1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 #include "lfsampling.h"
22 * Function to do a modulation and then get samples.
28 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
31 int divisor_used
= 95; // 125 KHz
32 // see if 'h' was specified
34 if (command
[strlen((char *) command
) - 1] == 'h')
35 divisor_used
= 88; // 134.8 KHz
37 sample_config sc
= { 0,0,1, divisor_used
, 0};
38 setSamplingConfig(&sc
);
40 /* Make sure the tag is reset */
41 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
42 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
45 LFSetupFPGAForADC(sc
.divisor
, 1);
47 // And a little more time for the tag to fully power up
50 // now modulate the reader field
51 while(*command
!= '\0' && *command
!= ' ') {
52 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
54 SpinDelayUs(delay_off
);
55 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
57 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
59 if(*(command
++) == '0')
60 SpinDelayUs(period_0
);
62 SpinDelayUs(period_1
);
64 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
66 SpinDelayUs(delay_off
);
67 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
69 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
72 DoAcquisition_config(false);
75 /* blank r/w tag data stream
76 ...0000000000000000 01111111
77 1010101010101010101010101010101010101010101010101010101010101010
80 101010101010101[0]000...
82 [5555fe852c5555555555555555fe0000]
86 // some hardcoded initial params
87 // when we read a TI tag we sample the zerocross line at 2Mhz
88 // TI tags modulate a 1 as 16 cycles of 123.2Khz
89 // TI tags modulate a 0 as 16 cycles of 134.2Khz
90 #define FSAMPLE 2000000
94 signed char *dest
= (signed char *)BigBuf_get_addr();
95 uint16_t n
= BigBuf_max_traceLen();
96 // 128 bit shift register [shift3:shift2:shift1:shift0]
97 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
99 int i
, cycles
=0, samples
=0;
100 // how many sample points fit in 16 cycles of each frequency
101 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
102 // when to tell if we're close enough to one freq or another
103 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
105 // TI tags charge at 134.2Khz
106 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
107 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
109 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
110 // connects to SSP_DIN and the SSP_DOUT logic level controls
111 // whether we're modulating the antenna (high)
112 // or listening to the antenna (low)
113 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
115 // get TI tag data into the buffer
118 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
120 for (i
=0; i
<n
-1; i
++) {
121 // count cycles by looking for lo to hi zero crossings
122 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
124 // after 16 cycles, measure the frequency
127 samples
=i
-samples
; // number of samples in these 16 cycles
129 // TI bits are coming to us lsb first so shift them
130 // right through our 128 bit right shift register
131 shift0
= (shift0
>>1) | (shift1
<< 31);
132 shift1
= (shift1
>>1) | (shift2
<< 31);
133 shift2
= (shift2
>>1) | (shift3
<< 31);
136 // check if the cycles fall close to the number
137 // expected for either the low or high frequency
138 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
139 // low frequency represents a 1
141 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
142 // high frequency represents a 0
144 // probably detected a gay waveform or noise
145 // use this as gaydar or discard shift register and start again
146 shift3
= shift2
= shift1
= shift0
= 0;
150 // for each bit we receive, test if we've detected a valid tag
152 // if we see 17 zeroes followed by 6 ones, we might have a tag
153 // remember the bits are backwards
154 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
155 // if start and end bytes match, we have a tag so break out of the loop
156 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
157 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
165 // if flag is set we have a tag
167 DbpString("Info: No valid tag detected.");
169 // put 64 bit data into shift1 and shift0
170 shift0
= (shift0
>>24) | (shift1
<< 8);
171 shift1
= (shift1
>>24) | (shift2
<< 8);
173 // align 16 bit crc into lower half of shift2
174 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
176 // if r/w tag, check ident match
177 if (shift3
& (1<<15) ) {
178 DbpString("Info: TI tag is rewriteable");
179 // only 15 bits compare, last bit of ident is not valid
180 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
181 DbpString("Error: Ident mismatch!");
183 DbpString("Info: TI tag ident is valid");
186 DbpString("Info: TI tag is readonly");
189 // WARNING the order of the bytes in which we calc crc below needs checking
190 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
191 // bytes in reverse or something
195 crc
= update_crc16(crc
, (shift0
)&0xff);
196 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
197 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
198 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
199 crc
= update_crc16(crc
, (shift1
)&0xff);
200 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
201 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
202 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
204 Dbprintf("Info: Tag data: %x%08x, crc=%x",
205 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
206 if (crc
!= (shift2
&0xffff)) {
207 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
209 DbpString("Info: CRC is good");
214 void WriteTIbyte(uint8_t b
)
218 // modulate 8 bits out to the antenna
222 // stop modulating antenna
229 // stop modulating antenna
239 void AcquireTiType(void)
242 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
243 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
244 #define TIBUFLEN 1250
247 uint32_t *BigBuf
= (uint32_t *)BigBuf_get_addr();
248 memset(BigBuf
,0,BigBuf_max_traceLen()/sizeof(uint32_t));
250 // Set up the synchronous serial port
251 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
252 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
254 // steal this pin from the SSP and use it to control the modulation
255 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
256 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
258 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
259 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
261 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
262 // 48/2 = 24 MHz clock must be divided by 12
263 AT91C_BASE_SSC
->SSC_CMR
= 12;
265 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
266 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
267 AT91C_BASE_SSC
->SSC_TCMR
= 0;
268 AT91C_BASE_SSC
->SSC_TFMR
= 0;
275 // Charge TI tag for 50ms.
