]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso14443a.c
bugfixes iso14443a (hf 14a commands)
[proxmark3-svn] / armsrc / iso14443a.c
1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
12
13 #include "proxmark3.h"
14 #include "apps.h"
15 #include "util.h"
16 #include "string.h"
17 #include "cmd.h"
18
19 #include "iso14443crc.h"
20 #include "iso14443a.h"
21 #include "crapto1.h"
22 #include "mifareutil.h"
23
24 static uint32_t iso14a_timeout;
25 uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET;
26 int rsamples = 0;
27 int traceLen = 0;
28 int tracing = TRUE;
29 uint8_t trigger = 0;
30 // the block number for the ISO14443-4 PCB
31 static uint8_t iso14_pcb_blocknum = 0;
32
33 //
34 // ISO14443 timing:
35 //
36 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
37 #define REQUEST_GUARD_TIME (7000/16 + 1)
38 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
39 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
40 // bool LastCommandWasRequest = FALSE;
41
42 //
43 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
44 //
45 // When the PM acts as reader and is receiving tag data, it takes
46 // 3 ticks delay in the AD converter
47 // 16 ticks until the modulation detector completes and sets curbit
48 // 8 ticks until bit_to_arm is assigned from curbit
49 // 8*16 ticks for the transfer from FPGA to ARM
50 // 4*16 ticks until we measure the time
51 // - 8*16 ticks because we measure the time of the previous transfer
52 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
53
54 // When the PM acts as a reader and is sending, it takes
55 // 4*16 ticks until we can write data to the sending hold register
56 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
57 // 8 ticks until the first transfer starts
58 // 8 ticks later the FPGA samples the data
59 // 1 tick to assign mod_sig_coil
60 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
61
62 // When the PM acts as tag and is receiving it takes
63 // 2 ticks delay in the RF part (for the first falling edge),
64 // 3 ticks for the A/D conversion,
65 // 8 ticks on average until the start of the SSC transfer,
66 // 8 ticks until the SSC samples the first data
67 // 7*16 ticks to complete the transfer from FPGA to ARM
68 // 8 ticks until the next ssp_clk rising edge
69 // 4*16 ticks until we measure the time
70 // - 8*16 ticks because we measure the time of the previous transfer
71 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
72
73 // The FPGA will report its internal sending delay in
74 uint16_t FpgaSendQueueDelay;
75 // the 5 first bits are the number of bits buffered in mod_sig_buf
76 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
77 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
78
79 // When the PM acts as tag and is sending, it takes
80 // 4*16 ticks until we can write data to the sending hold register
81 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
82 // 8 ticks until the first transfer starts
83 // 8 ticks later the FPGA samples the data
84 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
85 // + 1 tick to assign mod_sig_coil
86 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
87
88 // When the PM acts as sniffer and is receiving tag data, it takes
89 // 3 ticks A/D conversion
90 // 14 ticks to complete the modulation detection
91 // 8 ticks (on average) until the result is stored in to_arm
92 // + the delays in transferring data - which is the same for
93 // sniffing reader and tag data and therefore not relevant
94 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
95
96 // When the PM acts as sniffer and is receiving reader data, it takes
97 // 2 ticks delay in analogue RF receiver (for the falling edge of the
98 // start bit, which marks the start of the communication)
99 // 3 ticks A/D conversion
100 // 8 ticks on average until the data is stored in to_arm.
101 // + the delays in transferring data - which is the same for
102 // sniffing reader and tag data and therefore not relevant
103 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
104
105 //variables used for timing purposes:
106 //these are in ssp_clk cycles:
107 static uint32_t NextTransferTime;
108 static uint32_t LastTimeProxToAirStart;
109 static uint32_t LastProxToAirDuration;
110
111
112
113 // CARD TO READER - manchester
114 // Sequence D: 11110000 modulation with subcarrier during first half
115 // Sequence E: 00001111 modulation with subcarrier during second half
116 // Sequence F: 00000000 no modulation with subcarrier
117 // READER TO CARD - miller
118 // Sequence X: 00001100 drop after half a period
119 // Sequence Y: 00000000 no drop
120 // Sequence Z: 11000000 drop at start
121 #define SEC_D 0xf0
122 #define SEC_E 0x0f
123 #define SEC_F 0x00
124 #define SEC_X 0x0c
125 #define SEC_Y 0x00
126 #define SEC_Z 0xc0
127
128 const uint8_t OddByteParity[256] = {
129 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
130 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
131 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
132 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
138 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
139 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
140 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
141 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
142 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
143 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
144 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
145 };
146
147
148 void iso14a_set_trigger(bool enable) {
149 trigger = enable;
150 }
151
152 void iso14a_clear_trace() {
153 memset(trace, 0x44, TRACE_SIZE);
154 traceLen = 0;
155 }
156
157 void iso14a_set_tracing(bool enable) {
158 tracing = enable;
159 }
160
161 void iso14a_set_timeout(uint32_t timeout) {
162 iso14a_timeout = timeout;
163 }
164
165 //-----------------------------------------------------------------------------
166 // Generate the parity value for a byte sequence
167 //
168 //-----------------------------------------------------------------------------
169 byte_t oddparity (const byte_t bt)
170 {
171 return OddByteParity[bt];
172 }
173
174 void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
175 {
176 uint16_t paritybit_cnt = 0;
177 uint16_t paritybyte_cnt = 0;
178 uint8_t parityBits = 0;
179
180 for (uint16_t i = 0; i < iLen; i++) {
181 // Generate the parity bits
182 parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
183 if (paritybit_cnt == 7) {
184 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
185 parityBits = 0; // and advance to next Parity Byte
186 paritybyte_cnt++;
187 paritybit_cnt = 0;
188 } else {
189 paritybit_cnt++;
190 }
191 }
192
193 // save remaining parity bits
194 par[paritybyte_cnt] = parityBits;
195
196 }
197
198 void AppendCrc14443a(uint8_t* data, int len)
199 {
200 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
201 }
202
203 // The function LogTrace() is also used by the iClass implementation in iClass.c
204 bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag)
205 {
206 if (!tracing) return FALSE;
207
208 uint16_t num_paritybytes = (iLen-1)/8 + 1; // number of valid paritybytes in *parity
209 uint16_t duration = timestamp_end - timestamp_start;
210
211 // Return when trace is full
212 if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= TRACE_SIZE) {
213 tracing = FALSE; // don't trace any more
214 return FALSE;
215 }
216
217 // Traceformat:
218 // 32 bits timestamp (little endian)
219 // 16 bits duration (little endian)
220 // 16 bits data length (little endian, Highest Bit used as readerToTag flag)
221 // y Bytes data
222 // x Bytes parity (one byte per 8 bytes data)
223
224 // timestamp (start)
225 trace[traceLen++] = ((timestamp_start >> 0) & 0xff);
226 trace[traceLen++] = ((timestamp_start >> 8) & 0xff);
227 trace[traceLen++] = ((timestamp_start >> 16) & 0xff);
228 trace[traceLen++] = ((timestamp_start >> 24) & 0xff);
229
230 // duration
231 trace[traceLen++] = ((duration >> 0) & 0xff);
232 trace[traceLen++] = ((duration >> 8) & 0xff);
233
234 // data length
235 trace[traceLen++] = ((iLen >> 0) & 0xff);
236 trace[traceLen++] = ((iLen >> 8) & 0xff);
237
238 // readerToTag flag
239 if (!readerToTag) {
240 trace[traceLen - 1] |= 0x80;
241 }
242
243 // data bytes
244 if (btBytes != NULL && iLen != 0) {
245 memcpy(trace + traceLen, btBytes, iLen);
246 }
247 traceLen += iLen;
248
249 // parity bytes
250 if (parity != NULL && iLen != 0) {
251 memcpy(trace + traceLen, parity, num_paritybytes);
252 }
253 traceLen += num_paritybytes;
254
255 return TRUE;
256 }
257
258 //=============================================================================
259 // ISO 14443 Type A - Miller decoder
260 //=============================================================================
261 // Basics:
262 // This decoder is used when the PM3 acts as a tag.
263 // The reader will generate "pauses" by temporarily switching of the field.
264 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
265 // The FPGA does a comparison with a threshold and would deliver e.g.:
266 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
267 // The Miller decoder needs to identify the following sequences:
268 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
269 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
270 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
271 // Note 1: the bitstream may start at any time. We therefore need to sync.
272 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
273 //-----------------------------------------------------------------------------
274 static tUart Uart;
275
276 // Lookup-Table to decide if 4 raw bits are a modulation.
