1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
31 #define abs(x) ( ((x)<0) ? -(x) : (x) )
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
39 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
40 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
43 struct common_area common_area
__attribute__((section(".commonarea")));
45 void BufferClear(void)
47 memset(BigBuf
,0,sizeof(BigBuf
));
48 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf
));
51 void ToSendReset(void)
57 void ToSendStuffBit(int b
)
61 ToSend
[ToSendMax
] = 0;
66 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
71 if(ToSendMax
>= sizeof(ToSend
)) {
73 DbpString("ToSendStuffBit overflowed!");
77 //=============================================================================
78 // Debug print functions, to go out over USB, to the usual PC-side client.
79 //=============================================================================
81 void DbpString(char *str
)
83 byte_t len
= strlen(str
);
84 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
85 // /* this holds up stuff unless we're connected to usb */
86 // if (!UsbConnected())
90 // c.cmd = CMD_DEBUG_PRINT_STRING;
91 // c.arg[0] = strlen(str);
92 // if(c.arg[0] > sizeof(c.d.asBytes)) {
93 // c.arg[0] = sizeof(c.d.asBytes);
95 // memcpy(c.d.asBytes, str, c.arg[0]);
97 // UsbSendPacket((uint8_t *)&c, sizeof(c));
98 // // TODO fix USB so stupid things like this aren't req'd
103 void DbpIntegers(int x1
, int x2
, int x3
)
105 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
106 // /* this holds up stuff unless we're connected to usb */
107 // if (!UsbConnected())
111 // c.cmd = CMD_DEBUG_PRINT_INTEGERS;
116 // UsbSendPacket((uint8_t *)&c, sizeof(c));
122 void Dbprintf(const char *fmt
, ...) {
123 // should probably limit size here; oh well, let's just use a big buffer
124 char output_string
[128];
128 kvsprintf(fmt
, output_string
, 10, ap
);
131 DbpString(output_string
);
134 // prints HEX & ASCII
135 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
148 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
151 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
153 Dbprintf("%*D",l
,d
," ");
161 //-----------------------------------------------------------------------------
162 // Read an ADC channel and block till it completes, then return the result
163 // in ADC units (0 to 1023). Also a routine to average 32 samples and
165 //-----------------------------------------------------------------------------
166 static int ReadAdc(int ch
)
170 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
171 AT91C_BASE_ADC
->ADC_MR
=
172 ADC_MODE_PRESCALE(32) |
173 ADC_MODE_STARTUP_TIME(16) |
174 ADC_MODE_SAMPLE_HOLD_TIME(8);
175 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
177 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
178 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
180 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
185 int AvgAdc(int ch
) // was static - merlok
190 for(i
= 0; i
< 32; i
++) {
194 return (a
+ 15) >> 5;
197 void MeasureAntennaTuning(void)
199 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
200 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
201 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
206 DbpString("Measuring antenna characteristics, please wait...");
207 memset(dest
,0,sizeof(FREE_BUFFER_SIZE
));
210 * Sweeps the useful LF range of the proxmark from
211 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
212 * read the voltage in the antenna, the result left
213 * in the buffer is a graph which should clearly show
214 * the resonating frequency of your LF antenna
215 * ( hopefully around 95 if it is tuned to 125kHz!)
