1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
20 * Does the sample acquisition. If threshold is specified, the actual sampling
21 * is not commenced until the threshold has been reached.
22 * @param trigger_threshold - the threshold
23 * @param silent - is true, now outputs are made. If false, dbprints the status
25 void DoAcquisition125k_internal(int trigger_threshold
,bool silent
)
27 uint8_t *dest
= (uint8_t *)BigBuf
;
28 int n
= sizeof(BigBuf
);
34 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
35 AT91C_BASE_SSC
->SSC_THR
= 0x43;
38 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
39 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
41 if (trigger_threshold
!= -1 && dest
[i
] < trigger_threshold
)
44 trigger_threshold
= -1;
50 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
51 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
56 * Perform sample aquisition.
58 void DoAcquisition125k(int trigger_threshold
)
60 DoAcquisition125k_internal(trigger_threshold
, false);
64 * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
65 * if not already loaded, sets divisor and starts up the antenna.
66 * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
70 void LFSetupFPGAForADC(int divisor
, bool lf_field
)
72 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
73 if ( (divisor
== 1) || (divisor
< 0) || (divisor
> 255) )
74 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
75 else if (divisor
== 0)
76 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
78 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
80 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| (lf_field
? FPGA_LF_ADC_READER_FIELD
: 0));
82 // Connect the A/D to the peak-detected low-frequency path.
83 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
84 // Give it a bit of time for the resonant antenna to settle.
86 // Now set up the SSC to get the ADC samples that are now streaming at us.
90 * Initializes the FPGA, and acquires the samples.
92 void AcquireRawAdcSamples125k(int divisor
)
94 LFSetupFPGAForADC(divisor
, true);
95 // Now call the acquisition routine
96 DoAcquisition125k_internal(-1,false);
99 * Initializes the FPGA for snoop-mode, and acquires the samples.
102 void SnoopLFRawAdcSamples(int divisor
, int trigger_threshold
)
104 LFSetupFPGAForADC(divisor
, false);
105 DoAcquisition125k(trigger_threshold
);
108 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
111 /* Make sure the tag is reset */
112 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
113 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
117 int divisor_used
= 95; // 125 KHz
118 // see if 'h' was specified
120 if (command
[strlen((char *) command
) - 1] == 'h')
121 divisor_used
= 88; // 134.8 KHz
124 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
125 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
126 // Give it a bit of time for the resonant antenna to settle.
129 // And a little more time for the tag to fully power up
132 // Now set up the SSC to get the ADC samples that are now streaming at us.
135 // now modulate the reader field
136 while(*command
!= '\0' && *command
!= ' ') {
137 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
139 SpinDelayUs(delay_off
);
140 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
142 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
144 if(*(command
++) == '0')
145 SpinDelayUs(period_0
);
147 SpinDelayUs(period_1
);
149 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
151 SpinDelayUs(delay_off
);
152 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
154 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
157 DoAcquisition125k(-1);
160 /* blank r/w tag data stream
161 ...0000000000000000 01111111
162 1010101010101010101010101010101010101010101010101010101010101010
165 101010101010101[0]000...
167 [5555fe852c5555555555555555fe0000]
171 // some hardcoded initial params
172 // when we read a TI tag we sample the zerocross line at 2Mhz
173 // TI tags modulate a 1 as 16 cycles of 123.2Khz
174 // TI tags modulate a 0 as 16 cycles of 134.2Khz
175 #define FSAMPLE 2000000
176 #define FREQLO 123200
177 #define FREQHI 134200
179 signed char *dest
= (signed char *)BigBuf
;
180 int n
= sizeof(BigBuf
);
181 // int *dest = GraphBuffer;
182 // int n = GraphTraceLen;
184 // 128 bit shift register [shift3:shift2:shift1:shift0]
185 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
187 int i
, cycles
=0, samples
=0;
188 // how many sample points fit in 16 cycles of each frequency
189 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
190 // when to tell if we're close enough to one freq or another
191 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
193 // TI tags charge at 134.2Khz
194 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
195 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
197 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
198 // connects to SSP_DIN and the SSP_DOUT logic level controls
199 // whether we're modulating the antenna (high)
200 // or listening to the antenna (low)
201 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
203 // get TI tag data into the buffer
206 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
208 for (i
=0; i
<n
-1; i
++) {
209 // count cycles by looking for lo to hi zero crossings
210 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
212 // after 16 cycles, measure the frequency
215 samples
=i
-samples
; // number of samples in these 16 cycles
217 // TI bits are coming to us lsb first so shift them
218 // right through our 128 bit right shift register
219 shift0
= (shift0
>>1) | (shift1
<< 31);
220 shift1
= (shift1