277 // We accept two or three consecutive "0" in any position with the rest "1"
278 const bool Mod_Miller_LUT[] = {
279 TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE,
280 TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE
281 };
282 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
283 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
284
285 void UartReset()
286 {
287 Uart.state = STATE_UNSYNCD;
288 Uart.bitCount = 0;
289 Uart.len = 0; // number of decoded data bytes
290 Uart.parityLen = 0; // number of decoded parity bytes
291 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
292 Uart.parityBits = 0; // holds 8 parity bits
293 Uart.twoBits = 0x0000; // buffer for 2 Bits
294 Uart.highCnt = 0;
295 Uart.startTime = 0;
296 Uart.endTime = 0;
297 }
298
299 void UartInit(uint8_t *data, uint8_t *parity)
300 {
301 Uart.output = data;
302 Uart.parity = parity;
303 UartReset();
304 }
305
306 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
307 static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
308 {
309
310 Uart.twoBits = (Uart.twoBits << 8) | bit;
311
312 if (Uart.state == STATE_UNSYNCD) { // not yet synced
313 if (Uart.highCnt < 7) { // wait for a stable unmodulated signal
314 if (Uart.twoBits == 0xffff) {
315 Uart.highCnt++;
316 } else {
317 Uart.highCnt = 0;
318 }
319 } else {
320 Uart.syncBit = 0xFFFF; // not set
321 // look for 00xx1111 (the start bit)
322 if ((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7;
323 else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6;
324 else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5;
325 else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4;
326 else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3;
327 else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2;
328 else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1;
329 else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0;
330 if (Uart.syncBit != 0xFFFF) {
331 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
332 Uart.startTime -= Uart.syncBit;
333 Uart.endTime = Uart.startTime;
334 Uart.state = STATE_START_OF_COMMUNICATION;
335 }
336 }
337
338 } else {
339
340 if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {
341 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error
342 UartReset();
343 Uart.highCnt = 6;
344 } else { // Modulation in first half = Sequence Z = logic "0"
345 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
346 UartReset();
347 Uart.highCnt = 6;
348 } else {
349 Uart.bitCount++;
350 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
351 Uart.state = STATE_MILLER_Z;
352 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
353 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
354 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
355 Uart.parityBits <<= 1; // make room for the parity bit
356 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
357 Uart.bitCount = 0;
358 Uart.shiftReg = 0;
359 if((Uart.len&0x0007) == 0) { // every 8 data bytes
360 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
361 Uart.parityBits = 0;
362 }
363 }
364 }
365 }
366 } else {
367 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
368 Uart.bitCount++;
369 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
370 Uart.state = STATE_MILLER_X;
371 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
372 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
373 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
374 Uart.parityBits <<= 1; // make room for the new parity bit
375 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
376 Uart.bitCount = 0;
377 Uart.shiftReg = 0;
378 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
379 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
380 Uart.parityBits = 0;
381 }
382 }
383 } else { // no modulation in both halves - Sequence Y
384 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
385 Uart.state = STATE_UNSYNCD;
386 Uart.bitCount--; // last "0" was part of EOC sequence
387 Uart.shiftReg <<= 1; // drop it
388 if(Uart.bitCount > 0) { // if we decoded some bits
389 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
390 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
391 Uart.parityBits <<= 1; // add a (void) parity bit
392 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
393 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
394 return TRUE;
395 } else if (Uart.len & 0x0007) { // there are some parity bits to store
396 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
397 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
398 return TRUE; // we are finished with decoding the raw data sequence
399 }
400 }
401 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
402 UartReset();
403 Uart.highCnt = 6;
404 } else { // a logic "0"
405 Uart.bitCount++;
406 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
407 Uart.state = STATE_MILLER_Y;
408 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
409 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
410 Uart.parityBits <<= 1; // make room for the parity bit
411 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
412 Uart.bitCount = 0;
413 Uart.shiftReg = 0;
414 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
415 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
416 Uart.parityBits = 0;
417 }
418 }
419 }
420 }
421 }
422
423 }
424
425 return FALSE; // not finished yet, need more data
426 }
427
428
429
430 //=============================================================================
431 // ISO 14443 Type A - Manchester decoder
432 //=============================================================================
433 // Basics:
434 // This decoder is used when the PM3 acts as a reader.
435 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
436 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
437 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
438 // The Manchester decoder needs to identify the following sequences:
439 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
440 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
441 // 8 ticks unmodulated: Sequence F = end of communication
442 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
443 // Note 1: the bitstream may start at any time. We therefore need to sync.
444 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
445 static tDemod Demod;
446
447 // Lookup-Table to decide if 4 raw bits are a modulation.
448 // We accept three or four "1" in any position
449 const bool Mod_Manchester_LUT[] = {
450 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
451 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
452 };
453
454 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
455 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
456
457
458 void DemodReset()
459 {
460 Demod.state = DEMOD_UNSYNCD;
461 Demod.len = 0; // number of decoded data bytes
462 Demod.parityLen = 0;
463 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
464 Demod.parityBits = 0; //
465 Demod.collisionPos = 0; // Position of collision bit
466 Demod.twoBits = 0xffff; // buffer for 2 Bits
467 Demod.highCnt = 0;
468 Demod.startTime = 0;
469 Demod.endTime = 0;
470 }
471
472
473 void DemodInit(uint8_t *data, uint8_t *parity)
474 {
475 Demod.output = data;
476 Demod.parity = parity;
477 DemodReset();
478 }
479
480 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
481 static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
482 {
483
484 Demod.twoBits = (Demod.twoBits << 8) | bit;
485
486 if (Demod.state == DEMOD_UNSYNCD) {
487
488 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
489 if (Demod.twoBits == 0x0000) {
490 Demod.highCnt++;
491 } else {
492 Demod.highCnt = 0;
493 }
494 } else {
495 Demod.syncBit = 0xFFFF; // not set
496 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
497 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
498 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
499 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
500 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
501 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
502 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
503 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
504 if (Demod.syncBit != 0xFFFF) {
505 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
506 Demod.startTime -= Demod.syncBit;
507 Demod.bitCount = offset; // number of decoded data bits
508 Demod.state = DEMOD_MANCHESTER_DATA;
509 }
510 }
511
512 } else {
513
514 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
515 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
516 if (!Demod.collisionPos) {
517 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
518 }
519 } // modulation in first half only - Sequence D = 1
520 Demod.bitCount++;
521 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
522 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
523 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
524 Demod.parityBits <<= 1; // make room for the parity bit
525 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
526 Demod.bitCount = 0;
527 Demod.shiftReg = 0;
528 if((Demod.len&0x0007) == 0) { // every 8 data bytes
529 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
530 Demod.parityBits = 0;
531 }
532 }
533 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
534 } else { // no modulation in first half
535 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
536 Demod.bitCount++;
537 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
538 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
539 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
540 Demod.parityBits <<= 1; // make room for the new parity bit
541 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
542 Demod.bitCount = 0;
543 Demod.shiftReg = 0;
544 if ((Demod.len&0x0007) == 0) { // every 8 data bytes
545 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
546 Demod.parityBits = 0;
547 }
548 }
549 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
550 } else { // no modulation in both halves - End of communication
551 if(Demod.bitCount > 0) { // there are some remaining data bits
552 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
553 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
554 Demod.parityBits <<= 1; // add a (void) parity bit
555 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
556 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
557 return TRUE;
558 } else if (Demod.len & 0x0007) { // there are some parity bits to store
559 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
560 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
561 return TRUE; // we are finished with decoding the raw data sequence
562 } else { // nothing received. Start over
563 DemodReset();
564 }
565 }
566 }
567
568 }
569
570 return FALSE; // not finished yet, need more data
571 }
572
573 //=============================================================================
574 // Finally, a `sniffer' for ISO 14443 Type A
575 // Both sides of communication!
576 //=============================================================================
577
578 //-----------------------------------------------------------------------------
579 // Record the sequence of commands sent by the reader to the tag, with
580 // triggering so that we start recording at the point that the tag is moved
581 // near the reader.
582 //-----------------------------------------------------------------------------
583 void RAMFUNC SnoopIso14443a(uint8_t param) {
584 // param:
585 // bit 0 - trigger from first card answer
586 // bit 1 - trigger from first reader 7-bit request
587
588 LEDsoff();
589 // init trace buffer
590 iso14a_clear_trace();
591 iso14a_set_tracing(TRUE);
592
593 // We won't start recording the frames that we acquire until we trigger;
594 // a good trigger condition to get started is probably when we see a
595 // response from the tag.
596 // triggered == FALSE -- to wait first for card
597 bool triggered = !(param & 0x03);
598
599 // The command (reader -> tag) that we're receiving.
600 // The length of a received command will in most cases be no more than 18 bytes.
601 // So 32 should be enough!
602 uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
603 uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
604
605 // The response (tag -> reader) that we're receiving.
606 uint8_t *receivedResponse = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
607 uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
608
609 // As we receive stuff, we copy it from receivedCmd or receivedResponse
610 // into trace, along with its length and other annotations.
611 //uint8_t *trace = (uint8_t *)BigBuf;
612
613 // The DMA buffer, used to stream samples from the FPGA
614 uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
615 uint8_t *data = dmaBuf;
616 uint8_t previous_data = 0;
617 int maxDataLen = 0;
618 int dataLen = 0;
619 bool TagIsActive = FALSE;
620 bool ReaderIsActive = FALSE;
621
622 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
623
624 // Set up the demodulator for tag -> reader responses.
625 DemodInit(receivedResponse, receivedResponsePar);
626
627 // Set up the demodulator for the reader -> tag commands
628 UartInit(receivedCmd, receivedCmdPar);
629
630 // Setup and start DMA.
631 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
632
633 // And now we loop, receiving samples.
634 for(uint32_t rsamples = 0; TRUE; ) {
635
636 if(BUTTON_PRESS()) {
637 DbpString("cancelled by button");
638 break;
639 }
640
641 LED_A_ON();
642 WDT_HIT();
643
644 int register readBufDataP = data - dmaBuf;
645 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
646 if (readBufDataP <= dmaBufDataP){
647 dataLen = dmaBufDataP - readBufDataP;
648 } else {
649 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
650 }
651 // test for length of buffer
652 if(dataLen > maxDataLen) {
653 maxDataLen = dataLen;
654 if(dataLen > 400) {
655 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
656 break;
657 }
658 }
659 if(dataLen < 1) continue;
660
661 // primary buffer was stopped( <-- we lost data!
662 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
663 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
664 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
665 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
666 }
667 // secondary buffer sets as primary, secondary buffer was stopped
668 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
669 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
670 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
671 }
672
673 LED_A_OFF();
674
675 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
676
677 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
678 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
679 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
680 LED_C_ON();
681
682 // check - if there is a short 7bit request from reader
683 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
684
685 if(triggered) {
686 if (!LogTrace(receivedCmd,
687 Uart.len,
688 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
689 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
690 Uart.parity,
691 TRUE)) break;
692 }
693 /* And ready to receive another command. */
694 UartReset();
695 /* And also reset the demod code, which might have been */
696 /* false-triggered by the commands from the reader. */
697 DemodReset();
698 LED_B_OFF();
699 }
700 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
701 }
702
703 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
704 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
705 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
706 LED_B_ON();
707
708 if (!LogTrace(receivedResponse,
709 Demod.len,
710 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
711 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
712 Demod.parity,
713 FALSE)) break;
714
715 if ((!triggered) && (param & 0x01)) triggered = TRUE;
716
717 // And ready to receive another response.