278 // stop modulating antenna and listen
285 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
286 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
287 i
++; if(i
>= TIBUFLEN
) break;
292 // return stolen pin to SSP
293 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
294 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
296 char *dest
= (char *)BigBuf_get_addr();
299 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
300 for (j
=0; j
<32; j
++) {
301 if(BigBuf
[i
] & (1 << j
)) {
310 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
311 // if crc provided, it will be written with the data verbatim (even if bogus)
312 // if not provided a valid crc will be computed from the data and written.
313 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
315 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
317 crc
= update_crc16(crc
, (idlo
)&0xff);
318 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
319 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
320 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
321 crc
= update_crc16(crc
, (idhi
)&0xff);
322 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
323 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
324 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
326 Dbprintf("Writing to tag: %x%08x, crc=%x",
327 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
329 // TI tags charge at 134.2Khz
330 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
331 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
332 // connects to SSP_DIN and the SSP_DOUT logic level controls
333 // whether we're modulating the antenna (high)
334 // or listening to the antenna (low)
335 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
338 // steal this pin from the SSP and use it to control the modulation
339 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
340 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
342 // writing algorithm:
343 // a high bit consists of a field off for 1ms and field on for 1ms
344 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
345 // initiate a charge time of 50ms (field on) then immediately start writing bits
346 // start by writing 0xBB (keyword) and 0xEB (password)
347 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
348 // finally end with 0x0300 (write frame)
349 // all data is sent lsb firts
350 // finish with 15ms programming time
354 SpinDelay(50); // charge time
356 WriteTIbyte(0xbb); // keyword
357 WriteTIbyte(0xeb); // password
358 WriteTIbyte( (idlo
)&0xff );
359 WriteTIbyte( (idlo
>>8 )&0xff );
360 WriteTIbyte( (idlo
>>16)&0xff );
361 WriteTIbyte( (idlo
>>24)&0xff );
362 WriteTIbyte( (idhi
)&0xff );
363 WriteTIbyte( (idhi
>>8 )&0xff );
364 WriteTIbyte( (idhi
>>16)&0xff );
365 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
366 WriteTIbyte( (crc
)&0xff ); // crc lo
367 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
368 WriteTIbyte(0x00); // write frame lo
369 WriteTIbyte(0x03); // write frame hi
371 SpinDelay(50); // programming time
375 // get TI tag data into the buffer
378 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
379 DbpString("Now use tiread to check");
382 void SimulateTagLowFrequency(uint16_t period
, uint32_t gap
, uint8_t ledcontrol
)
385 uint8_t *tab
= BigBuf_get_addr();
387 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
388 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
390 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
392 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
393 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
395 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
396 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
400 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
402 DbpString("Stopped");
419 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
421 DbpString("Stopped");
438 #define DEBUG_FRAME_CONTENTS 1
439 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
443 // compose fc/8 fc/10 waveform
444 static void fc(int c
, int *n
) {
445 uint8_t *dest
= BigBuf_get_addr();
448 // for when we want an fc8 pattern every 4 logical bits