>>1) | (shift2
<< 31);
221 shift2
= (shift2
>>1) | (shift3
<< 31);
224 // check if the cycles fall close to the number
225 // expected for either the low or high frequency
226 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
227 // low frequency represents a 1
229 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
230 // high frequency represents a 0
232 // probably detected a gay waveform or noise
233 // use this as gaydar or discard shift register and start again
234 shift3
= shift2
= shift1
= shift0
= 0;
238 // for each bit we receive, test if we've detected a valid tag
240 // if we see 17 zeroes followed by 6 ones, we might have a tag
241 // remember the bits are backwards
242 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
243 // if start and end bytes match, we have a tag so break out of the loop
244 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
245 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
253 // if flag is set we have a tag
255 DbpString("Info: No valid tag detected.");
257 // put 64 bit data into shift1 and shift0
258 shift0
= (shift0
>>24) | (shift1
<< 8);
259 shift1
= (shift1
>>24) | (shift2
<< 8);
261 // align 16 bit crc into lower half of shift2
262 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
264 // if r/w tag, check ident match
265 if ( shift3
&(1<<15) ) {
266 DbpString("Info: TI tag is rewriteable");
267 // only 15 bits compare, last bit of ident is not valid
268 if ( ((shift3
>>16)^shift0
)&0x7fff ) {
269 DbpString("Error: Ident mismatch!");
271 DbpString("Info: TI tag ident is valid");
274 DbpString("Info: TI tag is readonly");
277 // WARNING the order of the bytes in which we calc crc below needs checking
278 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
279 // bytes in reverse or something
283 crc
= update_crc16(crc
, (shift0
)&0xff);
284 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
285 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
286 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
287 crc
= update_crc16(crc
, (shift1
)&0xff);
288 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
289 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
290 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
292 Dbprintf("Info: Tag data: %x%08x, crc=%x",
293 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
294 if (crc
!= (shift2
&0xffff)) {
295 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
297 DbpString("Info: CRC is good");
302 void WriteTIbyte(uint8_t b
)
306 // modulate 8 bits out to the antenna
310 // stop modulating antenna
317 // stop modulating antenna
327 void AcquireTiType(void)
330 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
331 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
332 #define TIBUFLEN 1250
335 memset(BigBuf
,0,sizeof(BigBuf
));
337 // Set up the synchronous serial port
338 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
339 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
341 // steal this pin from the SSP and use it to control the modulation
342 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
343 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
345 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
346 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
348 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
349 // 48/2 = 24 MHz clock must be divided by 12
350 AT91C_BASE_SSC
->SSC_CMR
= 12;
352 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
353 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
354 AT91C_BASE_SSC
->SSC_TCMR
= 0;
355 AT91C_BASE_SSC
->SSC_TFMR
= 0;
362 // Charge TI tag for 50ms.
365 // stop modulating antenna and listen
372 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
373 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
374 i
++; if(i
>= TIBUFLEN
) break;
379 // return stolen pin to SSP
380 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
381 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
383 char *dest
= (char *)BigBuf
;
386 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
387 for (j
=0; j
<32; j
++) {
388 if(BigBuf
[i
] & (1 << j
)) {
397 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
398 // if crc provided, it will be written with the data verbatim (even if bogus)
399 // if not provided a valid crc will be computed from the data and written.
400 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
402 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
404 crc
= update_crc16(crc
, (idlo
)&0xff);
405 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
406 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
407 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
408 crc
= update_crc16(crc
, (idhi
)&0xff);
409 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
410 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
411 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
413 Dbprintf("Writing to tag: %x%08x, crc=%x",
414 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
416 // TI tags charge at 134.2Khz
417 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
418 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
419 // connects to SSP_DIN and the SSP_DOUT logic level controls
420 // whether we're modulating the antenna (high)
421 // or listening to the antenna (low)
422 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
425 // steal this pin from the SSP and use it to control the modulation
426 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
427 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
429 // writing algorithm:
430 // a high bit consists of a field off for 1ms and field on for 1ms