718 DemodReset();
719 LED_C_OFF();
720 }
721 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
722 }
723 }
724
725 previous_data = *data;
726 rsamples++;
727 data++;
728 if(data == dmaBuf + DMA_BUFFER_SIZE) {
729 data = dmaBuf;
730 }
731 } // main cycle
732
733 DbpString("COMMAND FINISHED");
734
735 FpgaDisableSscDma();
736 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
737 Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen, (uint32_t)Uart.output[0]);
738 LEDsoff();
739 }
740
741 //-----------------------------------------------------------------------------
742 // Prepare tag messages
743 //-----------------------------------------------------------------------------
744 static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
745 {
746 ToSendReset();
747
748 // Correction bit, might be removed when not needed
749 ToSendStuffBit(0);
750 ToSendStuffBit(0);
751 ToSendStuffBit(0);
752 ToSendStuffBit(0);
753 ToSendStuffBit(1); // 1
754 ToSendStuffBit(0);
755 ToSendStuffBit(0);
756 ToSendStuffBit(0);
757
758 // Send startbit
759 ToSend[++ToSendMax] = SEC_D;
760
761 LastProxToAirDuration = 8 * ToSendMax - 4;
762
763 for(uint16_t i = 0; i < len; i++) {
764 uint8_t b = cmd[i];
765
766 // Data bits
767 for(uint16_t j = 0; j < 8; j++) {
768 if(b & 1) {
769 ToSend[++ToSendMax] = SEC_D;
770 } else {
771 ToSend[++ToSendMax] = SEC_E;
772 }
773 b >>= 1;
774 }
775
776 // Get the parity bit
777 if (parity[i>>3] & (0x80>>(i&0x0007))) {
778 ToSend[++ToSendMax] = SEC_D;
779 LastProxToAirDuration = 8 * ToSendMax - 4;
780 } else {
781 ToSend[++ToSendMax] = SEC_E;
782 LastProxToAirDuration = 8 * ToSendMax;
783 }
784 }
785
786 // Send stopbit
787 ToSend[++ToSendMax] = SEC_F;
788
789 // Convert from last byte pos to length
790 ToSendMax++;
791 }
792
793 static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
794 {
795 uint8_t par[MAX_PARITY_SIZE];
796
797 GetParity(cmd, len, par);
798 CodeIso14443aAsTagPar(cmd, len, par);
799 }
800
801
802 static void Code4bitAnswerAsTag(uint8_t cmd)
803 {
804 int i;
805
806 ToSendReset();
807
808 // Correction bit, might be removed when not needed
809 ToSendStuffBit(0);
810 ToSendStuffBit(0);
811 ToSendStuffBit(0);
812 ToSendStuffBit(0);
813 ToSendStuffBit(1); // 1
814 ToSendStuffBit(0);
815 ToSendStuffBit(0);
816 ToSendStuffBit(0);
817
818 // Send startbit
819 ToSend[++ToSendMax] = SEC_D;
820
821 uint8_t b = cmd;
822 for(i = 0; i < 4; i++) {
823 if(b & 1) {
824 ToSend[++ToSendMax] = SEC_D;
825 LastProxToAirDuration = 8 * ToSendMax - 4;
826 } else {
827 ToSend[++ToSendMax] = SEC_E;
828 LastProxToAirDuration = 8 * ToSendMax;
829 }
830 b >>= 1;
831 }
832
833 // Send stopbit
834 ToSend[++ToSendMax] = SEC_F;
835
836 // Convert from last byte pos to length
837 ToSendMax++;
838 }
839
840 //-----------------------------------------------------------------------------
841 // Wait for commands from reader
842 // Stop when button is pressed
843 // Or return TRUE when command is captured
844 //-----------------------------------------------------------------------------
845 static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
846 {
847 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
848 // only, since we are receiving, not transmitting).
849 // Signal field is off with the appropriate LED
850 LED_D_OFF();
851 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
852
853 // Now run a `software UART' on the stream of incoming samples.
854 UartInit(received, parity);
855
856 // clear RXRDY:
857 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
858
859 for(;;) {
860 WDT_HIT();
861
862 if(BUTTON_PRESS()) return FALSE;
863
864 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
865 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
866 if(MillerDecoding(b, 0)) {
867 *len = Uart.len;
868 return TRUE;
869 }
870 }
871 }
872 }
873
874 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
875 int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
876 int EmSend4bit(uint8_t resp);
877 int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
878 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
879 int EmSendCmd(uint8_t *resp, uint16_t respLen);
880 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
881 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
882 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
883
884 static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
885
886 typedef struct {
887 uint8_t* response;
888 size_t response_n;
889 uint8_t* modulation;
890 size_t modulation_n;
891 uint32_t ProxToAirDuration;
892 } tag_response_info_t;
893
894 void reset_free_buffer() {
895 free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
896 }
897
898 bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
899 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
900 // This will need the following byte array for a modulation sequence
901 // 144 data bits (18 * 8)
902 // 18 parity bits
903 // 2 Start and stop
904 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
905 // 1 just for the case
906 // ----------- +
907 // 166 bytes, since every bit that needs to be send costs us a byte
908 //
909
910 // Prepare the tag modulation bits from the message
911 CodeIso14443aAsTag(response_info->response,response_info->response_n);
912
913 // Make sure we do not exceed the free buffer space
914 if (ToSendMax > max_buffer_size) {
915 Dbprintf("Out of memory, when modulating bits for tag answer:");
916 Dbhexdump(response_info->response_n,response_info->response,false);
917 return false;
918 }
919
920 // Copy the byte array, used for this modulation to the buffer position
921 memcpy(response_info->modulation,ToSend,ToSendMax);
922
923 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
924 response_info->modulation_n = ToSendMax;
925 response_info->ProxToAirDuration = LastProxToAirDuration;
926
927 return true;
928 }
929
930 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
931 // Retrieve and store the current buffer index
932 response_info->modulation = free_buffer_pointer;
933
934 // Determine the maximum size we can use from our buffer
935 size_t max_buffer_size = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + FREE_BUFFER_SIZE) - free_buffer_pointer;
936
937 // Forward the prepare tag modulation function to the inner function
938 if (prepare_tag_modulation(response_info,max_buffer_size)) {
939 // Update the free buffer offset
940 free_buffer_pointer += ToSendMax;
941 return true;
942 } else {
943 return false;
944 }
945 }
946
947 //-----------------------------------------------------------------------------
948 // Main loop of simulated tag: receive commands from reader, decide what
949 // response to send, and send it.
950 //-----------------------------------------------------------------------------
951 void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
952 {
953 // Enable and clear the trace
954 iso14a_clear_trace();
955 iso14a_set_tracing(TRUE);
956
957 uint8_t sak;
958
959 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
960 uint8_t response1[2];
961
962 switch (tagType) {
963 case 1: { // MIFARE Classic
964 // Says: I am Mifare 1k - original line
965 response1[0] = 0x04;
966 response1[1] = 0x00;
967 sak = 0x08;
968 } break;
969 case 2: { // MIFARE Ultralight
970 // Says: I am a stupid memory tag, no crypto
971 response1[0] = 0x04;
972 response1[1] = 0x00;
973 sak = 0x00;
974 } break;
975 case 3: { // MIFARE DESFire
976 // Says: I am a DESFire tag, ph33r me
977 response1[0] = 0x04;
978 response1[1] = 0x03;
979 sak = 0x20;
980 } break;
981 case 4: { // ISO/IEC 14443-4
982 // Says: I am a javacard (JCOP)
983 response1[0] = 0x04;
984 response1[1] = 0x00;
985 sak = 0x28;
986 } break;
987 default: {
988 Dbprintf("Error: unkown tagtype (%d)",tagType);
989 return;
990 } break;
991 }
992
993 // The second response contains the (mandatory) first 24 bits of the UID
994 uint8_t response2[5];
995
996 // Check if the uid uses the (optional) part
997 uint8_t response2a[5];
998 if (uid_2nd) {
999 response2[0] = 0x88;
1000 num_to_bytes(uid_1st,3,response2+1);
1001 num_to_bytes(uid_2nd,4,response2a);
1002 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
1003
1004 // Configure the ATQA and SAK accordingly
1005 response1[0] |= 0x40;
1006 sak |= 0x04;
1007 } else {
1008 num_to_bytes(uid_1st,4,response2);
1009 // Configure the ATQA and SAK accordingly
1010 response1[0] &= 0xBF;
1011 sak &= 0xFB;
1012 }
1013
1014 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1015 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
1016
1017 // Prepare the mandatory SAK (for 4 and 7 byte UID)
1018 uint8_t response3[3];
1019 response3[0] = sak;
1020 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
1021
1022 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
1023 uint8_t response3a[3];
1024 response3a[0] = sak & 0xFB;
1025 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
1026
1027 uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
1028 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1029 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1030 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1031 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1032 // TC(1) = 0x02: CID supported, NAD not supported
1033 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
1034
1035 #define TAG_RESPONSE_COUNT 7
1036 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
1037 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
1038 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
1039 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1040 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
1041 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
1042 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
1043 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
1044 };
1045
1046 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1047 // Such a response is less time critical, so we can prepare them on the fly
1048 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1049 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1050 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
1051 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
1052 tag_response_info_t dynamic_response_info = {
1053 .response = dynamic_response_buffer,
1054 .response_n = 0,
1055 .modulation = dynamic_modulation_buffer,
1056 .modulation_n = 0
1057 };
1058
1059 // Reset the offset pointer of the free buffer
1060 reset_free_buffer();
1061
1062 // Prepare the responses of the anticollision phase
1063 // there will be not enough time to do this at the moment the reader sends it REQA
1064 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
1065 prepare_allocated_tag_modulation(&responses[i]);
1066 }
1067
1068 int len = 0;
1069
1070 // To control where we are in the protocol
1071 int order = 0;
1072 int lastorder;
1073
1074 // Just to allow some checks
1075 int happened = 0;
1076 int happened2 = 0;
1077 int cmdsRecvd = 0;
1078
1079 // We need to listen to the high-frequency, peak-detected path.
1080 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1081
1082 // buffers used on software Uart:
1083 uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET;
1084 uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
1085
1086 cmdsRecvd = 0;
1087 tag_response_info_t* p_response;
1088
1089 LED_A_ON();
1090 for(;;) {
1091 // Clean receive command buffer
1092
1093 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
1094 DbpString("Button press");
1095 break;
1096 }
1097
1098 p_response = NULL;
1099
1100 // Okay, look at the command now.