459 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
461 for (idx
=0; idx
<6; idx
++) {
473 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
475 for (idx
=0; idx
<5; idx
++) {
490 // prepare a waveform pattern in the buffer based on the ID given then
491 // simulate a HID tag until the button is pressed
492 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
496 HID tag bitstream format
497 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
498 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
499 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
500 A fc8 is inserted before every 4 bits
501 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
502 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
506 DbpString("Tags can only have 44 bits.");
510 // special start of frame marker containing invalid bit sequences
511 fc(8, &n
); fc(8, &n
); // invalid
512 fc(8, &n
); fc(10, &n
); // logical 0
513 fc(10, &n
); fc(10, &n
); // invalid
514 fc(8, &n
); fc(10, &n
); // logical 0
517 // manchester encode bits 43 to 32
518 for (i
=11; i
>=0; i
--) {
519 if ((i
%4)==3) fc(0,&n
);
521 fc(10, &n
); fc(8, &n
); // low-high transition
523 fc(8, &n
); fc(10, &n
); // high-low transition
528 // manchester encode bits 31 to 0
529 for (i
=31; i
>=0; i
--) {
530 if ((i
%4)==3) fc(0,&n
);
532 fc(10, &n
); fc(8, &n
); // low-high transition
534 fc(8, &n
); fc(10, &n
); // high-low transition
540 SimulateTagLowFrequency(n
, 0, ledcontrol
);
546 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
547 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
549 uint8_t *dest
= BigBuf_get_addr();
550 const size_t sizeOfBigBuff
= BigBuf_max_traceLen();
552 uint32_t hi2
=0, hi
=0, lo
=0;
554 // Configure to go in 125Khz listen mode
555 LFSetupFPGAForADC(95, true);
557 while(!BUTTON_PRESS()) {
560 if (ledcontrol
) LED_A_ON();
562 DoAcquisition_default(-1,true);
564 size
= sizeOfBigBuff
; //variable size will change after demod so re initialize it before use
565 idx
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
);
568 // final loop, go over previously decoded manchester data and decode into usable tag ID
569 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
570 if (hi2
!= 0){ //extra large HID tags
571 Dbprintf("TAG ID: %x%08x%08x (%d)",
572 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
573 }else { //standard HID tags <38 bits
574 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
577 uint32_t cardnum
= 0;
578 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
580 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
582 while(lo2
> 1){ //find last bit set to 1 (format len bit)
590 cardnum
= (lo
>>1)&0xFFFF;
594 cardnum
= (lo
>>1)&0x7FFFF;
595 fc
= ((hi
&0xF)<<12)|(lo
>>20);
598 cardnum
= (lo
>>1)&0xFFFF;
599 fc
= ((hi
&1)<<15)|(lo
>>17);
602 cardnum
= (lo
>>1)&0xFFFFF;
603 fc
= ((hi
&1)<<11)|(lo
>>21);
606 else { //if bit 38 is not set then 37 bit format is used
611 cardnum
= (lo
>>1)&0x7FFFF;
612 fc
= ((hi
&0xF)<<12)|(lo
>>20);
615 //Dbprintf("TAG ID: %x%08x (%d)",
616 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
617 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
618 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF,
619 (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
);
622 if (ledcontrol
) LED_A_OFF();
632 DbpString("Stopped");
633 if (ledcontrol
) LED_A_OFF();
636 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
638 uint8_t *dest
= BigBuf_get_addr();
640 size_t size
=0, idx
=0;
641 int clk
=0, invert
=0, errCnt
=0, maxErr
=20;
643 // Configure to go in 125Khz listen mode
644 LFSetupFPGAForADC(95, true);
646 while(!BUTTON_PRESS()) {
649 if (ledcontrol
) LED_A_ON();
651 DoAcquisition_default(-1,true);
652 size
= BigBuf_max_traceLen();
653 //Dbprintf("DEBUG: Buffer got");
654 //askdemod and manchester decode
655 errCnt
= askmandemod(dest
, &size
, &clk
, &invert
, maxErr
);
656 //Dbprintf("DEBUG: ASK Got");
660 lo
= Em410xDecode(dest
, &size
, &idx
);
661 //Dbprintf("DEBUG: EM GOT");
663 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
666 (uint32_t)(lo
&0xFFFF),