431 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
432 // initiate a charge time of 50ms (field on) then immediately start writing bits
433 // start by writing 0xBB (keyword) and 0xEB (password)
434 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
435 // finally end with 0x0300 (write frame)
436 // all data is sent lsb firts
437 // finish with 15ms programming time
441 SpinDelay(50); // charge time
443 WriteTIbyte(0xbb); // keyword
444 WriteTIbyte(0xeb); // password
445 WriteTIbyte( (idlo
)&0xff );
446 WriteTIbyte( (idlo
>>8 )&0xff );
447 WriteTIbyte( (idlo
>>16)&0xff );
448 WriteTIbyte( (idlo
>>24)&0xff );
449 WriteTIbyte( (idhi
)&0xff );
450 WriteTIbyte( (idhi
>>8 )&0xff );
451 WriteTIbyte( (idhi
>>16)&0xff );
452 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
453 WriteTIbyte( (crc
)&0xff ); // crc lo
454 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
455 WriteTIbyte(0x00); // write frame lo
456 WriteTIbyte(0x03); // write frame hi
458 SpinDelay(50); // programming time
462 // get TI tag data into the buffer
465 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
466 DbpString("Now use tiread to check");
469 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
472 uint8_t *tab
= (uint8_t *)BigBuf
;
474 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
475 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
477 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
479 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
480 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
482 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
483 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
487 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
489 DbpString("Stopped");
506 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
508 DbpString("Stopped");
525 #define DEBUG_FRAME_CONTENTS 1
526 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
530 // compose fc/8 fc/10 waveform
531 static void fc(int c
, int *n
) {
532 uint8_t *dest
= (uint8_t *)BigBuf
;
535 // for when we want an fc8 pattern every 4 logical bits
546 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
548 for (idx
=0; idx
<6; idx
++) {
560 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
562 for (idx
=0; idx
<5; idx
++) {
577 // prepare a waveform pattern in the buffer based on the ID given then
578 // simulate a HID tag until the button is pressed
579 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
583 HID tag bitstream format
584 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
585 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
586 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
587 A fc8 is inserted before every 4 bits
588 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
589 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
593 DbpString("Tags can only have 44 bits.");
597 // special start of frame marker containing invalid bit sequences
598 fc(8, &n
); fc(8, &n
); // invalid
599 fc(8, &n
); fc(10, &n
); // logical 0
600 fc(10, &n
); fc(10, &n
); // invalid
601 fc(8, &n
); fc(10, &n
); // logical 0
604 // manchester encode bits 43 to 32
605 for (i
=11; i
>=0; i
--) {
606 if ((i
%4)==3) fc(0,&n
);
608 fc(10, &n
); fc(8, &n
); // low-high transition
610 fc(8, &n
); fc(10, &n
); // high-low transition
615 // manchester encode bits 31 to 0
616 for (i
=31; i
>=0; i
--) {
617 if ((i
%4)==3) fc(0,&n
);
619 fc(10, &n
); fc(8, &n
); // low-high transition
621 fc(8, &n
); fc(10, &n
); // high-low transition
627 SimulateTagLowFrequency(n
, 0, ledcontrol
);
633 size_t fsk_demod(uint8_t * dest
, size_t size
)
635 uint32_t last_transition
= 0;
638 // we don't care about actual value, only if it's more or less than a
639 // threshold essentially we capture zero crossings for later analysis
640 uint8_t threshold_value
= 127;
642 // sync to first lo-hi transition, and threshold
644 //Need to threshold first sample
645 if(dest
[0] < threshold_value
) dest
[0] = 0;
649 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
650 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
651 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
652 for(idx
= 1; idx
< size
; idx
++) {
653 // threshold current value
654 if (dest
[idx
] < threshold_value
) dest
[idx
] = 0;
657 // Check for 0->1 transition
658 if (dest
[idx
-1] < dest
[idx
]) { // 0 -> 1 transition
660 if (idx
-last_transition
< 9) {
665 last_transition
= idx
;
669 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
673 size_t aggregate_bits(uint8_t *dest
,size_t size
, uint8_t h2l_crossing_value
,uint8_t l2h_crossing_value
, uint8_t maxConsequtiveBits
)
675 uint8_t lastval
=dest
[0];
680 for( idx
=1; idx
< size
; idx
++) {
682 if (dest
[idx
]==lastval
) {
686 //if lastval was 1, we have a 1->0 crossing
688 n
=(n
+1) / h2l_crossing_value
;
689 } else {// 0->1 crossing
690 n
=(n
+1) / l2h_crossing_value
;
694 if(n
< maxConsequtiveBits
)
696 memset(dest
+numBits
, dest
[idx
-1] , n
);
706 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it
707 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
709 uint8_t *dest
= (uint8_t *)BigBuf
;
711 size_t size
=0,idx
=0; //, found=0;
712 uint32_t hi2
=0, hi
=0, lo
=0;
714 // Configure to go in 125Khz listen mode
715 LFSetupFPGAForADC(95, true);
717 while(!BUTTON_PRESS()) {
720 if (ledcontrol
) LED_A_ON();
722 DoAcquisition125k_internal(-1,true);
723 size
= sizeof(BigBuf
);
726 size
= fsk_demod(dest
, size
);
728 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
729 // 1->0 : fc/8 in sets of 6
730 // 0->1 : fc/10 in sets of 5
731 size
= aggregate_bits(dest
,size
, 6,5,5);