1101 lastorder = order;
1102 if(receivedCmd[0] == 0x26) { // Received a REQUEST
1103 p_response = &responses[0]; order = 1;
1104 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
1105 p_response = &responses[0]; order = 6;
1106 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
1107 p_response = &responses[1]; order = 2;
1108 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
1109 p_response = &responses[2]; order = 20;
1110 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
1111 p_response = &responses[3]; order = 3;
1112 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
1113 p_response = &responses[4]; order = 30;
1114 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
1115 EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
1116 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1117 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1118 p_response = NULL;
1119 } else if(receivedCmd[0] == 0x50) { // Received a HALT
1120 // DbpString("Reader requested we HALT!:");
1121 if (tracing) {
1122 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1123 }
1124 p_response = NULL;
1125 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
1126 p_response = &responses[5]; order = 7;
1127 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
1128 if (tagType == 1 || tagType == 2) { // RATS not supported
1129 EmSend4bit(CARD_NACK_NA);
1130 p_response = NULL;
1131 } else {
1132 p_response = &responses[6]; order = 70;
1133 }
1134 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
1135 if (tracing) {
1136 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1137 }
1138 uint32_t nr = bytes_to_num(receivedCmd,4);
1139 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1140 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
1141 } else {
1142 // Check for ISO 14443A-4 compliant commands, look at left nibble
1143 switch (receivedCmd[0]) {
1144
1145 case 0x0B:
1146 case 0x0A: { // IBlock (command)
1147 dynamic_response_info.response[0] = receivedCmd[0];
1148 dynamic_response_info.response[1] = 0x00;
1149 dynamic_response_info.response[2] = 0x90;
1150 dynamic_response_info.response[3] = 0x00;
1151 dynamic_response_info.response_n = 4;
1152 } break;
1153
1154 case 0x1A:
1155 case 0x1B: { // Chaining command
1156 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1157 dynamic_response_info.response_n = 2;
1158 } break;
1159
1160 case 0xaa:
1161 case 0xbb: {
1162 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1163 dynamic_response_info.response_n = 2;
1164 } break;
1165
1166 case 0xBA: { //
1167 memcpy(dynamic_response_info.response,"\xAB\x00",2);
1168 dynamic_response_info.response_n = 2;
1169 } break;
1170
1171 case 0xCA:
1172 case 0xC2: { // Readers sends deselect command
1173 memcpy(dynamic_response_info.response,"\xCA\x00",2);
1174 dynamic_response_info.response_n = 2;
1175 } break;
1176
1177 default: {
1178 // Never seen this command before
1179 if (tracing) {
1180 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1181 }
1182 Dbprintf("Received unknown command (len=%d):",len);
1183 Dbhexdump(len,receivedCmd,false);
1184 // Do not respond
1185 dynamic_response_info.response_n = 0;
1186 } break;
1187 }
1188
1189 if (dynamic_response_info.response_n > 0) {
1190 // Copy the CID from the reader query
1191 dynamic_response_info.response[1] = receivedCmd[1];
1192
1193 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1194 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1195 dynamic_response_info.response_n += 2;
1196
1197 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1198 Dbprintf("Error preparing tag response");
1199 if (tracing) {
1200 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1201 }
1202 break;
1203 }
1204 p_response = &dynamic_response_info;
1205 }
1206 }
1207
1208 // Count number of wakeups received after a halt
1209 if(order == 6 && lastorder == 5) { happened++; }
1210
1211 // Count number of other messages after a halt
1212 if(order != 6 && lastorder == 5) { happened2++; }
1213
1214 if(cmdsRecvd > 999) {
1215 DbpString("1000 commands later...");
1216 break;
1217 }
1218 cmdsRecvd++;
1219
1220 if (p_response != NULL) {
1221 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1222 // do the tracing for the previous reader request and this tag answer:
1223 uint8_t par[MAX_PARITY_SIZE];
1224 GetParity(p_response->response, p_response->response_n, par);
1225 EmLogTrace(Uart.output,
1226 Uart.len,
1227 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1228 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1229 Uart.parity,
1230 p_response->response,
1231 p_response->response_n,
1232 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1233 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1234 par);
1235 }
1236
1237 if (!tracing) {
1238 Dbprintf("Trace Full. Simulation stopped.");
1239 break;
1240 }
1241 }
1242
1243 Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
1244 LED_A_OFF();
1245 }
1246
1247
1248 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1249 // of bits specified in the delay parameter.
1250 void PrepareDelayedTransfer(uint16_t delay)
1251 {
1252 uint8_t bitmask = 0;
1253 uint8_t bits_to_shift = 0;
1254 uint8_t bits_shifted = 0;
1255
1256 delay &= 0x07;
1257 if (delay) {
1258 for (uint16_t i = 0; i < delay; i++) {
1259 bitmask |= (0x01 << i);
1260 }
1261 ToSend[ToSendMax++] = 0x00;
1262 for (uint16_t i = 0; i < ToSendMax; i++) {
1263 bits_to_shift = ToSend[i] & bitmask;
1264 ToSend[i] = ToSend[i] >> delay;
1265 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1266 bits_shifted = bits_to_shift;
1267 }
1268 }
1269 }
1270
1271
1272 //-------------------------------------------------------------------------------------
1273 // Transmit the command (to the tag) that was placed in ToSend[].
1274 // Parameter timing:
1275 // if NULL: transfer at next possible time, taking into account
1276 // request guard time and frame delay time
1277 // if == 0: transfer immediately and return time of transfer
1278 // if != 0: delay transfer until time specified
1279 //-------------------------------------------------------------------------------------
1280 static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
1281 {
1282
1283 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1284
1285 uint32_t ThisTransferTime = 0;
1286
1287 if (timing) {
1288 if(*timing == 0) { // Measure time
1289 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
1290 } else {
1291 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1292 }
1293 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1294 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1295 LastTimeProxToAirStart = *timing;
1296 } else {
1297 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1298 while(GetCountSspClk() < ThisTransferTime);
1299 LastTimeProxToAirStart = ThisTransferTime;
1300 }
1301
1302 // clear TXRDY
1303 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1304
1305 // for(uint16_t c = 0; c < 10;) { // standard delay for each transfer (allow tag to be ready after last transmission)
1306 // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1307 // AT91C_BASE_SSC->SSC_THR = SEC_Y;
1308 // c++;
1309 // }
1310 // }
1311
1312 uint16_t c = 0;
1313 for(;;) {
1314 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1315 AT91C_BASE_SSC->SSC_THR = cmd[c];
1316 c++;
1317 if(c >= len) {
1318 break;
1319 }
1320 }
1321 }
1322
1323 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
1324
1325 }
1326
1327
1328 //-----------------------------------------------------------------------------
1329 // Prepare reader command (in bits, support short frames) to send to FPGA
1330 //-----------------------------------------------------------------------------
1331 void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
1332 {
1333 int i, j;
1334 int last;
1335 uint8_t b;
1336
1337 ToSendReset();
1338
1339 // Start of Communication (Seq. Z)
1340 ToSend[++ToSendMax] = SEC_Z;
1341 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1342 last = 0;
1343
1344 size_t bytecount = nbytes(bits);
1345 // Generate send structure for the data bits
1346 for (i = 0; i < bytecount; i++) {
1347 // Get the current byte to send
1348 b = cmd[i];
1349 size_t bitsleft = MIN((bits-(i*8)),8);
1350
1351 for (j = 0; j < bitsleft; j++) {
1352 if (b & 1) {
1353 // Sequence X
1354 ToSend[++ToSendMax] = SEC_X;
1355 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1356 last = 1;
1357 } else {
1358 if (last == 0) {
1359 // Sequence Z
1360 ToSend[++ToSendMax] = SEC_Z;
1361 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1362 } else {
1363 // Sequence Y
1364 ToSend[++ToSendMax] = SEC_Y;
1365 last = 0;
1366 }
1367 }
1368 b >>= 1;
1369 }
1370
1371 // Only transmit parity bit if we transmitted a complete byte
1372 if (j == 8) {
1373 // Get the parity bit
1374 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
1375 // Sequence X
1376 ToSend[++ToSendMax] = SEC_X;
1377 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1378 last = 1;
1379 } else {
1380 if (last == 0) {
1381 // Sequence Z
1382 ToSend[++ToSendMax] = SEC_Z;
1383 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1384 } else {
1385 // Sequence Y
1386 ToSend[++ToSendMax] = SEC_Y;
1387 last = 0;
1388 }
1389 }
1390 }
1391 }
1392
1393 // End of Communication: Logic 0 followed by Sequence Y
1394 if (last == 0) {
1395 // Sequence Z
1396 ToSend[++ToSendMax] = SEC_Z;
1397 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1398 } else {
1399 // Sequence Y
1400 ToSend[++ToSendMax] = SEC_Y;
1401 last = 0;
1402 }
1403 ToSend[++ToSendMax] = SEC_Y;
1404
1405 // Convert to length of command:
1406 ToSendMax++;
1407 }
1408
1409 //-----------------------------------------------------------------------------
1410 // Prepare reader command to send to FPGA
1411 //-----------------------------------------------------------------------------
1412 void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
1413 {
1414 CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
1415 }
1416
1417 //-----------------------------------------------------------------------------
1418 // Wait for commands from reader
1419 // Stop when button is pressed (return 1) or field was gone (return 2)
1420 // Or return 0 when command is captured
1421 //-----------------------------------------------------------------------------
1422 static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
1423 {
1424 *len = 0;
1425
1426 uint32_t timer = 0, vtime = 0;
1427 int analogCnt = 0;
1428 int analogAVG = 0;
1429
1430 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1431 // only, since we are receiving, not transmitting).
1432 // Signal field is off with the appropriate LED
1433 LED_D_OFF();
1434 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1435
1436 // Set ADC to read field strength
1437 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1438 AT91C_BASE_ADC->ADC_MR =
1439 ADC_MODE_PRESCALE(32) |
1440 ADC_MODE_STARTUP_TIME(16) |
1441 ADC_MODE_SAMPLE_HOLD_TIME(8);
1442 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1443 // start ADC
1444 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1445
1446 // Now run a 'software UART' on the stream of incoming samples.