667 (uint32_t)((lo
>>16LL) & 0xFF),
668 (uint32_t)(lo
& 0xFFFFFF));
671 if (ledcontrol
) LED_A_OFF();
673 *low
=lo
& 0xFFFFFFFF;
677 //Dbprintf("DEBUG: No Tag");
686 DbpString("Stopped");
687 if (ledcontrol
) LED_A_OFF();
690 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
692 uint8_t *dest
= BigBuf_get_addr();
694 uint32_t code
=0, code2
=0;
696 uint8_t facilitycode
=0;
698 // Configure to go in 125Khz listen mode
699 LFSetupFPGAForADC(95, true);
701 while(!BUTTON_PRESS()) {
703 if (ledcontrol
) LED_A_ON();
704 DoAcquisition_default(-1,true);
705 //fskdemod and get start index
707 idx
= IOdemodFSK(dest
, BigBuf_max_traceLen());
712 //0 10 20 30 40 50 60
714 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
715 //-----------------------------------------------------------------------------
716 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
718 //XSF(version)facility:codeone+codetwo
720 if(findone
){ //only print binary if we are doing one
721 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
722 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
723 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
724 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
725 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
726 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
727 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
729 code
= bytebits_to_byte(dest
+idx
,32);
730 code2
= bytebits_to_byte(dest
+idx
+32,32);
731 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
732 facilitycode
= bytebits_to_byte(dest
+idx
+18,8) ;
733 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
735 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version
,facilitycode
,number
,code
,code2
);
736 // if we're only looking for one tag
738 if (ledcontrol
) LED_A_OFF();
745 version
=facilitycode
=0;
751 DbpString("Stopped");
752 if (ledcontrol
) LED_A_OFF();
755 /*------------------------------
756 * T5555/T5557/T5567 routines
757 *------------------------------
760 /* T55x7 configuration register definitions */
761 #define T55x7_POR_DELAY 0x00000001
762 #define T55x7_ST_TERMINATOR 0x00000008
763 #define T55x7_PWD 0x00000010
764 #define T55x7_MAXBLOCK_SHIFT 5
765 #define T55x7_AOR 0x00000200
766 #define T55x7_PSKCF_RF_2 0
767 #define T55x7_PSKCF_RF_4 0x00000400
768 #define T55x7_PSKCF_RF_8 0x00000800
769 #define T55x7_MODULATION_DIRECT 0
770 #define T55x7_MODULATION_PSK1 0x00001000
771 #define T55x7_MODULATION_PSK2 0x00002000
772 #define T55x7_MODULATION_PSK3 0x00003000
773 #define T55x7_MODULATION_FSK1 0x00004000
774 #define T55x7_MODULATION_FSK2 0x00005000
775 #define T55x7_MODULATION_FSK1a 0x00006000
776 #define T55x7_MODULATION_FSK2a 0x00007000
777 #define T55x7_MODULATION_MANCHESTER 0x00008000
778 #define T55x7_MODULATION_BIPHASE 0x00010000
779 #define T55x7_BITRATE_RF_8 0
780 #define T55x7_BITRATE_RF_16 0x00040000
781 #define T55x7_BITRATE_RF_32 0x00080000
782 #define T55x7_BITRATE_RF_40 0x000C0000
783 #define T55x7_BITRATE_RF_50 0x00100000
784 #define T55x7_BITRATE_RF_64 0x00140000
785 #define T55x7_BITRATE_RF_100 0x00180000
786 #define T55x7_BITRATE_RF_128 0x001C0000
788 /* T5555 (Q5) configuration register definitions */
789 #define T5555_ST_TERMINATOR 0x00000001
790 #define T5555_MAXBLOCK_SHIFT 0x00000001
791 #define T5555_MODULATION_MANCHESTER 0
792 #define T5555_MODULATION_PSK1 0x00000010
793 #define T5555_MODULATION_PSK2 0x00000020
794 #define T5555_MODULATION_PSK3 0x00000030
795 #define T5555_MODULATION_FSK1 0x00000040
796 #define T5555_MODULATION_FSK2 0x00000050
797 #define T5555_MODULATION_BIPHASE 0x00000060
798 #define T5555_MODULATION_DIRECT 0x00000070
799 #define T5555_INVERT_OUTPUT 0x00000080
800 #define T5555_PSK_RF_2 0
801 #define T5555_PSK_RF_4 0x00000100
802 #define T5555_PSK_RF_8 0x00000200
803 #define T5555_USE_PWD 0x00000400
804 #define T5555_USE_AOR 0x00000800
805 #define T5555_BITRATE_SHIFT 12
806 #define T5555_FAST_WRITE 0x00004000
807 #define T5555_PAGE_SELECT 0x00008000
810 * Relevant times in microsecond
811 * To compensate antenna falling times shorten the write times
812 * and enlarge the gap ones.