735 // final loop, go over previously decoded manchester data and decode into usable tag ID
736 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
737 uint8_t frame_marker_mask
[] = {1,1,1,0,0,0};
740 while( idx
+ sizeof(frame_marker_mask
) < size
) {
741 // search for a start of frame marker
742 if ( memcmp(dest
+idx
, frame_marker_mask
, sizeof(frame_marker_mask
)) == 0)
743 { // frame marker found
744 idx
+=sizeof(frame_marker_mask
);
746 while(dest
[idx
] != dest
[idx
+1] && idx
< size
-2)
748 // Keep going until next frame marker (or error)
749 // Shift in a bit. Start by shifting high registers
750 hi2
= (hi2
<<1)|(hi
>>31);
751 hi
= (hi
<<1)|(lo
>>31);
752 //Then, shift in a 0 or one into low
753 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
761 //Dbprintf("Num shifts: %d ", numshifts);
762 // Hopefully, we read a tag and hit upon the next frame marker
763 if(idx
+ sizeof(frame_marker_mask
) < size
)
765 if ( memcmp(dest
+idx
, frame_marker_mask
, sizeof(frame_marker_mask
)) == 0)
768 Dbprintf("TAG ID: %x%08x%08x (%d)",
769 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
772 Dbprintf("TAG ID: %x%08x (%d)",
773 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
790 DbpString("Stopped");
791 if (ledcontrol
) LED_A_OFF();
794 uint32_t bytebits_to_byte(uint8_t* src
, int numbits
)
797 for(int i
= 0 ; i
< numbits
; i
++)
799 num
= (num
<< 1) | (*src
);
806 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
808 uint8_t *dest
= (uint8_t *)BigBuf
;
810 size_t size
=0, idx
=0;
811 uint32_t code
=0, code2
=0;
813 // Configure to go in 125Khz listen mode
814 LFSetupFPGAForADC(95, true);
816 while(!BUTTON_PRESS()) {
820 if (ledcontrol
) LED_A_ON();
822 DoAcquisition125k_internal(-1,true);
823 size
= sizeof(BigBuf
);
826 size
= fsk_demod(dest
, size
);
828 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
829 // 1->0 : fc/8 in sets of 7
830 // 0->1 : fc/10 in sets of 6
831 size
= aggregate_bits(dest
, size
, 7,6,13);
836 uint8_t mask
[] = {0,0,0,0,0,0,0,0,0,1};
837 for( idx
=0; idx
< size
- 64; idx
++) {
839 if ( memcmp(dest
+ idx
, mask
, sizeof(mask
)) ) continue;
841 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7]);
842 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+8], dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15]);
843 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+16],dest
[idx
+17],dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23]);
844 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+24],dest
[idx
+25],dest
[idx
+26],dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31]);
845 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35],dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39]);
846 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44],dest
[idx
+45],dest
[idx
+46],dest
[idx
+47]);
847 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53],dest
[idx
+54],dest
[idx
+55]);
848 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
850 code
= bytebits_to_byte(dest
+idx
,32);
851 code2
= bytebits_to_byte(dest
+idx
+32,32);
853 short version
= bytebits_to_byte(dest
+idx
+14,4);
854 char unknown
= bytebits_to_byte(dest
+idx
+19,8) ;
855 uint16_t number
= bytebits_to_byte(dest
+idx
+36,9);
857 Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version
,unknown
,number
,code
,code2
);
858 if (ledcontrol
) LED_D_OFF();
860 // if we're only looking for one tag
868 DbpString("Stopped");
869 if (ledcontrol
) LED_A_OFF();
872 /*------------------------------
873 * T5555/T5557/T5567 routines
874 *------------------------------
877 /* T55x7 configuration register definitions */
878 #define T55x7_POR_DELAY 0x00000001
879 #define T55x7_ST_TERMINATOR 0x00000008
880 #define T55x7_PWD 0x00000010
881 #define T55x7_MAXBLOCK_SHIFT 5
882 #define T55x7_AOR 0x00000200
883 #define T55x7_PSKCF_RF_2 0
884 #define T55x7_PSKCF_RF_4 0x00000400
885 #define T55x7_PSKCF_RF_8 0x00000800
886 #define T55x7_MODULATION_DIRECT 0
887 #define T55x7_MODULATION_PSK1 0x00001000
888 #define T55x7_MODULATION_PSK2 0x00002000
889 #define T55x7_MODULATION_PSK3 0x00003000
890 #define T55x7_MODULATION_FSK1 0x00004000
891 #define T55x7_MODULATION_FSK2 0x00005000
892 #define T55x7_MODULATION_FSK1a 0x00006000
893 #define T55x7_MODULATION_FSK2a 0x00007000
894 #define T55x7_MODULATION_MANCHESTER 0x00008000
895 #define T55x7_MODULATION_BIPHASE 0x00010000
896 #define T55x7_BITRATE_RF_8 0
897 #define T55x7_BITRATE_RF_16 0x00040000
898 #define T55x7_BITRATE_RF_32 0x00080000
899 #define T55x7_BITRATE_RF_40 0x000C0000
900 #define T55x7_BITRATE_RF_50 0x00100000
901 #define T55x7_BITRATE_RF_64 0x00140000
902 #define T55x7_BITRATE_RF_100 0x00180000
903 #define T55x7_BITRATE_RF_128 0x001C0000
905 /* T5555 (Q5) configuration register definitions */
906 #define T5555_ST_TERMINATOR 0x00000001
907 #define T5555_MAXBLOCK_SHIFT 0x00000001
908 #define T5555_MODULATION_MANCHESTER 0
909 #define T5555_MODULATION_PSK1 0x00000010
910 #define T5555_MODULATION_PSK2 0x00000020
911 #define T5555_MODULATION_PSK3 0x00000030
912 #define T5555_MODULATION_FSK1 0x00000040
913 #define T5555_MODULATION_FSK2 0x00000050
914 #define T5555_MODULATION_BIPHASE 0x00000060
915 #define T5555_MODULATION_DIRECT 0x00000070
916 #define T5555_INVERT_OUTPUT 0x00000080
917 #define T5555_PSK_RF_2 0
918 #define T5555_PSK_RF_4 0x00000100
919 #define T5555_PSK_RF_8 0x00000200
920 #define T5555_USE_PWD 0x00000400
921 #define T5555_USE_AOR 0x00000800
922 #define T5555_BITRATE_SHIFT 12
923 #define T5555_FAST_WRITE 0x00004000
924 #define T5555_PAGE_SELECT 0x00008000
927 * Relevant times in microsecond
928 * To compensate antenna falling times shorten the write times
929 * and enlarge the gap ones.