1447 UartInit(received, parity);
1448
1449 // Clear RXRDY:
1450 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1451
1452 for(;;) {
1453 WDT_HIT();
1454
1455 if (BUTTON_PRESS()) return 1;
1456
1457 // test if the field exists
1458 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1459 analogCnt++;
1460 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1461 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1462 if (analogCnt >= 32) {
1463 if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
1464 vtime = GetTickCount();
1465 if (!timer) timer = vtime;
1466 // 50ms no field --> card to idle state
1467 if (vtime - timer > 50) return 2;
1468 } else
1469 if (timer) timer = 0;
1470 analogCnt = 0;
1471 analogAVG = 0;
1472 }
1473 }
1474
1475 // receive and test the miller decoding
1476 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1477 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1478 if(MillerDecoding(b, 0)) {
1479 *len = Uart.len;
1480 return 0;
1481 }
1482 }
1483
1484 }
1485 }
1486
1487
1488 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
1489 {
1490 uint8_t b;
1491 uint16_t i = 0;
1492 uint32_t ThisTransferTime;
1493
1494 // Modulate Manchester
1495 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1496
1497 // include correction bit if necessary
1498 if (Uart.parityBits & 0x01) {
1499 correctionNeeded = TRUE;
1500 }
1501 if(correctionNeeded) {
1502 // 1236, so correction bit needed
1503 i = 0;
1504 } else {
1505 i = 1;
1506 }
1507
1508 // clear receiving shift register and holding register
1509 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1510 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1511 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1512 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1513
1514 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1515 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1516 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1517 if (AT91C_BASE_SSC->SSC_RHR) break;
1518 }
1519
1520 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1521
1522 // Clear TXRDY:
1523 AT91C_BASE_SSC->SSC_THR = SEC_F;
1524
1525 // send cycle
1526 for(; i <= respLen; ) {
1527 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1528 AT91C_BASE_SSC->SSC_THR = resp[i++];
1529 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1530 }
1531
1532 if(BUTTON_PRESS()) {
1533 break;
1534 }
1535 }
1536
1537 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1538 for (i = 0; i < 2 ; ) {
1539 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1540 AT91C_BASE_SSC->SSC_THR = SEC_F;
1541 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1542 i++;
1543 }
1544 }
1545
1546 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1547
1548 return 0;
1549 }
1550
1551 int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1552 Code4bitAnswerAsTag(resp);
1553 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1554 // do the tracing for the previous reader request and this tag answer:
1555 uint8_t par[1];
1556 GetParity(&resp, 1, par);
1557 EmLogTrace(Uart.output,
1558 Uart.len,
1559 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1560 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1561 Uart.parity,
1562 &resp,
1563 1,
1564 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1565 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1566 par);
1567 return res;
1568 }
1569
1570 int EmSend4bit(uint8_t resp){
1571 return EmSend4bitEx(resp, false);
1572 }
1573
1574 int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
1575 CodeIso14443aAsTagPar(resp, respLen, par);
1576 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1577 // do the tracing for the previous reader request and this tag answer:
1578 EmLogTrace(Uart.output,
1579 Uart.len,
1580 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1581 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1582 Uart.parity,
1583 resp,
1584 respLen,
1585 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1586 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1587 par);
1588 return res;
1589 }
1590
1591 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
1592 uint8_t par[MAX_PARITY_SIZE];
1593 GetParity(resp, respLen, par);
1594 return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
1595 }
1596
1597 int EmSendCmd(uint8_t *resp, uint16_t respLen){
1598 uint8_t par[MAX_PARITY_SIZE];
1599 GetParity(resp, respLen, par);
1600 return EmSendCmdExPar(resp, respLen, false, par);
1601 }
1602
1603 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
1604 return EmSendCmdExPar(resp, respLen, false, par);
1605 }
1606
1607 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
1608 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
1609 {
1610 if (tracing) {
1611 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1612 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1613 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1614 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1615 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1616 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1617 reader_EndTime = tag_StartTime - exact_fdt;
1618 reader_StartTime = reader_EndTime - reader_modlen;
1619 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
1620 return FALSE;
1621 } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
1622 } else {
1623 return TRUE;
1624 }
1625 }
1626
1627 //-----------------------------------------------------------------------------
1628 // Wait a certain time for tag response
1629 // If a response is captured return TRUE
1630 // If it takes too long return FALSE
1631 //-----------------------------------------------------------------------------
1632 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
1633 {
1634 uint16_t c;
1635
1636 // Set FPGA mode to "reader listen mode", no modulation (listen
1637 // only, since we are receiving, not transmitting).
1638 // Signal field is on with the appropriate LED
1639 LED_D_ON();
1640 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1641
1642 // Now get the answer from the card
1643 DemodInit(receivedResponse, receivedResponsePar);
1644
1645 // clear RXRDY:
1646 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1647
1648 c = 0;
1649 for(;;) {
1650 WDT_HIT();
1651
1652 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1653 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1654 if(ManchesterDecoding(b, offset, 0)) {
1655 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
1656 return TRUE;
1657 } else if (c++ > iso14a_timeout) {
1658 return FALSE;
1659 }
1660 }
1661 }
1662 }
1663
1664 void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
1665 {
1666
1667 CodeIso14443aBitsAsReaderPar(frame, bits, par);
1668
1669 // Send command to tag
1670 TransmitFor14443a(ToSend, ToSendMax, timing);
1671 if(trigger)
1672 LED_A_ON();
1673
1674 // Log reader command in trace buffer
1675 if (tracing) {
1676 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
1677 }
1678 }
1679
1680 void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
1681 {
1682 ReaderTransmitBitsPar(frame, len*8, par, timing);
1683 }
1684
1685 void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
1686 {
1687 // Generate parity and redirect
1688 uint8_t par[MAX_PARITY_SIZE];
1689 GetParity(frame, len/8, par);
1690 ReaderTransmitBitsPar(frame, len, par, timing);
1691 }
1692
1693 void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
1694 {
1695 // Generate parity and redirect
1696 uint8_t par[MAX_PARITY_SIZE];
1697 GetParity(frame, len, par);
1698 ReaderTransmitBitsPar(frame, len*8, par, timing);
1699 }
1700
1701 int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
1702 {
1703 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
1704 if (tracing) {
1705 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1706 }
1707 return Demod.len;
1708 }
1709
1710 int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
1711 {
1712 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
1713 if (tracing) {
1714 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1715 }
1716 return Demod.len;
1717 }
1718
1719 /* performs iso14443a anticollision procedure
1720 * fills the uid pointer unless NULL
1721 * fills resp_data unless NULL */
1722 int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
1723 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1724 uint8_t sel_all[] = { 0x93,0x20 };
1725 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1726 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1727 uint8_t *resp = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET;
1728 uint8_t *resp_par = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
1729 byte_t uid_resp[4];
1730 size_t uid_resp_len;
1731
1732 uint8_t sak = 0x04; // cascade uid
1733 int cascade_level = 0;
1734 int len;
1735
1736 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1737 ReaderTransmitBitsPar(wupa,7,0, NULL);
1738
1739 // Receive the ATQA
1740 if(!ReaderReceive(resp, resp_par)) return 0;
1741 //Dbprintf("atqa: %02x %02x",resp[1],resp[0]);
1742
1743 if(p_hi14a_card) {
1744 memcpy(p_hi14a_card->atqa, resp, 2);
1745 p_hi14a_card->uidlen = 0;
1746 memset(p_hi14a_card->uid,0,10);
1747 }
1748
1749 // clear uid
1750 if (uid_ptr) {
1751 memset(uid_ptr,0,10);
1752 }
1753
1754 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1755 // which case we need to make a cascade 2 request and select - this is a long UID
1756 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1757 for(; sak & 0x04; cascade_level++) {
1758 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1759 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1760
1761 // SELECT_ALL
1762 ReaderTransmit(sel_all, sizeof(sel_all), NULL);
1763 if (!ReaderReceive(resp, resp_par)) return 0;
1764
1765 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1766 memset(uid_resp, 0, 4);
1767 uint16_t uid_resp_bits = 0;
1768 uint16_t collision_answer_offset = 0;
1769 // anti-collision-loop:
1770 while (Demod.collisionPos) {
1771 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1772 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1773 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
1774 uid_resp[uid_resp_bits & 0xf8] |= UIDbit << (uid_resp_bits % 8);
1775 }
1776 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1777 uid_resp_bits++;
1778 // construct anticollosion command:
1779 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1780 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1781 sel_uid[2+i] = uid_resp[i];
1782 }
1783 collision_answer_offset = uid_resp_bits%8;
1784 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1785 if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
1786 }
1787 // finally, add the last bits and BCC of the UID
1788 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1789 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1790 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
1791 }
1792
1793 } else { // no collision, use the response to SELECT_ALL as current uid
1794 memcpy(uid_resp, resp, 4);
1795 }
1796 uid_resp_len = 4;
1797 //Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
1798
1799 // calculate crypto UID. Always use last 4 Bytes.
1800 if(cuid_ptr) {
1801 *cuid_ptr = bytes_to_num(uid_resp, 4);
1802 }
1803
1804 // Construct SELECT UID command
1805 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1806 memcpy(sel_uid+2, uid_resp, 4); // the UID
1807 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1808 AppendCrc14443a(sel_uid, 7); // calculate and add CRC
1809 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
1810
1811 // Receive the SAK
1812 if (!ReaderReceive(resp, resp_par)) return 0;
1813 sak = resp[0];
1814
1815 // Test if more parts of the uid are comming
1816 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1817 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1818 // http://www.nxp.com/documents/application_note/AN10927.pdf
1819 // This was earlier:
1820 //memcpy(uid_resp, uid_resp + 1, 3);
1821 // But memcpy should not be used for overlapping arrays,
1822 // and memmove appears to not be available in the arm build.