814 #define START_GAP 30*8 // 10 - 50fc 250
815 #define WRITE_GAP 20*8 // 8 - 30fc
816 #define WRITE_0 24*8 // 16 - 31fc 24fc 192
817 #define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550
819 // VALUES TAKEN FROM EM4x function: SendForward
820 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
821 // WRITE_GAP = 128; (16*8)
822 // WRITE_1 = 256 32*8; (32*8)
824 // These timings work for 4469/4269/4305 (with the 55*8 above)
825 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
827 #define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
829 // Write one bit to card
830 void T55xxWriteBit(int bit
)
832 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
833 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
834 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
836 SpinDelayUs(WRITE_0
);
838 SpinDelayUs(WRITE_1
);
839 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
840 SpinDelayUs(WRITE_GAP
);
843 // Write one card block in page 0, no lock
844 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
848 // Set up FPGA, 125kHz
849 // Wait for config.. (192+8190xPOW)x8 == 67ms
850 LFSetupFPGAForADC(0, true);
852 // Now start writting
853 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
854 SpinDelayUs(START_GAP
);
858 T55xxWriteBit(0); //Page 0
861 for (i
= 0x80000000; i
!= 0; i
>>= 1)
862 T55xxWriteBit(Pwd
& i
);
868 for (i
= 0x80000000; i
!= 0; i
>>= 1)
869 T55xxWriteBit(Data
& i
);
872 for (i
= 0x04; i
!= 0; i
>>= 1)
873 T55xxWriteBit(Block
& i
);
875 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
876 // so wait a little more)
877 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
878 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
880 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
883 // Read one card block in page 0
884 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
887 uint8_t *dest
= BigBuf_get_addr();
888 uint16_t bufferlength
= BigBuf_max_traceLen();
889 if ( bufferlength
> T55xx_SAMPLES_SIZE
)
890 bufferlength
= T55xx_SAMPLES_SIZE
;
892 memset(dest
, 0x80, bufferlength
);
894 // Set up FPGA, 125kHz
895 // Wait for config.. (192+8190xPOW)x8 == 67ms
896 LFSetupFPGAForADC(0, true);
897 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
898 SpinDelayUs(START_GAP
);
902 T55xxWriteBit(0); //Page 0
905 for (i
= 0x80000000; i
!= 0; i
>>= 1)
906 T55xxWriteBit(Pwd
& i
);
911 for (i
= 0x04; i
!= 0; i
>>= 1)
912 T55xxWriteBit(Block
& i
);
914 // Turn field on to read the response
917 // Now do the acquisition
920 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
921 AT91C_BASE_SSC
->SSC_THR
= 0x43;
924 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
925 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
928 if (i
>= bufferlength
) break;
932 cmd_send(CMD_ACK
,0,0,0,0,0);
933 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
937 // Read card traceability data (page 1)
938 void T55xxReadTrace(void){
941 uint8_t *dest
= BigBuf_get_addr();
942 uint16_t bufferlength
= BigBuf_max_traceLen();
943 if ( bufferlength
> T55xx_SAMPLES_SIZE
)
944 bufferlength
= T55xx_SAMPLES_SIZE
;
946 memset(dest
, 0x80, bufferlength
);
948 LFSetupFPGAForADC(0, true);
949 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
950 SpinDelayUs(START_GAP
);
954 T55xxWriteBit(1); //Page 1
956 // Turn field on to read the response
959 // Now do the acquisition
961 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
962 AT91C_BASE_SSC
->SSC_THR
= 0x43;
965 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
966 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
970 if (i
>= bufferlength
) break;
974 cmd_send(CMD_ACK
,0,0,0,0,0);
975 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
980 //FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
981 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
982 // Give it a bit of time for the resonant antenna to settle.
987 /*-------------- Cloning routines -----------*/
988 // Copy HID id to card and setup block 0 config
989 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
991 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
995 // Ensure no more than 84 bits supplied
997 DbpString("Tags can only have 84 bits.");
1000 // Build the 6 data blocks for supplied 84bit ID
1002 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1003 for (int i
=0;i
<4;i
++) {
1004 if (hi2
& (1<<(19-i
)))
1005 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1007 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1011 for (int i
=0;i
<16;i
++) {
1012 if (hi2
& (1<<(15-i
)))
1013 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1015 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1019 for (int i
=0;i
<16;i
++) {
1020 if (hi
& (1<<(31-i
)))
1021 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1023 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1027 for (int i
=0;i
<16;i
++) {
1028 if (hi
& (1<<(15-i
)))
1029 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1031 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1035 for (int i
=0;i
<16;i
++) {
1036 if (lo
& (1<<(31-i
)))
1037 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1039 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1043 for (int i
=0;i
<16;i
++) {
1044 if (lo
& (1<<(15-i
)))
1045 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1047 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1051 // Ensure no more than 44 bits supplied