218 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
219 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
220 for (i
=255; i
>19; i
--) {
222 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
224 // Vref = 3.3V, and a 10000:240 voltage divider on the input
225 // can measure voltages up to 137500 mV
226 adcval
= ((137500 * AvgAdc(ADC_CHAN_LF
)) >> 10);
227 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
228 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
230 dest
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
240 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
241 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
242 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
244 // Vref = 3300mV, and an 10:1 voltage divider on the input
245 // can measure voltages up to 33000 mV
246 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
248 // c.cmd = CMD_MEASURED_ANTENNA_TUNING;
249 // c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
251 // c.arg[2] = peakf | (peakv << 16);
253 DbpString("Measuring complete, sending report back to host");
254 cmd_send(CMD_MEASURED_ANTENNA_TUNING
,vLf125
|(vLf134
<<16),vHf
,peakf
|(peakv
<<16),0,0);
255 // UsbSendPacket((uint8_t *)&c, sizeof(c));
256 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
262 void MeasureAntennaTuningHf(void)
264 int vHf
= 0; // in mV
266 DbpString("Measuring HF antenna, press button to exit");
269 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
270 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
271 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
273 // Vref = 3300mV, and an 10:1 voltage divider on the input
274 // can measure voltages up to 33000 mV
275 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
277 Dbprintf("%d mV",vHf
);
278 if (BUTTON_PRESS()) break;
280 DbpString("cancelled");
284 void SimulateTagHfListen(void)
286 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
291 // We're using this mode just so that I can test it out; the simulated
292 // tag mode would work just as well and be simpler.
293 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
294 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
296 // We need to listen to the high-frequency, peak-detected path.
297 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
303 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
304 AT91C_BASE_SSC
->SSC_THR
= 0xff;
306 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
307 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
321 if(i
>= FREE_BUFFER_SIZE
) {
327 DbpString("simulate tag (now type bitsamples)");
330 void ReadMem(int addr
)
332 const uint8_t *data
= ((uint8_t *)addr
);
334 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
335 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
338 /* osimage version information is linked in */
339 extern struct version_information version_information
;
340 /* bootrom version information is pointed to from _bootphase1_version_pointer */
341 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
;
342 void SendVersion(void)
344 char temp
[256]; /* Limited data payload in USB packets */
345 DbpString("Prox/RFID mark3 RFID instrument");
347 /* Try to find the bootrom version information. Expect to find a pointer at
348 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
349 * pointer, then use it.
351 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
352 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
353 DbpString("bootrom version information appears invalid");
355 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
359 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
362 FpgaGatherVersion(temp
, sizeof(temp
));
365 cmd_send(CMD_ACK
,*(AT91C_DBGU_CIDR
),0,0,NULL
,0);
369 // samy's sniff and repeat routine
372 DbpString("Stand-alone mode! No PC necessary.");
373 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
375 // 3 possible options? no just 2 for now
378 int high
[OPTS
], low
[OPTS
];
380 // Oooh pretty -- notify user we're in elite samy mode now
382 LED(LED_ORANGE
, 200);
384 LED(LED_ORANGE
, 200);
386 LED(LED_ORANGE
, 200);
388 LED(LED_ORANGE
, 200);
394 // Turn on selected LED
395 LED(selected
+ 1, 0);
403 // Was our button held down or pressed?
404 int button_pressed
= BUTTON_HELD(1000);
407 // Button was held for a second, begin recording
408 if (button_pressed
> 0)
411 LED(selected
+ 1, 0);
415 DbpString("Starting recording");
417 // wait for button to be released
418 while(BUTTON_PRESS())
421 /* need this delay to prevent catching some weird data */
424 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
425 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
428 LED(selected
+ 1, 0);
429 // Finished recording
431 // If we were previously playing, set playing off
432 // so next button push begins playing what we recorded
436 // Change where to record (or begin playing)
437 else if (button_pressed
)
439 // Next option if we were previously playing
441 selected
= (selected
+ 1) % OPTS
;
445 LED(selected
+ 1, 0);
447 // Begin transmitting
451 DbpString("Playing");
452 // wait for button to be released
453 while(BUTTON_PRESS())
455 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
456 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
457 DbpString("Done playing");
458 if (BUTTON_HELD(1000) > 0)
460 DbpString("Exiting");
465 /* We pressed a button so ignore it here with a delay */
468 // when done, we're done playing, move to next option
469 selected
= (selected
+ 1) % OPTS
;
472 LED(selected
+ 1, 0);
475 while(BUTTON_PRESS())