1823 // Therefore:
1824 uid_resp[0] = uid_resp[1];
1825 uid_resp[1] = uid_resp[2];
1826 uid_resp[2] = uid_resp[3];
1827
1828 uid_resp_len = 3;
1829 }
1830
1831 if(uid_ptr) {
1832 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
1833 }
1834
1835 if(p_hi14a_card) {
1836 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1837 p_hi14a_card->uidlen += uid_resp_len;
1838 }
1839 }
1840
1841 if(p_hi14a_card) {
1842 p_hi14a_card->sak = sak;
1843 p_hi14a_card->ats_len = 0;
1844 }
1845
1846 if( (sak & 0x20) == 0) {
1847 return 2; // non iso14443a compliant tag
1848 }
1849
1850 // Request for answer to select
1851 AppendCrc14443a(rats, 2);
1852 ReaderTransmit(rats, sizeof(rats), NULL);
1853
1854 if (!(len = ReaderReceive(resp, resp_par))) return 0;
1855
1856 if(p_hi14a_card) {
1857 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
1858 p_hi14a_card->ats_len = len;
1859 }
1860
1861 // reset the PCB block number
1862 iso14_pcb_blocknum = 0;
1863
1864 return 1;
1865 }
1866
1867 void iso14443a_setup(uint8_t fpga_minor_mode) {
1868 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1869 // Set up the synchronous serial port
1870 FpgaSetupSsc();
1871 // connect Demodulated Signal to ADC:
1872 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1873
1874 // Signal field is on with the appropriate LED
1875 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
1876 || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
1877 LED_D_ON();
1878 } else {
1879 LED_D_OFF();
1880 }
1881 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
1882
1883 // Start the timer
1884 StartCountSspClk();
1885
1886 DemodReset();
1887 UartReset();
1888 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
1889 iso14a_set_timeout(1050); // 10ms default
1890 }
1891
1892 int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
1893 uint8_t parity[MAX_PARITY_SIZE];
1894 uint8_t real_cmd[cmd_len+4];
1895 real_cmd[0] = 0x0a; //I-Block
1896 // put block number into the PCB
1897 real_cmd[0] |= iso14_pcb_blocknum;
1898 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1899 memcpy(real_cmd+2, cmd, cmd_len);
1900 AppendCrc14443a(real_cmd,cmd_len+2);
1901
1902 ReaderTransmit(real_cmd, cmd_len+4, NULL);
1903 size_t len = ReaderReceive(data, parity);
1904 uint8_t *data_bytes = (uint8_t *) data;
1905 if (!len)
1906 return 0; //DATA LINK ERROR
1907 // if we received an I- or R(ACK)-Block with a block number equal to the
1908 // current block number, toggle the current block number
1909 else if (len >= 4 // PCB+CID+CRC = 4 bytes
1910 && ((data_bytes[0] & 0xC0) == 0 // I-Block
1911 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1912 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
1913 {
1914 iso14_pcb_blocknum ^= 1;
1915 }
1916
1917 return len;
1918 }
1919
1920 //-----------------------------------------------------------------------------
1921 // Read an ISO 14443a tag. Send out commands and store answers.
1922 //
1923 //-----------------------------------------------------------------------------
1924 void ReaderIso14443a(UsbCommand *c)
1925 {
1926 iso14a_command_t param = c->arg[0];
1927 uint8_t *cmd = c->d.asBytes;
1928 size_t len = c->arg[1];
1929 size_t lenbits = c->arg[2];
1930 uint32_t arg0 = 0;
1931 byte_t buf[USB_CMD_DATA_SIZE];
1932 uint8_t par[MAX_PARITY_SIZE];
1933
1934 if(param & ISO14A_CONNECT) {
1935 iso14a_clear_trace();
1936 }
1937
1938 iso14a_set_tracing(TRUE);
1939
1940 if(param & ISO14A_REQUEST_TRIGGER) {
1941 iso14a_set_trigger(TRUE);
1942 }
1943
1944 if(param & ISO14A_CONNECT) {
1945 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
1946 if(!(param & ISO14A_NO_SELECT)) {
1947 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
1948 arg0 = iso14443a_select_card(NULL,card,NULL);
1949 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
1950 }
1951 }
1952
1953 if(param & ISO14A_SET_TIMEOUT) {
1954 iso14a_timeout = c->arg[2];
1955 }
1956
1957 if(param & ISO14A_APDU) {
1958 arg0 = iso14_apdu(cmd, len, buf);
1959 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
1960 }
1961
1962 if(param & ISO14A_RAW) {
1963 if(param & ISO14A_APPEND_CRC) {
1964 AppendCrc14443a(cmd,len);
1965 len += 2;
1966 if (lenbits) lenbits += 16;
1967 }
1968 if(lenbits>0) {
1969 GetParity(cmd, lenbits/8, par);
1970 ReaderTransmitBitsPar(cmd, lenbits, par, NULL);
1971 } else {
1972 ReaderTransmit(cmd,len, NULL);
1973 }
1974 arg0 = ReaderReceive(buf, par);
1975 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
1976 }
1977
1978 if(param & ISO14A_REQUEST_TRIGGER) {
1979 iso14a_set_trigger(FALSE);
1980 }
1981
1982 if(param & ISO14A_NO_DISCONNECT) {
1983 return;
1984 }
1985
1986 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1987 LEDsoff();
1988 }
1989
1990
1991 // Determine the distance between two nonces.
1992 // Assume that the difference is small, but we don't know which is first.
1993 // Therefore try in alternating directions.
1994 int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
1995
1996 uint16_t i;
1997 uint32_t nttmp1, nttmp2;
1998
1999 if (nt1 == nt2) return 0;
2000
2001 nttmp1 = nt1;
2002 nttmp2 = nt2;
2003
2004 for (i = 1; i < 32768; i++) {
2005 nttmp1 = prng_successor(nttmp1, 1);
2006 if (nttmp1 == nt2) return i;
2007 nttmp2 = prng_successor(nttmp2, 1);
2008 if (nttmp2 == nt1) return -i;
2009 }
2010
2011 return(-99999); // either nt1 or nt2 are invalid nonces
2012 }
2013
2014
2015 //-----------------------------------------------------------------------------
2016 // Recover several bits of the cypher stream. This implements (first stages of)
2017 // the algorithm described in "The Dark Side of Security by Obscurity and
2018 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2019 // (article by Nicolas T. Courtois, 2009)
2020 //-----------------------------------------------------------------------------
2021 void ReaderMifare(bool first_try)
2022 {
2023 // Mifare AUTH
2024 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
2025 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2026 static uint8_t mf_nr_ar3;
2027
2028 uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
2029 uint8_t* receivedAnswerPar = (((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET);
2030
2031 iso14a_clear_trace();
2032 iso14a_set_tracing(TRUE);
2033
2034 byte_t nt_diff = 0;
2035 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2036 static byte_t par_low = 0;
2037 bool led_on = TRUE;
2038 uint8_t uid[10] ={0};
2039 uint32_t cuid;
2040
2041 uint32_t nt = 0;
2042 uint32_t previous_nt = 0;
2043 static uint32_t nt_attacked = 0;
2044 byte_t par_list[8] = {0,0,0,0,0,0,0,0};
2045 byte_t ks_list[8] = {0,0,0,0,0,0,0,0};
2046
2047 static uint32_t sync_time;
2048 static uint32_t sync_cycles;
2049 int catch_up_cycles = 0;
2050 int last_catch_up = 0;
2051 uint16_t consecutive_resyncs = 0;
2052 int isOK = 0;
2053
2054
2055
2056 if (first_try) {
2057 mf_nr_ar3 = 0;
2058 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2059 sync_time = GetCountSspClk() & 0xfffffff8;
2060 sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2061 nt_attacked = 0;
2062 nt = 0;
2063 par[0] = 0;
2064 }
2065 else {
2066 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2067 mf_nr_ar3++;
2068 mf_nr_ar[3] = mf_nr_ar3;
2069 par[0] = par_low;
2070 }
2071
2072 LED_A_ON();
2073 LED_B_OFF();
2074 LED_C_OFF();
2075
2076
2077 for(uint16_t i = 0; TRUE; i++) {
2078
2079 WDT_HIT();
2080
2081 // Test if the action was cancelled
2082 if(BUTTON_PRESS()) {
2083 break;
2084 }
2085
2086 LED_C_ON();
2087
2088 if(!iso14443a_select_card(uid, NULL, &cuid)) {
2089 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
2090 continue;
2091 }
2092
2093 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
2094 catch_up_cycles = 0;
2095
2096 // if we missed the sync time already, advance to the next nonce repeat
2097 while(GetCountSspClk() > sync_time) {
2098 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
2099 }
2100
2101 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2102 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
2103
2104 // Receive the (4 Byte) "random" nonce
2105 if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
2106 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2107 continue;
2108 }
2109
2110 previous_nt = nt;
2111 nt = bytes_to_num(receivedAnswer, 4);
2112
2113 // Transmit reader nonce with fake par
2114 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
2115
2116 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2117 int nt_distance = dist_nt(previous_nt, nt);
2118 if (nt_distance == 0) {
2119 nt_attacked = nt;
2120 }
2121 else {
2122 if (nt_distance == -99999) { // invalid nonce received, try again
2123 continue;
2124 }
2125 sync_cycles = (sync_cycles - nt_distance);
2126 if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
2127 continue;
2128 }
2129 }
2130
2131 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2132 catch_up_cycles = -dist_nt(nt_attacked, nt);
2133 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
2134 catch_up_cycles = 0;
2135 continue;
2136 }
2137 if (catch_up_cycles == last_catch_up) {
2138 consecutive_resyncs++;
2139 }
2140 else {
2141 last_catch_up = catch_up_cycles;
2142 consecutive_resyncs = 0;
2143 }
2144 if (consecutive_resyncs < 3) {
2145 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
2146 }
2147 else {
2148 sync_cycles = sync_cycles + catch_up_cycles;
2149 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
2150 }
2151 continue;
2152 }
2153
2154 consecutive_resyncs = 0;
2155
2156 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2157 if (ReaderReceive(receivedAnswer, receivedAnswerPar))
2158 {
2159 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2160
2161 if (nt_diff == 0)
2162 {
2163 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2164 }
2165
2166 led_on = !led_on;
2167 if(led_on) LED_B_ON(); else LED_B_OFF();
2168
2169 par_list[nt_diff] = SwapBits(par[0], 8);
2170 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2171
2172 // Test if the information is complete
2173 if (nt_diff == 0x07) {
2174 isOK = 1;
2175 break;
2176 }
2177
2178 nt_diff = (nt_diff + 1) & 0x07;
2179 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
2180 par[0] = par_low;
2181 } else {
2182 if (nt_diff == 0 && first_try)
2183 {
2184 par[0]++;
2185 } else {
2186 par[0] = ((par[0] & 0x1F) + 1) | par_low;
2187 }
2188 }
2189 }
2190
2191
2192 mf_nr_ar[3] &= 0x1F;
2193
2194 byte_t buf[28];
2195 memcpy(buf + 0, uid, 4);
2196 num_to_bytes(nt, 4, buf + 4);
2197 memcpy(buf + 8, par_list, 8);
2198 memcpy(buf + 16, ks_list, 8);
2199 memcpy(buf + 24, mf_nr_ar, 4);
2200
2201 cmd_send(CMD_ACK,isOK,0,0,buf,28);
2202
2203 // Thats it...