1053 DbpString("Tags can only have 44 bits.");
1057 // Build the 3 data blocks for supplied 44bit ID
1060 data1
= 0x1D000000; // load preamble
1062 for (int i
=0;i
<12;i
++) {
1063 if (hi
& (1<<(11-i
)))
1064 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1066 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1070 for (int i
=0;i
<16;i
++) {
1071 if (lo
& (1<<(31-i
)))
1072 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1074 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1078 for (int i
=0;i
<16;i
++) {
1079 if (lo
& (1<<(15-i
)))
1080 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1082 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1087 // Program the data blocks for supplied ID
1088 // and the block 0 for HID format
1089 T55xxWriteBlock(data1
,1,0,0);
1090 T55xxWriteBlock(data2
,2,0,0);
1091 T55xxWriteBlock(data3
,3,0,0);
1093 if (longFMT
) { // if long format there are 6 blocks
1094 T55xxWriteBlock(data4
,4,0,0);
1095 T55xxWriteBlock(data5
,5,0,0);
1096 T55xxWriteBlock(data6
,6,0,0);
1099 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1100 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1101 T55x7_MODULATION_FSK2a
|
1102 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1110 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1112 int data1
=0, data2
=0; //up to six blocks for long format
1114 data1
= hi
; // load preamble
1118 // Program the data blocks for supplied ID
1119 // and the block 0 for HID format
1120 T55xxWriteBlock(data1
,1,0,0);
1121 T55xxWriteBlock(data2
,2,0,0);
1124 T55xxWriteBlock(0x00147040,0,0,0);
1130 // Define 9bit header for EM410x tags
1131 #define EM410X_HEADER 0x1FF
1132 #define EM410X_ID_LENGTH 40
1134 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1137 uint64_t id
= EM410X_HEADER
;
1138 uint64_t rev_id
= 0; // reversed ID
1139 int c_parity
[4]; // column parity
1140 int r_parity
= 0; // row parity
1143 // Reverse ID bits given as parameter (for simpler operations)
1144 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1146 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1149 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1154 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1155 id_bit
= rev_id
& 1;
1158 // Don't write row parity bit at start of parsing
1160 id
= (id
<< 1) | r_parity
;
1161 // Start counting parity for new row
1168 // First elements in column?
1170 // Fill out first elements
1171 c_parity
[i
] = id_bit
;
1173 // Count column parity
1174 c_parity
[i
% 4] ^= id_bit
;
1177 id
= (id
<< 1) | id_bit
;
1181 // Insert parity bit of last row
1182 id
= (id
<< 1) | r_parity
;
1184 // Fill out column parity at the end of tag
1185 for (i
= 0; i
< 4; ++i
)
1186 id
= (id
<< 1) | c_parity
[i
];
1191 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1195 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1196 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1198 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1200 // Clock rate is stored in bits 8-15 of the card value
1201 clock
= (card
& 0xFF00) >> 8;
1202 Dbprintf("Clock rate: %d", clock
);
1206 clock
= T55x7_BITRATE_RF_32
;
1209 clock
= T55x7_BITRATE_RF_16
;
1212 // A value of 0 is assumed to be 64 for backwards-compatibility
1215 clock
= T55x7_BITRATE_RF_64
;
1218 Dbprintf("Invalid clock rate: %d", clock
);
1222 // Writing configuration for T55x7 tag
1223 T55xxWriteBlock(clock
|
1224 T55x7_MODULATION_MANCHESTER
|
1225 2 << T55x7_MAXBLOCK_SHIFT
,
1229 // Writing configuration for T5555(Q5) tag
1230 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1231 T5555_MODULATION_MANCHESTER
|
1232 2 << T5555_MAXBLOCK_SHIFT
,
1236 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1237 (uint32_t)(id
>> 32), (uint32_t)id
);
1240 // Clone Indala 64-bit tag by UID to T55x7
1241 void CopyIndala64toT55x7(int hi
, int lo
)
1244 //Program the 2 data blocks for supplied 64bit UID
1245 // and the block 0 for Indala64 format
1246 T55xxWriteBlock(hi
,1,0,0);
1247 T55xxWriteBlock(lo
,2,0,0);
1248 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1249 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1250 T55x7_MODULATION_PSK1
|
1251 2 << T55x7_MAXBLOCK_SHIFT
,
1253 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1254 // T5567WriteBlock(0x603E1042,0);
1260 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1263 //Program the 7 data blocks for supplied 224bit UID
1264 // and the block 0 for Indala224 format
1265 T55xxWriteBlock(uid1
,1,0,0);
1266 T55xxWriteBlock(uid2
,2,0,0);
1267 T55xxWriteBlock(uid3
,3,0,0);
1268 T55xxWriteBlock(uid4
,4,0,0);
1269 T55xxWriteBlock(uid5
,5,0,0);
1270 T55xxWriteBlock(uid6
,6,0,0);
1271 T55xxWriteBlock(uid7
,7,0,0);
1272 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1273 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1274 T55x7_MODULATION_PSK1
|
1275 7 << T55x7_MAXBLOCK_SHIFT
,
1277 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1278 // T5567WriteBlock(0x603E10E2,0);
1285 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1286 #define max(x,y) ( x<y ? y:x)
1288 int DemodPCF7931(uint8_t **outBlocks
) {
1290 uint8_t BitStream
[256] = {0x00};
1291 uint8_t Blocks
[8][16] = [0x00};
1292 uint8_t *dest
= BigBuf_get_addr();
1293 int GraphTraceLen
= BigBuf_max_traceLen();
1294 int i
, j
, lastval
, bitidx
, half_switch
;
1296 int tolerance
= clock
/ 8;
1297 int pmc
, block_done
