti = GetTickCount() - ti;
306 // Dbprintf("timer(1s): %d t=%d", ti, GetTickCount());
308 void StartTickCount() {
309 // This timer is based on the slow clock. The slow clock frequency is between 22kHz and 40kHz.
310 // We can determine the actual slow clock frequency by looking at the Main Clock Frequency Register.
311 uint16_t mainf
= AT91C_BASE_PMC
->PMC_MCFR
& 0xffff; // = 16 * main clock frequency (16MHz) / slow clock frequency
312 // set RealTimeCounter divider to count at 1kHz:
313 AT91C_BASE_RTTC
->RTTC_RTMR
= AT91C_RTTC_RTTRST
| ((256000 + (mainf
/2)) / mainf
);
314 // note: worst case precision is approx 2.5%
318 * Get the current count.
320 uint32_t RAMFUNC
GetTickCount(){
321 return AT91C_BASE_RTTC
->RTTC_RTVR
;// was * 2;
324 // -------------------------------------------------------------------------
325 // microseconds timer
326 // -------------------------------------------------------------------------
327 void StartCountUS() {
328 AT91C_BASE_PMC
->PMC_PCER
|= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
329 // AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC1XC1S_TIOA0;
330 AT91C_BASE_TCB
->TCB_BMR
= AT91C_TCB_TC0XC0S_NONE
| AT91C_TCB_TC1XC1S_TIOA0
| AT91C_TCB_TC2XC2S_NONE
;
333 AT91C_BASE_TC0
->TC_CCR
= AT91C_TC_CLKDIS
; // timer disable
334 AT91C_BASE_TC0
->TC_CMR
= AT91C_TC_CLKS_TIMER_DIV3_CLOCK
| // MCK(48MHz)/32 -- tick=1.5mks
335 AT91C_TC_WAVE
| AT91C_TC_WAVESEL_UP_AUTO
| AT91C_TC_ACPA_CLEAR
|
336 AT91C_TC_ACPC_SET
| AT91C_TC_ASWTRG_SET
;
337 AT91C_BASE_TC0
->TC_RA
= 1;
338 AT91C_BASE_TC0
->TC_RC
= 0xBFFF + 1; // 0xC000
340 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKDIS
; // timer disable
341 AT91C_BASE_TC1
->TC_CMR
= AT91C_TC_CLKS_XC1
; // from timer 0
343 AT91C_BASE_TC0
->TC_CCR
= AT91C_TC_CLKEN
;
344 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKEN
;
345 AT91C_BASE_TCB
->TCB_BCR
= 1;
348 uint32_t RAMFUNC
GetCountUS(){
349 //return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV / 15) * 10);
350 // By suggestion from PwPiwi, http://www.proxmark.org/forum/viewtopic.php?pid=17548#p17548
351 //return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV * 2) / 3);
352 return (AT91C_BASE_TC1
->TC_CV
* 0x8000) + ((AT91C_BASE_TC0
->TC_CV
<< 1) / 3);
355 // static uint32_t GlobalUsCounter = 0;
357 // uint32_t RAMFUNC GetDeltaCountUS(){
358 // uint32_t g_cnt = GetCountUS();
359 // uint32_t g_res = g_cnt - GlobalUsCounter;
360 // GlobalUsCounter = g_cnt;
365 // -------------------------------------------------------------------------
366 // Timer for iso14443 commands. Uses ssp_clk from FPGA
367 // -------------------------------------------------------------------------
368 void StartCountSspClk() {
369 AT91C_BASE_PMC
->PMC_PCER
= (1 << AT91C_ID_TC0
) | (1 << AT91C_ID_TC1
) | (1 << AT91C_ID_TC2
); // Enable Clock to all timers
370 AT91C_BASE_TCB
->TCB_BMR
= AT91C_TCB_TC0XC0S_TIOA1
// XC0 Clock = TIOA1
371 | AT91C_TCB_TC1XC1S_NONE
// XC1 Clock = none
372 | AT91C_TCB_TC2XC2S_TIOA0
; // XC2 Clock = TIOA0
374 // configure TC1 to create a short pulse on TIOA1 when a rising edge on TIOB1 (= ssp_clk from FPGA) occurs:
375 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKDIS
; // disable TC1
376 AT91C_BASE_TC1
->TC_CMR
= AT91C_TC_CLKS_TIMER_DIV1_CLOCK
// TC1 Clock = MCK(48MHz)/2 = 24MHz
377 | AT91C_TC_CPCSTOP
// Stop clock on RC compare
378 | AT91C_TC_EEVTEDG_RISING
// Trigger on rising edge of Event