484 Listen and detect an external reader. Determine the best location
488 Inside the ListenReaderField() function, there is two mode.
489 By default, when you call the function, you will enter mode 1.
490 If you press the PM3 button one time, you will enter mode 2.
491 If you press the PM3 button a second time, you will exit the function.
493 DESCRIPTION OF MODE 1:
494 This mode just listens for an external reader field and lights up green
495 for HF and/or red for LF. This is the original mode of the detectreader
498 DESCRIPTION OF MODE 2:
499 This mode will visually represent, using the LEDs, the actual strength of the
500 current compared to the maximum current detected. Basically, once you know
501 what kind of external reader is present, it will help you spot the best location to place
502 your antenna. You will probably not get some good results if there is a LF and a HF reader
503 at the same place! :-)
507 static const char LIGHT_SCHEME
[] = {
508 0x0, /* ---- | No field detected */
509 0x1, /* X--- | 14% of maximum current detected */
510 0x2, /* -X-- | 29% of maximum current detected */
511 0x4, /* --X- | 43% of maximum current detected */
512 0x8, /* ---X | 57% of maximum current detected */
513 0xC, /* --XX | 71% of maximum current detected */
514 0xE, /* -XXX | 86% of maximum current detected */
515 0xF, /* XXXX | 100% of maximum current detected */
517 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
519 void ListenReaderField(int limit
)
521 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_count
= 0, lf_max
;
522 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_count
= 0, hf_max
;
523 int mode
=1, display_val
, display_max
, i
;
530 lf_av
=lf_max
=ReadAdc(ADC_CHAN_LF
);
532 if(limit
!= HF_ONLY
) {
533 Dbprintf("LF 125/134 Baseline: %d", lf_av
);
537 hf_av
=hf_max
=ReadAdc(ADC_CHAN_HF
);
539 if (limit
!= LF_ONLY
) {
540 Dbprintf("HF 13.56 Baseline: %d", hf_av
);
545 if (BUTTON_PRESS()) {
550 DbpString("Signal Strength Mode");
554 DbpString("Stopped");
562 if (limit
!= HF_ONLY
) {
564 if (abs(lf_av
- lf_baseline
) > 10) LED_D_ON();
569 lf_av_new
= ReadAdc(ADC_CHAN_LF
);
570 // see if there's a significant change
571 if(abs(lf_av
- lf_av_new
) > 10) {
572 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av
, lf_av_new
, lf_count
);
580 if (limit
!= LF_ONLY
) {
582 if (abs(hf_av
- hf_baseline
) > 10) LED_B_ON();
587 hf_av_new
= ReadAdc(ADC_CHAN_HF
);
588 // see if there's a significant change
589 if(abs(hf_av
- hf_av_new
) > 10) {
590 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av
, hf_av_new
, hf_count
);
599 if (limit
== LF_ONLY
) {
601 display_max
= lf_max
;
602 } else if (limit
== HF_ONLY
) {
604 display_max
= hf_max
;
605 } else { /* Pick one at random */
606 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
608 display_max
= hf_max
;
611 display_max
= lf_max
;
614 for (i
=0; i
<LIGHT_LEN
; i
++) {
615 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
616 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
617 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
618 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
619 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
627 void UsbPacketReceived(uint8_t *packet
, int len
)
629 UsbCommand
*c
= (UsbCommand
*)packet
;
631 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
635 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
636 AcquireRawAdcSamples125k(c
->arg
[0]);
637 cmd_send(CMD_ACK
,0,0,0,0,0);
639 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
640 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
642 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
643 SnoopLFRawAdcSamples(c
->arg
[0], c
->arg
[1]);
644 cmd_send(CMD_ACK
,0,0,0,0,0);
646 case CMD_HID_DEMOD_FSK
:
647 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
649 case CMD_HID_SIM_TAG
:
650 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1); // Simulate HID tag by ID
652 case CMD_HID_CLONE_TAG
: // Clone HID tag by ID to T55x7
653 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
655 case CMD_IO_DEMOD_FSK
:
656 CmdIOdemodFSK(1, 0, 0, 1); // Demodulate IO tag
658 case CMD_IO_CLONE_TAG
: // Clone IO tag by ID to T55x7
659 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
661 case CMD_EM410X_WRITE_TAG
:
662 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
664 case CMD_READ_TI_TYPE
:
667 case CMD_WRITE_TI_TYPE
:
668 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
670 case CMD_SIMULATE_TAG_125K
:
672 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
675 case CMD_LF_SIMULATE_BIDIR
:
676 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
678 case CMD_INDALA_CLONE_TAG
: // Clone Indala 64-bit tag by UID to T55x7
679 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
681 case CMD_INDALA_CLONE_TAG_L
: // Clone Indala 224-bit tag by UID to T55x7
682 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
684 case CMD_T55XX_READ_BLOCK
:
685 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
687 case CMD_T55XX_WRITE_BLOCK
:
688 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
690 case CMD_T55XX_READ_TRACE
: // Clone HID tag by ID to T55x7
693 case CMD_PCF7931_READ
: // Read PCF7931 tag
695 cmd_send(CMD_ACK
,0,0,0,0,0);
696 // UsbSendPacket((uint8_t*)&ack, sizeof(ack));
698 case CMD_EM4X_READ_WORD
:
699 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
701 case CMD_EM4X_WRITE_WORD
:
702 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
707 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
708 SnoopHitag(c
->arg
[0]);
710 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
711 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
713 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
714 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
719 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
720 AcquireRawAdcSamplesIso15693();
722 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
723 RecordRawAdcSamplesIso15693();
726 case CMD_ISO_15693_COMMAND
:
727 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
730 case CMD_ISO_15693_FIND_AFI
:
731 BruteforceIso15693Afi(c
->arg
[0]);
734 case CMD_ISO_15693_DEBUG
:
735 SetDebugIso15693(c
->arg
[0]);
738 case CMD_READER_ISO_15693
:
739 ReaderIso15693(c
->arg
[0]);
741 case CMD_SIMTAG_ISO_15693
:
742 SimTagIso15693(c
->arg
[0]);
747 case CMD_SIMULATE_TAG_LEGIC_RF
:
748 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
751 case CMD_WRITER_LEGIC_RF
:
752 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
755 case CMD_READER_LEGIC_RF
:
756 LegicRfReader(c
->arg
[0], c
->arg
[1]);
760 #ifdef WITH_ISO14443b
761 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
762 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
764 case CMD_READ_SRI512_TAG
:
765 ReadSTMemoryIso14443(0x0F);
767 case CMD_READ_SRIX4K_TAG
:
768 ReadSTMemoryIso14443(0x7F);
770 case CMD_SNOOP_ISO_14443
:
773 case CMD_SIMULATE_TAG_ISO_14443
:
774 SimulateIso14443Tag();
776 case CMD_ISO_14443B_COMMAND
:
777 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
781 #ifdef WITH_ISO14443a
782 case CMD_SNOOP_ISO_14443a
:
783 SnoopIso14443a(c
->arg
[0]);
785 case CMD_READER_ISO_14443a
:
788 case CMD_SIMULATE_TAG_ISO_14443a
:
789 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
791 case CMD_EPA_PACE_COLLECT_NONCE
:
792 EPA_PACE_Collect_Nonce(c
);
795 case CMD_READER_MIFARE
:
796 ReaderMifare(c
->arg
[0]);
798 case CMD_MIFARE_READBL
:
799 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
801 case CMD_MIFAREU_READBL
:
802 MifareUReadBlock(c
->arg
[0],c
->d
.asBytes
);
804 case CMD_MIFAREU_READCARD
:
805 MifareUReadCard(c
->arg
[0],c
->d
.asBytes
);
807 case CMD_MIFARE_READSC
:
808 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
810 case CMD_MIFARE_WRITEBL
:
811 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
813 case CMD_MIFAREU_WRITEBL_COMPAT
:
814 MifareUWriteBlock(c
->arg
[0], c
->d
.asBytes
);
816 case CMD_MIFAREU_WRITEBL
:
817 MifareUWriteBlock_Special(c
->arg
[0], c
->d
.asBytes
);
819 case CMD_MIFARE_NESTED
:
820 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
822 case CMD_MIFARE_CHKKEYS
:
823 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
825 case CMD_SIMULATE_MIFARE_CARD
:
826 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
830 case CMD_MIFARE_SET_DBGMODE
:
831 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
833 case CMD_MIFARE_EML_MEMCLR
:
834 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
836 case CMD_MIFARE_EML_MEMSET
:
837 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
839 case CMD_MIFARE_EML_MEMGET
:
840 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
842 case CMD_MIFARE_EML_CARDLOAD
:
843 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
846 // Work with "magic Chinese" card