931 #define START_GAP 250
932 #define WRITE_GAP 160
933 #define WRITE_0 144 // 192
934 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
936 // Write one bit to card
937 void T55xxWriteBit(int bit
)
939 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
940 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
941 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
943 SpinDelayUs(WRITE_0
);
945 SpinDelayUs(WRITE_1
);
946 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
947 SpinDelayUs(WRITE_GAP
);
950 // Write one card block in page 0, no lock
951 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
955 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
956 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
957 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
959 // Give it a bit of time for the resonant antenna to settle.
960 // And for the tag to fully power up
963 // Now start writting
964 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
965 SpinDelayUs(START_GAP
);
969 T55xxWriteBit(0); //Page 0
972 for (i
= 0x80000000; i
!= 0; i
>>= 1)
973 T55xxWriteBit(Pwd
& i
);
979 for (i
= 0x80000000; i
!= 0; i
>>= 1)
980 T55xxWriteBit(Data
& i
);
983 for (i
= 0x04; i
!= 0; i
>>= 1)
984 T55xxWriteBit(Block
& i
);
986 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
987 // so wait a little more)
988 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
989 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
991 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
994 // Read one card block in page 0
995 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
997 uint8_t *dest
= (uint8_t *)BigBuf
;
1000 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1002 // Clear destination buffer before sending the command
1003 memset(dest
, 128, m
);
1004 // Connect the A/D to the peak-detected low-frequency path.
1005 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1006 // Now set up the SSC to get the ADC samples that are now streaming at us.
1010 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1011 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1013 // Give it a bit of time for the resonant antenna to settle.
1014 // And for the tag to fully power up
1017 // Now start writting
1018 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1019 SpinDelayUs(START_GAP
);
1023 T55xxWriteBit(0); //Page 0
1026 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1027 T55xxWriteBit(Pwd
& i
);
1032 for (i
= 0x04; i
!= 0; i
>>= 1)
1033 T55xxWriteBit(Block
& i
);
1035 // Turn field on to read the response
1036 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1037 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1039 // Now do the acquisition
1042 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1043 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1045 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1046 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1047 // we don't care about actual value, only if it's more or less than a
1048 // threshold essentially we capture zero crossings for later analysis
1049 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1055 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1060 // Read card traceability data (page 1)
1061 void T55xxReadTrace(void){
1062 uint8_t *dest
= (uint8_t *)BigBuf
;
1065 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1067 // Clear destination buffer before sending the command
1068 memset(dest
, 128, m
);
1069 // Connect the A/D to the peak-detected low-frequency path.
1070 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1071 // Now set up the SSC to get the ADC samples that are now streaming at us.
1075 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1076 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1078 // Give it a bit of time for the resonant antenna to settle.