;
1298 int lc
, warnings
= 0;
1300 int lmin
=128, lmax
=128;
1303 LFSetupFPGAForADC(95, true);
1304 DoAcquisition_default(0, true);
1311 /* Find first local max/min */
1312 if(dest
[1] > dest
[0]) {
1313 while(i
< GraphTraceLen
) {
1314 if( !(dest
[i
] > dest
[i
-1]) && dest
[i
] > lmax
)
1321 while(i
< GraphTraceLen
) {
1322 if( !(dest
[i
] < dest
[i
-1]) && v
[i
] < lmin
)
1334 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1336 if ( (dest
[i
-1] > dest
[i
] && dir
== 1 && dest
[i
] > lmax
) || (dest
[i
-1] < dest
[i
] && dir
== 0 && dest
[i
] < lmin
))
1341 // Switch depending on lc length:
1342 // Tolerance is 1/8 of clock rate (arbitrary)
1343 if (abs(lc
-clock
/4) < tolerance
) {
1345 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1347 i
+= (128+127+16+32+33+16)-1;
1355 } else if (abs(lc
-clock
/2) < tolerance
) {
1357 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1359 i
+= (128+127+16+32+33)-1;
1364 else if(half_switch
== 1) {
1365 BitStream
[bitidx
++] = 0;
1370 } else if (abs(lc
-clock
) < tolerance
) {
1372 BitStream
[bitidx
++] = 1;
1378 Dbprintf("Error: too many detection errors, aborting.");
1383 if(block_done
== 1) {
1385 for(j
=0; j
<16; j
++) {
1386 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1387 64*BitStream
[j
*8+6]+
1388 32*BitStream
[j
*8+5]+
1389 16*BitStream
[j
*8+4]+
1401 if(i
< GraphTraceLen
)
1403 if (dest
[i
-1] > dest
[i
]) dir
=0;
1410 if(num_blocks
== 4) break;
1412 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1416 int IsBlock0PCF7931(uint8_t *Block
) {
1417 // Assume RFU means 0 :)
1418 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1420 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1425 int IsBlock1PCF7931(uint8_t *Block
) {
1426 // Assume RFU means 0 :)
1427 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1428 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1436 void ReadPCF7931() {
1437 uint8_t Blocks
[8][17];
1438 uint8_t tmpBlocks
[4][16];
1439 int i
, j
, ind
, ind2
, n
;
1446 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1449 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1450 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1453 if(error
==10 && num_blocks
== 0) {
1454 Dbprintf("Error, no tag or bad tag");
1457 else if (tries
==20 || error
==10) {
1458 Dbprintf("Error reading the tag");
1459 Dbprintf("Here is the partial content");
1464 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1465 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1466 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1468 for(i
=0; i
<n
; i
++) {
1469 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1471 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1475 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1476 Blocks
[0][ALLOC
] = 1;
1477 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1478 Blocks
[1][ALLOC
] = 1;
1479 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1481 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1483 // Handle following blocks
1484 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1487 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1488 Blocks
[ind2
][ALLOC
] = 1;
1496 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1497 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1498 for(j
=0; j
<max_blocks
; j
++) {
1499 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1500 // Found an identical block
1501 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1504 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1505 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1506 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1507 Blocks
[ind2
][ALLOC
] = 1;
1509 if(num_blocks
== max_blocks
) goto end
;
1512 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1513 if(ind2
> max_blocks
)
1515 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1516 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1517 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1518 Blocks
[ind2
][ALLOC
] = 1;
1520 if(num_blocks
== max_blocks
) goto end
;
1529 if (BUTTON_PRESS()) return;
1530 } while (num_blocks
!= max_blocks
);
1532 Dbprintf("-----------------------------------------");
1533 Dbprintf("Memory content:");
1534 Dbprintf("-----------------------------------------");
1535 for(i
=0; i
<max_blocks
; i
++) {
1536 if(Blocks
[i
][ALLOC
]==1)
1537 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1538 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1539 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1541 Dbprintf("<missing block %d>", i
);
1543 Dbprintf("-----------------------------------------");
1549 //-----------------------------------
1550 // EM4469 / EM4305 routines
1551 //-----------------------------------
1552 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1553 #define FWD_CMD_WRITE 0xA
1554 #define FWD_CMD_READ 0x9
1555 #define FWD_CMD_DISABLE 0x5
1558 uint8_t forwardLink_data
[64]; //array of forwarded bits
1559 uint8_t * forward_ptr
; //ptr for forward message preparation
1560 uint8_t fwd_bit_sz
; //forwardlink bit counter
1561 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1563 //====================================================================
1564 // prepares command bits
1566 //====================================================================
1567 //--------------------------------------------------------------------