2204 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2205 LEDsoff();
2206
2207 iso14a_set_tracing(FALSE);
2208 }
2209
2210 /**
2211 *MIFARE 1K simulate.
2212 *
2213 *@param flags :
2214 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2215 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2216 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2217 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2218 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2219 */
2220 void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
2221 {
2222 int cardSTATE = MFEMUL_NOFIELD;
2223 int _7BUID = 0;
2224 int vHf = 0; // in mV
2225 int res;
2226 uint32_t selTimer = 0;
2227 uint32_t authTimer = 0;
2228 uint16_t len = 0;
2229 uint8_t cardWRBL = 0;
2230 uint8_t cardAUTHSC = 0;
2231 uint8_t cardAUTHKEY = 0xff; // no authentication
2232 uint32_t cardRr = 0;
2233 uint32_t cuid = 0;
2234 //uint32_t rn_enc = 0;
2235 uint32_t ans = 0;
2236 uint32_t cardINTREG = 0;
2237 uint8_t cardINTBLOCK = 0;
2238 struct Crypto1State mpcs = {0, 0};
2239 struct Crypto1State *pcs;
2240 pcs = &mpcs;
2241 uint32_t numReads = 0;//Counts numer of times reader read a block
2242 uint8_t* receivedCmd = get_bigbufptr_recvcmdbuf();
2243 uint8_t* receivedCmd_par = receivedCmd + MAX_FRAME_SIZE;
2244 uint8_t* response = get_bigbufptr_recvrespbuf();
2245 uint8_t* response_par = response + MAX_FRAME_SIZE;
2246
2247 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2248 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2249 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2250 uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
2251 uint8_t rSAK1[] = {0x04, 0xda, 0x17};
2252
2253 uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
2254 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
2255
2256 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2257 // This can be used in a reader-only attack.
2258 // (it can also be retrieved via 'hf 14a list', but hey...
2259 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
2260 uint8_t ar_nr_collected = 0;
2261
2262 // clear trace
2263 iso14a_clear_trace();
2264 iso14a_set_tracing(TRUE);
2265
2266 // Authenticate response - nonce
2267 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
2268
2269 //-- Determine the UID
2270 // Can be set from emulator memory, incoming data
2271 // and can be 7 or 4 bytes long
2272 if (flags & FLAG_4B_UID_IN_DATA)
2273 {
2274 // 4B uid comes from data-portion of packet
2275 memcpy(rUIDBCC1,datain,4);
2276 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2277
2278 } else if (flags & FLAG_7B_UID_IN_DATA) {
2279 // 7B uid comes from data-portion of packet
2280 memcpy(&rUIDBCC1[1],datain,3);
2281 memcpy(rUIDBCC2, datain+3, 4);
2282 _7BUID = true;
2283 } else {
2284 // get UID from emul memory
2285 emlGetMemBt(receivedCmd, 7, 1);
2286 _7BUID = !(receivedCmd[0] == 0x00);
2287 if (!_7BUID) { // ---------- 4BUID
2288 emlGetMemBt(rUIDBCC1, 0, 4);
2289 } else { // ---------- 7BUID
2290 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2291 emlGetMemBt(rUIDBCC2, 3, 4);
2292 }
2293 }
2294
2295 /*
2296 * Regardless of what method was used to set the UID, set fifth byte and modify
2297 * the ATQA for 4 or 7-byte UID
2298 */
2299 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2300 if (_7BUID) {
2301 rATQA[0] = 0x44;
2302 rUIDBCC1[0] = 0x88;
2303 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2304 }
2305
2306 // We need to listen to the high-frequency, peak-detected path.
2307 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
2308
2309
2310 if (MF_DBGLEVEL >= 1) {
2311 if (!_7BUID) {
2312 Dbprintf("4B UID: %02x%02x%02x%02x",
2313 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
2314 } else {
2315 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2316 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
2317 rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
2318 }
2319 }
2320
2321 bool finished = FALSE;
2322 while (!BUTTON_PRESS() && !finished) {
2323 WDT_HIT();
2324
2325 // find reader field
2326 // Vref = 3300mV, and an 10:1 voltage divider on the input
2327 // can measure voltages up to 33000 mV
2328 if (cardSTATE == MFEMUL_NOFIELD) {
2329 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
2330 if (vHf > MF_MINFIELDV) {
2331 cardSTATE_TO_IDLE();
2332 LED_A_ON();
2333 }
2334 }
2335 if(cardSTATE == MFEMUL_NOFIELD) continue;
2336
2337 //Now, get data
2338
2339 res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
2340 if (res == 2) { //Field is off!
2341 cardSTATE = MFEMUL_NOFIELD;
2342 LEDsoff();
2343 continue;
2344 } else if (res == 1) {
2345 break; //return value 1 means button press
2346 }
2347
2348 // REQ or WUP request in ANY state and WUP in HALTED state
2349 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2350 selTimer = GetTickCount();
2351 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2352 cardSTATE = MFEMUL_SELECT1;
2353
2354 // init crypto block
2355 LED_B_OFF();
2356 LED_C_OFF();
2357 crypto1_destroy(pcs);
2358 cardAUTHKEY = 0xff;
2359 continue;
2360 }
2361
2362 switch (cardSTATE) {
2363 case MFEMUL_NOFIELD:
2364 case MFEMUL_HALTED:
2365 case MFEMUL_IDLE:{
2366 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2367 break;
2368 }
2369 case MFEMUL_SELECT1:{
2370 // select all
2371 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
2372 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
2373 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
2374 break;
2375 }
2376
2377 if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
2378 {
2379 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2380 }
2381 // select card
2382 if (len == 9 &&
2383 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
2384 EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
2385 cuid = bytes_to_num(rUIDBCC1, 4);
2386 if (!_7BUID) {
2387 cardSTATE = MFEMUL_WORK;
2388 LED_B_ON();
2389 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2390 break;
2391 } else {
2392 cardSTATE = MFEMUL_SELECT2;
2393 }
2394 }
2395 break;
2396 }
2397 case MFEMUL_AUTH1:{
2398 if( len != 8)
2399 {
2400 cardSTATE_TO_IDLE();
2401 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2402 break;
2403 }
2404 uint32_t ar = bytes_to_num(receivedCmd, 4);
2405 uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
2406
2407 //Collect AR/NR
2408 if(ar_nr_collected < 2){
2409 if(ar_nr_responses[2] != ar)
2410 {// Avoid duplicates... probably not necessary, ar should vary.
2411 ar_nr_responses[ar_nr_collected*4] = cuid;
2412 ar_nr_responses[ar_nr_collected*4+1] = nonce;
2413 ar_nr_responses[ar_nr_collected*4+2] = ar;
2414 ar_nr_responses[ar_nr_collected*4+3] = nr;
2415 ar_nr_collected++;
2416 }
2417 }
2418
2419 // --- crypto
2420 crypto1_word(pcs, ar , 1);
2421 cardRr = nr ^ crypto1_word(pcs, 0, 0);
2422
2423 // test if auth OK
2424 if (cardRr != prng_successor(nonce, 64)){
2425 if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2426 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2427 cardRr, prng_successor(nonce, 64));
2428 // Shouldn't we respond anything here?
2429 // Right now, we don't nack or anything, which causes the
2430 // reader to do a WUPA after a while. /Martin
2431 // -- which is the correct response. /piwi
2432 cardSTATE_TO_IDLE();
2433 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2434 break;
2435 }
2436
2437 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2438
2439 num_to_bytes(ans, 4, rAUTH_AT);
2440 // --- crypto
2441 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2442 LED_C_ON();
2443 cardSTATE = MFEMUL_WORK;
2444 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2445 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2446 GetTickCount() - authTimer);
2447 break;
2448 }
2449 case MFEMUL_SELECT2:{
2450 if (!len) {
2451 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2452 break;
2453 }
2454 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
2455 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
2456 break;
2457 }
2458
2459 // select 2 card
2460 if (len == 9 &&
2461 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2462 EmSendCmd(rSAK, sizeof(rSAK));
2463 cuid = bytes_to_num(rUIDBCC2, 4);
2464 cardSTATE = MFEMUL_WORK;
2465 LED_B_ON();
2466 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
2467 break;
2468 }
2469
2470 // i guess there is a command). go into the work state.