1079 // And for the tag to fully power up
1082 // Now start writting
1083 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1084 SpinDelayUs(START_GAP
);
1088 T55xxWriteBit(1); //Page 1
1090 // Turn field on to read the response
1091 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1092 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1094 // Now do the acquisition
1097 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1098 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1100 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1101 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1107 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1112 /*-------------- Cloning routines -----------*/
1113 // Copy HID id to card and setup block 0 config
1114 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1116 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1120 // Ensure no more than 84 bits supplied
1122 DbpString("Tags can only have 84 bits.");
1125 // Build the 6 data blocks for supplied 84bit ID
1127 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1128 for (int i
=0;i
<4;i
++) {
1129 if (hi2
& (1<<(19-i
)))
1130 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1132 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1136 for (int i
=0;i
<16;i
++) {
1137 if (hi2
& (1<<(15-i
)))
1138 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1140 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1144 for (int i
=0;i
<16;i
++) {
1145 if (hi
& (1<<(31-i
)))
1146 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1148 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1152 for (int i
=0;i
<16;i
++) {
1153 if (hi
& (1<<(15-i
)))
1154 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1156 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1160 for (int i
=0;i
<16;i
++) {
1161 if (lo
& (1<<(31-i
)))
1162 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1164 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1168 for (int i
=0;i
<16;i
++) {
1169 if (lo
& (1<<(15-i
)))
1170 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1172 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1176 // Ensure no more than 44 bits supplied
1178 DbpString("Tags can only have 44 bits.");
1182 // Build the 3 data blocks for supplied 44bit ID
1185 data1
= 0x1D000000; // load preamble
1187 for (int i
=0;i
<12;i
++) {
1188 if (hi
& (1<<(11-i
)))
1189 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1191 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1195 for (int i
=0;i
<16;i
++) {
1196 if (lo
& (1<<(31-i
)))
1197 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1199 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1203 for (int i
=0;i
<16;i
++) {
1204 if (lo
& (1<<(15-i
)))
1205 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1207 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1212 // Program the data blocks for supplied ID
1213 // and the block 0 for HID format
1214 T55xxWriteBlock(data1
,1,0,0);
1215 T55xxWriteBlock(data2
,2,0,0);
1216 T55xxWriteBlock(data3
,3,0,0);
1218 if (longFMT
) { // if long format there are 6 blocks
1219 T55xxWriteBlock(data4
,4,0,0);
1220 T55xxWriteBlock(data5
,5,0,0);
1221 T55xxWriteBlock(data6
,6,0,0);
1224 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1225 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1226 T55x7_MODULATION_FSK2a
|
1227 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1235 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1237 int data1
=0, data2
=0; //up to six blocks for long format
1239 data1
= hi
; // load preamble
1243 // Program the data blocks for supplied ID
1244 // and the block 0 for HID format
1245 T55xxWriteBlock(data1
,1,0,0);
1246 T55xxWriteBlock(data2
,2,0,0);
1249 T55xxWriteBlock(0x00147040,0,0,0);
1255 // Define 9bit header for EM410x tags
1256 #define EM410X_HEADER 0x1FF
1257 #define EM410X_ID_LENGTH 40
1259 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1262 uint64_t id
= EM410X_HEADER
;
1263 uint64_t rev_id
= 0; // reversed ID
1264 int c_parity
[4]; // column parity
1265 int r_parity
= 0; // row parity
1268 // Reverse ID bits given as parameter (for simpler operations)
1269 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1271 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1274 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1279 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1280 id_bit
= rev_id
& 1;
1283 // Don't write row parity bit at start of parsing
1285 id
= (id
<< 1) | r_parity
;
1286 // Start counting parity for new row
1293 // First elements in column?
1295 // Fill out first elements
1296 c_parity
[i
] = id_bit
;
1298 // Count column parity
1299 c_parity
[i
% 4] ^= id_bit
;
1302 id
= (id
<< 1) | id_bit
;
1306 // Insert parity bit of last row
1307 id
= (id
<< 1) | r_parity
;
1309 // Fill out column parity at the end of tag
1310 for (i
= 0; i
< 4; ++i
)
1311 id
= (id
<< 1) | c_parity
[i
];
1316 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1320 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1321 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1323 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1325 // Clock rate is stored in bits 8-15 of the card value
1326 clock
= (card
& 0xFF00) >> 8;
1327 Dbprintf("Clock rate: %d", clock
);
1331 clock
= T55x7_BITRATE_RF_32
;
1334 clock
= T55x7_BITRATE_RF_16
;
1337 // A value of 0 is assumed to be 64 for backwards-compatibility
1340 clock
= T55x7_BITRATE_RF_64
;
1343 Dbprintf("Invalid clock rate: %d", clock
);
1347 // Writing configuration for T55x7 tag
1348 T55xxWriteBlock(clock
|
1349 T55x7_MODULATION_MANCHESTER
|
1350 2 << T55x7_MAXBLOCK_SHIFT
,
1354 // Writing configuration for T5555(Q5) tag
1355 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1356 T5555_MODULATION_MANCHESTER
|
1357 2 << T5555_MAXBLOCK_SHIFT
,
1361 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1362 (uint32_t)(id
>> 32), (uint32_t)id
);
1365 // Clone Indala 64-bit tag by UID to T55x7
1366 void CopyIndala64toT55x7(int hi
, int lo
)