847 case CMD_MIFARE_EML_CSETBLOCK
:
848 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
850 case CMD_MIFARE_EML_CGETBLOCK
:
851 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
855 case CMD_MIFARE_SNIFFER
:
856 SniffMifare(c
->arg
[0]);
861 // Makes use of ISO14443a FPGA Firmware
862 case CMD_SNOOP_ICLASS
:
865 case CMD_SIMULATE_TAG_ICLASS
:
866 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
868 case CMD_READER_ICLASS
:
869 ReaderIClass(c
->arg
[0]);
871 case CMD_READER_ICLASS_REPLAY
:
872 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
876 case CMD_SIMULATE_TAG_HF_LISTEN
:
877 SimulateTagHfListen();
884 case CMD_MEASURE_ANTENNA_TUNING
:
885 MeasureAntennaTuning();
888 case CMD_MEASURE_ANTENNA_TUNING_HF
:
889 MeasureAntennaTuningHf();
892 case CMD_LISTEN_READER_FIELD
:
893 ListenReaderField(c
->arg
[0]);
896 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
897 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
899 LED_D_OFF(); // LED D indicates field ON or OFF
902 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
904 // if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
905 // n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
907 // n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
909 // n.arg[0] = c->arg[0];
910 // memcpy(n.d.asBytes, BigBuf+c->arg[0], 48); // 12*sizeof(uint32_t)
912 // usb_write((uint8_t *)&n, sizeof(n));
913 // UsbSendPacket((uint8_t *)&n, sizeof(n));
917 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
918 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
919 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,0,((byte_t
*)BigBuf
)+c
->arg
[0]+i
,len
);
921 // Trigger a finish downloading signal with an ACK frame
922 cmd_send(CMD_ACK
,0,0,0,0,0);
926 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
927 uint8_t *b
= (uint8_t *)BigBuf
;
928 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, 48);
929 //Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
930 // UsbSendPacket((uint8_t*)&ack, sizeof(ack));
931 cmd_send(CMD_ACK
,0,0,0,0,0);
938 case CMD_SET_LF_DIVISOR
:
939 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
940 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
943 case CMD_SET_ADC_MUX
:
945 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
946 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
947 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
948 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
964 case CMD_SETUP_WRITE
:
965 case CMD_FINISH_WRITE
:
966 case CMD_HARDWARE_RESET
:
970 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
972 // We're going to reset, and the bootrom will take control.
976 case CMD_START_FLASH
:
977 if(common_area
.flags
.bootrom_present
) {
978 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
981 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
985 case CMD_DEVICE_INFO
: {
986 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
987 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
988 // UsbSendPacket((uint8_t*)&c, sizeof(c));
989 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
993 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
998 void __attribute__((noreturn
)) AppMain(void)
1002 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1003 /* Initialize common area */
1004 memset(&common_area
, 0, sizeof(common_area
));
1005 common_area
.magic
= COMMON_AREA_MAGIC
;
1006 common_area
.version
= 1;
1008 common_area
.flags
.osimage_present
= 1;
1019 // The FPGA gets its clock from us from PCK0 output, so set that up.
1020 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1021 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1022 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1023 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1024 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1025 AT91C_PMC_PRES_CLK_4
;
1026 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1029 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1031 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1033 // Load the FPGA image, which we have stored in our flash.
1034 // (the HF version by default)
1035 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1043 byte_t rx
[sizeof(UsbCommand
)];
1048 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1050 UsbPacketReceived(rx
,rx_len
);
1058 if (BUTTON_HELD(1000) > 0)