1568 uint8_t Prepare_Cmd( uint8_t cmd
) {
1569 //--------------------------------------------------------------------
1571 *forward_ptr
++ = 0; //start bit
1572 *forward_ptr
++ = 0; //second pause for 4050 code
1574 *forward_ptr
++ = cmd
;
1576 *forward_ptr
++ = cmd
;
1578 *forward_ptr
++ = cmd
;
1580 *forward_ptr
++ = cmd
;
1582 return 6; //return number of emited bits
1585 //====================================================================
1586 // prepares address bits
1588 //====================================================================
1590 //--------------------------------------------------------------------
1591 uint8_t Prepare_Addr( uint8_t addr
) {
1592 //--------------------------------------------------------------------
1594 register uint8_t line_parity
;
1599 *forward_ptr
++ = addr
;
1600 line_parity
^= addr
;
1604 *forward_ptr
++ = (line_parity
& 1);
1606 return 7; //return number of emited bits
1609 //====================================================================
1610 // prepares data bits intreleaved with parity bits
1612 //====================================================================
1614 //--------------------------------------------------------------------
1615 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1616 //--------------------------------------------------------------------
1618 register uint8_t line_parity
;
1619 register uint8_t column_parity
;
1620 register uint8_t i
, j
;
1621 register uint16_t data
;
1626 for(i
=0; i
<4; i
++) {
1628 for(j
=0; j
<8; j
++) {
1629 line_parity
^= data
;
1630 column_parity
^= (data
& 1) << j
;
1631 *forward_ptr
++ = data
;
1634 *forward_ptr
++ = line_parity
;
1639 for(j
=0; j
<8; j
++) {
1640 *forward_ptr
++ = column_parity
;
1641 column_parity
>>= 1;
1645 return 45; //return number of emited bits
1648 //====================================================================
1649 // Forward Link send function
1650 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1651 // fwd_bit_count set with number of bits to be sent
1652 //====================================================================
1653 void SendForward(uint8_t fwd_bit_count
) {
1655 fwd_write_ptr
= forwardLink_data
;
1656 fwd_bit_sz
= fwd_bit_count
;
1661 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1662 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1663 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1665 // Give it a bit of time for the resonant antenna to settle.
1666 // And for the tag to fully power up
1669 // force 1st mod pulse (start gap must be longer for 4305)
1670 fwd_bit_sz
--; //prepare next bit modulation
1672 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1673 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1674 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1675 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1676 SpinDelayUs(16*8); //16 cycles on (8us each)
1678 // now start writting
1679 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1680 if(((*fwd_write_ptr
++) & 1) == 1)
1681 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1683 //These timings work for 4469/4269/4305 (with the 55*8 above)
1684 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1685 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1686 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1687 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1688 SpinDelayUs(9*8); //16 cycles on (8us each)
1693 void EM4xLogin(uint32_t Password
) {
1695 uint8_t fwd_bit_count
;
1697 forward_ptr
= forwardLink_data
;
1698 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1699 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1701 SendForward(fwd_bit_count
);
1703 //Wait for command to complete
1708 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1710 uint8_t *dest
= BigBuf_get_addr();
1711 uint16_t bufferlength
= BigBuf_max_traceLen();
1714 // Clear destination buffer before sending the command 0x80 = average.
1715 memset(dest
, 0x80, bufferlength
);
1717 uint8_t fwd_bit_count
;
1719 //If password mode do login
1720 if (PwdMode
== 1) EM4xLogin(Pwd
);
1722 forward_ptr
= forwardLink_data
;
1723 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1724 fwd_bit_count
+= Prepare_Addr( Address
);
1726 // Connect the A/D to the peak-detected low-frequency path.
1727 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1728 // Now set up the SSC to get the ADC samples that are now streaming at us.
1731 SendForward(fwd_bit_count
);
1733 // Now do the acquisition
1736 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1737 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1739 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1740 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1742 if (i
>= bufferlength
) break;
1746 cmd_send(CMD_ACK
,0,0,0,0,0);
1747 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1751 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1753 uint8_t fwd_bit_count
;
1755 //If password mode do login
1756 if (PwdMode
== 1) EM4xLogin(Pwd
);
1758 forward_ptr
= forwardLink_data
;
1759 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1760 fwd_bit_count
+= Prepare_Addr( Address
);
1761 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1763 SendForward(fwd_bit_count
);
1765 //Wait for write to complete
1767 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off