1369 //Program the 2 data blocks for supplied 64bit UID
1370 // and the block 0 for Indala64 format
1371 T55xxWriteBlock(hi
,1,0,0);
1372 T55xxWriteBlock(lo
,2,0,0);
1373 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1374 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1375 T55x7_MODULATION_PSK1
|
1376 2 << T55x7_MAXBLOCK_SHIFT
,
1378 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1379 // T5567WriteBlock(0x603E1042,0);
1385 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1388 //Program the 7 data blocks for supplied 224bit UID
1389 // and the block 0 for Indala224 format
1390 T55xxWriteBlock(uid1
,1,0,0);
1391 T55xxWriteBlock(uid2
,2,0,0);
1392 T55xxWriteBlock(uid3
,3,0,0);
1393 T55xxWriteBlock(uid4
,4,0,0);
1394 T55xxWriteBlock(uid5
,5,0,0);
1395 T55xxWriteBlock(uid6
,6,0,0);
1396 T55xxWriteBlock(uid7
,7,0,0);
1397 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1398 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1399 T55x7_MODULATION_PSK1
|
1400 7 << T55x7_MAXBLOCK_SHIFT
,
1402 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1403 // T5567WriteBlock(0x603E10E2,0);
1410 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1411 #define max(x,y) ( x<y ? y:x)
1413 int DemodPCF7931(uint8_t **outBlocks
) {
1414 uint8_t BitStream
[256];
1415 uint8_t Blocks
[8][16];
1416 uint8_t *GraphBuffer
= (uint8_t *)BigBuf
;
1417 int GraphTraceLen
= sizeof(BigBuf
);
1418 int i
, j
, lastval
, bitidx
, half_switch
;
1420 int tolerance
= clock
/ 8;
1421 int pmc
, block_done
;
1422 int lc
, warnings
= 0;
1424 int lmin
=128, lmax
=128;
1427 AcquireRawAdcSamples125k(0);
1434 /* Find first local max/min */
1435 if(GraphBuffer
[1] > GraphBuffer
[0]) {
1436 while(i
< GraphTraceLen
) {
1437 if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
)
1444 while(i
< GraphTraceLen
) {
1445 if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
)
1457 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1459 if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir
== 0 && GraphBuffer
[i
] < lmin
))
1464 // Switch depending on lc length:
1465 // Tolerance is 1/8 of clock rate (arbitrary)
1466 if (abs(lc
-clock
/4) < tolerance
) {
1468 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1470 i
+= (128+127+16+32+33+16)-1;
1478 } else if (abs(lc
-clock
/2) < tolerance
) {
1480 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1482 i
+= (128+127+16+32+33)-1;
1487 else if(half_switch
== 1) {
1488 BitStream
[bitidx
++] = 0;
1493 } else if (abs(lc
-clock
) < tolerance
) {
1495 BitStream
[bitidx
++] = 1;
1501 Dbprintf("Error: too many detection errors, aborting.");
1506 if(block_done
== 1) {
1508 for(j
=0; j
<16; j
++) {
1509 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1510 64*BitStream
[j
*8+6]+
1511 32*BitStream
[j
*8+5]+
1512 16*BitStream
[j
*8+4]+
1524 if(i
< GraphTraceLen
)
1526 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0;
1533 if(num_blocks
== 4) break;
1535 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1539 int IsBlock0PCF7931(uint8_t *Block
) {
1540 // Assume RFU means 0 :)
1541 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1543 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1548 int IsBlock1PCF7931(uint8_t *Block
) {
1549 // Assume RFU means 0 :)
1550 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1551 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1559 void ReadPCF7931() {
1560 uint8_t Blocks
[8][17];
1561 uint8_t tmpBlocks
[4][16];
1562 int i
, j
, ind
, ind2
, n
;
1569 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1572 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1573 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1576 if(error
==10 && num_blocks
== 0) {
1577 Dbprintf("Error, no tag or bad tag");
1580 else if (tries
==20 || error
==10) {
1581 Dbprintf("Error reading the tag");
1582 Dbprintf("Here is the partial content");
1587 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1588 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1589 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1591 for(i
=0; i
<n
; i
++) {
1592 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1594 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1598 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1599 Blocks
[0][ALLOC
] = 1;
1600 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1601 Blocks
[1][ALLOC
] = 1;
1602 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1604 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1606 // Handle following blocks
1607 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1610 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1611 Blocks
[ind2
][ALLOC
] = 1;
1619 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1620 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1621 for(j
=0; j
<max_blocks
; j
++) {
1622 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1623 // Found an identical block
1624 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1627 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1628 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1629 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1630 Blocks
[ind2
][ALLOC
] = 1;
1632 if(num_blocks
== max_blocks
) goto end
;
1635 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1636 if(ind2
> max_blocks
)
1638 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1639 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1640 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1641 Blocks
[ind2
][ALLOC
] = 1;
1643 if(num_blocks
== max_blocks
) goto end
;
1652 if (BUTTON_PRESS()) return;
1653 } while (num_blocks
!= max_blocks
);
1655 Dbprintf("-----------------------------------------");
1656 Dbprintf("Memory content:");
1657 Dbprintf("-----------------------------------------");
1658 for(i
=0; i
<max_blocks
; i
++) {
1659 if(Blocks
[i
][ALLOC
]==1)
1660 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1661 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1662 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1664 Dbprintf("<missing block %d>", i