379 | AT91C_TC_EEVT_TIOB
// Event-Source: TIOB1 (= ssp_clk from FPGA = 13,56MHz/16)
380 | AT91C_TC_ENETRG
// Enable external trigger event
381 | AT91C_TC_WAVESEL_UP
// Upmode without automatic trigger on RC compare
382 | AT91C_TC_WAVE
// Waveform Mode
383 | AT91C_TC_AEEVT_SET
// Set TIOA1 on external event
384 | AT91C_TC_ACPC_CLEAR
; // Clear TIOA1 on RC Compare
385 AT91C_BASE_TC1
->TC_RC
= 0x04; // RC Compare value = 0x04
387 // use TC0 to count TIOA1 pulses
388 AT91C_BASE_TC0
->TC_CCR
= AT91C_TC_CLKDIS
; // disable TC0
389 AT91C_BASE_TC0
->TC_CMR
= AT91C_TC_CLKS_XC0
// TC0 clock = XC0 clock = TIOA1
390 | AT91C_TC_WAVE
// Waveform Mode
391 | AT91C_TC_WAVESEL_UP
// just count
392 | AT91C_TC_ACPA_CLEAR
// Clear TIOA0 on RA Compare
393 | AT91C_TC_ACPC_SET
; // Set TIOA0 on RC Compare
394 AT91C_BASE_TC0
->TC_RA
= 1; // RA Compare value = 1; pulse width to TC2
395 AT91C_BASE_TC0
->TC_RC
= 0; // RC Compare value = 0; increment TC2 on overflow
397 // use TC2 to count TIOA0 pulses (giving us a 32bit counter (TC0/TC2) clocked by ssp_clk)
398 AT91C_BASE_TC2
->TC_CCR
= AT91C_TC_CLKDIS
; // disable TC2
399 AT91C_BASE_TC2
->TC_CMR
= AT91C_TC_CLKS_XC2
// TC2 clock = XC2 clock = TIOA0
400 | AT91C_TC_WAVE
// Waveform Mode
401 | AT91C_TC_WAVESEL_UP
; // just count
403 AT91C_BASE_TC0
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
; // enable and reset TC0
404 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
; // enable and reset TC1
405 AT91C_BASE_TC2
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
; // enable and reset TC2
407 // synchronize the counter with the ssp_frame signal.
408 // Note: FPGA must be in any iso14443 mode, otherwise the frame signal would not be present
409 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_FRAME
)); // wait for ssp_frame to go high (start of frame)
410 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_FRAME
); // wait for ssp_frame to be low
411 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)); // wait for ssp_clk to go high
413 // note: up to now two ssp_clk rising edges have passed since the rising edge of ssp_frame
414 // it is now safe to assert a sync signal. This sets all timers to 0 on next active clock edge
415 AT91C_BASE_TCB
->TCB_BCR
= 1; // assert Sync (set all timers to 0 on next active clock edge)
416 // at the next (3rd) ssp_clk rising edge, TC1 will be reset (and not generate a clock signal to TC0)
417 // at the next (4th) ssp_clk rising edge, TC0 (the low word of our counter) will be reset. From now on,
418 // whenever the last three bits of our counter go 0, we can be sure to be in the middle of a frame transfer.
419 // (just started with the transfer of the 4th Bit).
421 // The high word of the counter (TC2) will not reset until the low word (TC0) overflows.
422 // Therefore need to wait quite some time before we can use the counter.
423 while (AT91C_BASE_TC2
->TC_CV
>= 1);
425 void ResetSspClk(void) {
426 //enable clock of timer and software trigger
427 AT91C_BASE_TC0
->TC_CCR
= AT91C_TC_SWTRG
;
428 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_SWTRG
;
429 AT91C_BASE_TC2
->TC_CCR
= AT91C_TC_SWTRG
;
432 uint32_t RAMFUNC
GetCountSspClk(){
433 uint32_t tmp_count
= (AT91C_BASE_TC2
->TC_CV
<< 16) | AT91C_BASE_TC0
->TC_CV
;
434 if ((tmp_count
& 0x0000ffff) == 0) //small chance that we may have missed an increment in TC2
435 return (AT91C_BASE_TC2
->TC_CV
<< 16);