2471 if (len != 4) {
2472 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2473 break;
2474 }
2475 cardSTATE = MFEMUL_WORK;
2476 //goto lbWORK;
2477 //intentional fall-through to the next case-stmt
2478 }
2479
2480 case MFEMUL_WORK:{
2481 if (len == 0) {
2482 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2483 break;
2484 }
2485
2486 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2487
2488 if(encrypted_data) {
2489 // decrypt seqence
2490 mf_crypto1_decrypt(pcs, receivedCmd, len);
2491 }
2492
2493 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2494 authTimer = GetTickCount();
2495 cardAUTHSC = receivedCmd[1] / 4; // received block num
2496 cardAUTHKEY = receivedCmd[0] - 0x60;
2497 crypto1_destroy(pcs);//Added by martin
2498 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
2499
2500 if (!encrypted_data) { // first authentication
2501 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2502
2503 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2504 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
2505 } else { // nested authentication
2506 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2507 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
2508 num_to_bytes(ans, 4, rAUTH_AT);
2509 }
2510 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2511 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2512 cardSTATE = MFEMUL_AUTH1;
2513 break;
2514 }
2515
2516 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2517 // BUT... ACK --> NACK
2518 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2519 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2520 break;
2521 }
2522
2523 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2524 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2525 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2526 break;
2527 }
2528
2529 if(len != 4) {
2530 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2531 break;
2532 }
2533
2534 if(receivedCmd[0] == 0x30 // read block
2535 || receivedCmd[0] == 0xA0 // write block
2536 || receivedCmd[0] == 0xC0 // inc
2537 || receivedCmd[0] == 0xC1 // dec
2538 || receivedCmd[0] == 0xC2 // restore
2539 || receivedCmd[0] == 0xB0) { // transfer
2540 if (receivedCmd[1] >= 16 * 4) {
2541 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2542 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2543 break;
2544 }
2545
2546 if (receivedCmd[1] / 4 != cardAUTHSC) {
2547 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2548 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
2549 break;
2550 }
2551 }
2552 // read block
2553 if (receivedCmd[0] == 0x30) {
2554 if (MF_DBGLEVEL >= 4) {
2555 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2556 }
2557 emlGetMem(response, receivedCmd[1], 1);
2558 AppendCrc14443a(response, 16);
2559 mf_crypto1_encrypt(pcs, response, 18, response_par);
2560 EmSendCmdPar(response, 18, response_par);
2561 numReads++;
2562 if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
2563 Dbprintf("%d reads done, exiting", numReads);
2564 finished = true;
2565 }
2566 break;
2567 }
2568 // write block
2569 if (receivedCmd[0] == 0xA0) {
2570 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
2571 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2572 cardSTATE = MFEMUL_WRITEBL2;
2573 cardWRBL = receivedCmd[1];
2574 break;
2575 }
2576 // increment, decrement, restore
2577 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
2578 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2579 if (emlCheckValBl(receivedCmd[1])) {
2580 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2581 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2582 break;
2583 }
2584 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2585 if (receivedCmd[0] == 0xC1)
2586 cardSTATE = MFEMUL_INTREG_INC;
2587 if (receivedCmd[0] == 0xC0)
2588 cardSTATE = MFEMUL_INTREG_DEC;
2589 if (receivedCmd[0] == 0xC2)
2590 cardSTATE = MFEMUL_INTREG_REST;
2591 cardWRBL = receivedCmd[1];
2592 break;
2593 }
2594 // transfer
2595 if (receivedCmd[0] == 0xB0) {
2596 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2597 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2598 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2599 else
2600 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2601 break;
2602 }
2603 // halt
2604 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
2605 LED_B_OFF();
2606 LED_C_OFF();
2607 cardSTATE = MFEMUL_HALTED;
2608 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
2609 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2610 break;
2611 }
2612 // RATS
2613 if (receivedCmd[0] == 0xe0) {//RATS
2614 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2615 break;
2616 }
2617 // command not allowed
2618 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2619 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2620 break;
2621 }
2622 case MFEMUL_WRITEBL2:{
2623 if (len == 18){
2624 mf_crypto1_decrypt(pcs, receivedCmd, len);
2625 emlSetMem(receivedCmd, cardWRBL, 1);
2626 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2627 cardSTATE = MFEMUL_WORK;
2628 } else {
2629 cardSTATE_TO_IDLE();
2630 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2631 }
2632 break;
2633 }
2634
2635 case MFEMUL_INTREG_INC:{
2636 mf_crypto1_decrypt(pcs, receivedCmd, len);
2637 memcpy(&ans, receivedCmd, 4);
2638 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2639 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2640 cardSTATE_TO_IDLE();
2641 break;
2642 }
2643 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2644 cardINTREG = cardINTREG + ans;
2645 cardSTATE = MFEMUL_WORK;
2646 break;
2647 }
2648 case MFEMUL_INTREG_DEC:{
2649 mf_crypto1_decrypt(pcs, receivedCmd, len);
2650 memcpy(&ans, receivedCmd, 4);
2651 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2652 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2653 cardSTATE_TO_IDLE();
2654 break;
2655 }
2656 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2657 cardINTREG = cardINTREG - ans;
2658 cardSTATE = MFEMUL_WORK;
2659 break;
2660 }
2661 case MFEMUL_INTREG_REST:{
2662 mf_crypto1_decrypt(pcs, receivedCmd, len);
2663 memcpy(&ans, receivedCmd, 4);
2664 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2665 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2666 cardSTATE_TO_IDLE();
2667 break;
2668 }
2669 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2670 cardSTATE = MFEMUL_WORK;
2671 break;
2672 }
2673 }
2674 }
2675
2676 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2677 LEDsoff();
2678
2679 if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
2680 {
2681 //May just aswell send the collected ar_nr in the response aswell
2682 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
2683 }
2684
2685 if(flags & FLAG_NR_AR_ATTACK)
2686 {
2687 if(ar_nr_collected > 1) {
2688 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2689 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
2690 ar_nr_responses[0], // UID
2691 ar_nr_responses[1], //NT
2692 ar_nr_responses[2], //AR1
2693 ar_nr_responses[3], //NR1
2694 ar_nr_responses[6], //AR2
2695 ar_nr_responses[7] //NR2
2696 );
2697 } else {
2698 Dbprintf("Failed to obtain two AR/NR pairs!");
2699 if(ar_nr_collected >0) {
2700 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2701 ar_nr_responses[0], // UID
2702 ar_nr_responses[1], //NT
2703 ar_nr_responses[2], //AR1
2704 ar_nr_responses[3] //NR1
2705 );
2706 }
2707 }
2708 }
2709 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen);
2710 }
2711
2712
2713
2714 //-----------------------------------------------------------------------------
2715 // MIFARE sniffer.
2716 //
2717 //-----------------------------------------------------------------------------
2718 void RAMFUNC SniffMifare(uint8_t param) {
2719 // param:
2720 // bit 0 - trigger from first card answer
2721 // bit 1 - trigger from first reader 7-bit request
2722
2723 // C(red) A(yellow) B(green)
2724 LEDsoff();
2725 // init trace buffer
2726 iso14a_clear_trace();
2727 iso14a_set_tracing(TRUE);
2728
2729 // The command (reader -> tag) that we're receiving.
2730 // The length of a received command will in most cases be no more than 18 bytes.
2731 // So 32 should be enough!
2732 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
2733 uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET;
2734 // The response (tag -> reader) that we're receiving.
2735 uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET);
2736 uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET;
2737
2738 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2739 // into trace, along with its length and other annotations.
2740 //uint8_t *trace = (uint8_t *)BigBuf;
2741
2742 // The DMA buffer, used to stream samples from the FPGA
2743 uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
2744 uint8_t *data = dmaBuf;
2745 uint8_t previous_data = 0;
2746 int maxDataLen = 0;
2747 int dataLen = 0;
2748 bool ReaderIsActive = FALSE;
2749 bool TagIsActive = FALSE;
2750
2751 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
2752
2753 // Set up the demodulator for tag -> reader responses.
2754 DemodInit(receivedResponse, receivedResponsePar);
2755
2756 // Set up the demodulator for the reader -> tag commands
2757 UartInit(receivedCmd, receivedCmdPar);
2758
2759 // Setup for the DMA.
2760 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2761
2762 LED_D_OFF();
2763
2764 // init sniffer
2765 MfSniffInit();
2766
2767 // And now we loop, receiving samples.
2768 for(uint32_t sniffCounter = 0; TRUE; ) {
2769
2770 if(BUTTON_PRESS()) {
2771 DbpString("cancelled by button");
2772 break;
2773 }
2774
2775 LED_A_ON();
2776 WDT_HIT();
2777
2778 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
2779 // check if a transaction is completed (timeout after 2000ms).
2780 // if yes, stop the DMA transfer and send what we have so far to the client
2781 if (MfSniffSend(2000)) {
2782 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2783 sniffCounter = 0;
2784 data = dmaBuf;
2785 maxDataLen = 0;
2786 ReaderIsActive = FALSE;
2787 TagIsActive = FALSE;
2788 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2789 }
2790 }
2791
2792 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
2793 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
2794 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
2795 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
2796 } else {
2797 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
2798 }
2799 // test for length of buffer
2800 if(dataLen > maxDataLen) { // we are more behind than ever...
2801 maxDataLen = dataLen;
2802 if(dataLen > 400) {
2803 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
2804 break;
2805 }
2806 }
2807 if(dataLen < 1) continue;
2808
2809 // primary buffer was stopped ( <-- we lost data!
2810 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
2811 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
2812 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
2813 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
2814 }
2815 // secondary buffer sets as primary, secondary buffer was stopped
2816 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
2817 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
2818 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
2819 }
2820
2821 LED_A_OFF();
2822
2823 if (sniffCounter & 0x01) {
2824
2825 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
2826 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
2827 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
2828 LED_C_INV();
2829 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
2830
2831 /* And ready to receive another command. */
2832 UartReset();
2833
2834 /* And also reset the demod code */
2835 DemodReset();
2836 }
2837 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
2838 }
2839
2840 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
2841 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
2842 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
2843 LED_C_INV();
2844
2845 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
2846
2847 // And ready to receive another response.
2848 DemodReset();
2849 }
2850 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
2851 }
2852 }
2853
2854 previous_data = *data;
2855 sniffCounter++;
2856 data++;
2857 if(data == dmaBuf + DMA_BUFFER_SIZE) {
2858 data = dmaBuf;
2859 }
2860
2861 } // main cycle
2862
2863 DbpString("COMMAND FINISHED");
2864
2865 FpgaDisableSscDma();
2866 MfSniffEnd();
2867
2868 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
2869 LEDsoff();
2870 }
Impressum, Datenschutz