);
1666 Dbprintf("-----------------------------------------");
1672 //-----------------------------------
1673 // EM4469 / EM4305 routines
1674 //-----------------------------------
1675 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1676 #define FWD_CMD_WRITE 0xA
1677 #define FWD_CMD_READ 0x9
1678 #define FWD_CMD_DISABLE 0x5
1681 uint8_t forwardLink_data
[64]; //array of forwarded bits
1682 uint8_t * forward_ptr
; //ptr for forward message preparation
1683 uint8_t fwd_bit_sz
; //forwardlink bit counter
1684 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1686 //====================================================================
1687 // prepares command bits
1689 //====================================================================
1690 //--------------------------------------------------------------------
1691 uint8_t Prepare_Cmd( uint8_t cmd
) {
1692 //--------------------------------------------------------------------
1694 *forward_ptr
++ = 0; //start bit
1695 *forward_ptr
++ = 0; //second pause for 4050 code
1697 *forward_ptr
++ = cmd
;
1699 *forward_ptr
++ = cmd
;
1701 *forward_ptr
++ = cmd
;
1703 *forward_ptr
++ = cmd
;
1705 return 6; //return number of emited bits
1708 //====================================================================
1709 // prepares address bits
1711 //====================================================================
1713 //--------------------------------------------------------------------
1714 uint8_t Prepare_Addr( uint8_t addr
) {
1715 //--------------------------------------------------------------------
1717 register uint8_t line_parity
;
1722 *forward_ptr
++ = addr
;
1723 line_parity
^= addr
;
1727 *forward_ptr
++ = (line_parity
& 1);
1729 return 7; //return number of emited bits
1732 //====================================================================
1733 // prepares data bits intreleaved with parity bits
1735 //====================================================================
1737 //--------------------------------------------------------------------
1738 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1739 //--------------------------------------------------------------------
1741 register uint8_t line_parity
;
1742 register uint8_t column_parity
;
1743 register uint8_t i
, j
;
1744 register uint16_t data
;
1749 for(i
=0; i
<4; i
++) {
1751 for(j
=0; j
<8; j
++) {
1752 line_parity
^= data
;
1753 column_parity
^= (data
& 1) << j
;
1754 *forward_ptr
++ = data
;
1757 *forward_ptr
++ = line_parity
;
1762 for(j
=0; j
<8; j
++) {
1763 *forward_ptr
++ = column_parity
;
1764 column_parity
>>= 1;
1768 return 45; //return number of emited bits
1771 //====================================================================
1772 // Forward Link send function
1773 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1774 // fwd_bit_count set with number of bits to be sent
1775 //====================================================================
1776 void SendForward(uint8_t fwd_bit_count
) {
1778 fwd_write_ptr
= forwardLink_data
;
1779 fwd_bit_sz
= fwd_bit_count
;
1784 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1785 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1786 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1788 // Give it a bit of time for the resonant antenna to settle.
1789 // And for the tag to fully power up
1792 // force 1st mod pulse (start gap must be longer for 4305)
1793 fwd_bit_sz
--; //prepare next bit modulation
1795 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1796 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1797 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1798 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1799 SpinDelayUs(16*8); //16 cycles on (8us each)
1801 // now start writting
1802 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1803 if(((*fwd_write_ptr
++) & 1) == 1)
1804 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1806 //These timings work for 4469/4269/4305 (with the 55*8 above)
1807 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1808 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1809 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1810 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1811 SpinDelayUs(9*8); //16 cycles on (8us each)
1816 void EM4xLogin(uint32_t Password
) {
1818 uint8_t fwd_bit_count
;
1820 forward_ptr
= forwardLink_data
;
1821 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1822 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1824 SendForward(fwd_bit_count
);
1826 //Wait for command to complete
1831 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1833 uint8_t fwd_bit_count
;
1834 uint8_t *dest
= (uint8_t *)BigBuf
;
1837 //If password mode do login
1838 if (PwdMode
== 1) EM4xLogin(Pwd
);
1840 forward_ptr
= forwardLink_data
;
1841 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1842 fwd_bit_count
+= Prepare_Addr( Address
);
1845 // Clear destination buffer before sending the command
1846 memset(dest
, 128, m
);
1847 // Connect the A/D to the peak-detected low-frequency path.
1848 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1849 // Now set up the SSC to get the ADC samples that are now streaming at us.
1852 SendForward(fwd_bit_count
);
1854 // Now do the acquisition
1857 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1858 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1860 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1861 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1866 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1870 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1872 uint8_t fwd_bit_count
;
1874 //If password mode do login
1875 if (PwdMode
== 1) EM4xLogin(Pwd
);
1877 forward_ptr
= forwardLink_data
;
1878 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1879 fwd_bit_count
+= Prepare_Addr( Address
);
1880 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1882 SendForward(fwd_bit_count
);
1884 //Wait for write to complete
1886 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off