]>
cvs.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
1 //-----------------------------------------------------------------------------
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands - by marshmellow, holiman, iceman and
9 // many others who came before
12 // LF Demod functions are placed here to allow the flexability to use client or
13 // device side. Most BUT NOT ALL of these functions are currenlty safe for
14 // device side use currently. (DetectST for example...)
16 // There are likely many improvements to the code that could be made, please
17 // make suggestions...
19 // we tried to include author comments so any questions could be directed to
22 // There are 4 main sections of code below:
24 // for general utilities used by multiple other functions
25 // Clock / Bitrate Detection Section:
26 // for clock detection functions for each modulation
27 // Modulation Demods &/or Decoding Section:
28 // for main general modulation demodulating and encoding decoding code.
29 // Tag format detection section:
30 // for detection of specific tag formats within demodulated data
33 //-----------------------------------------------------------------------------
35 #include <string.h> // for memset, memcmp and size_t
36 #include <stdint.h> // for uint_32+
37 #include <stdbool.h> // for bool
39 //**********************************************************************************************
40 //---------------------------------Utilities Section--------------------------------------------
41 //**********************************************************************************************
42 #define LOWEST_DEFAULT_CLOCK 32
43 #define FSK_PSK_THRESHOLD 123
44 //to allow debug print calls when used not on device
45 void dummy ( char * fmt
, ...){}
48 #include "cmdparser.h"
50 #define prnt PrintAndLog
52 uint8_t g_debugMode
= 0 ;
56 uint8_t justNoise ( uint8_t * BitStream
, size_t size
) {
57 //test samples are not just noise
58 uint8_t justNoise1
= 1 ;
59 for ( size_t idx
= 0 ; idx
< size
&& justNoise1
; idx
++){
60 justNoise1
= BitStream
[ idx
] < FSK_PSK_THRESHOLD
;
66 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
67 int getHiLo ( uint8_t * BitStream
, size_t size
, int * high
, int * low
, uint8_t fuzzHi
, uint8_t fuzzLo
) {
70 // get high and low thresholds
71 for ( size_t i
= 0 ; i
< size
; i
++){
72 if ( BitStream
[ i
] > * high
) * high
= BitStream
[ i
];
73 if ( BitStream
[ i
] < * low
) * low
= BitStream
[ i
];
75 if (* high
< FSK_PSK_THRESHOLD
) return - 1 ; // just noise
76 * high
= ((* high
- 128 )* fuzzHi
+ 12800 )/ 100 ;
77 * low
= ((* low
- 128 )* fuzzLo
+ 12800 )/ 100 ;
82 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
83 // returns 1 if passed
84 uint8_t parityTest ( uint32_t bits
, uint8_t bitLen
, uint8_t pType
) {
86 for ( uint8_t i
= 0 ; i
< bitLen
; i
++){
87 ans
^= (( bits
>> i
) & 1 );
89 if ( g_debugMode
) prnt ( "DEBUG: ans: %d, ptype: %d, bits: %08X" , ans
, pType
, bits
);
90 return ( ans
== pType
);
94 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
95 // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run)
96 size_t removeParity ( uint8_t * BitStream
, size_t startIdx
, uint8_t pLen
, uint8_t pType
, size_t bLen
) {
97 uint32_t parityWd
= 0 ;
98 size_t j
= 0 , bitCnt
= 0 ;
99 for ( int word
= 0 ; word
< ( bLen
); word
+= pLen
) {
100 for ( int bit
= 0 ; bit
< pLen
; bit
++) {
101 parityWd
= ( parityWd
<< 1 ) | BitStream
[ startIdx
+ word
+ bit
];
102 BitStream
[ j
++] = ( BitStream
[ startIdx
+ word
+ bit
]);
104 if ( word
+ pLen
> bLen
) break ;
106 j
--; // overwrite parity with next data
107 // if parity fails then return 0
109 case 3 : if ( BitStream
[ j
]== 1 ) { return 0 ;} break ; //should be 0 spacer bit
110 case 2 : if ( BitStream
[ j
]== 0 ) { return 0 ;} break ; //should be 1 spacer bit
111 default : if ( parityTest ( parityWd
, pLen
, pType
) == 0 ) { return 0 ;} break ; //test parity
116 // if we got here then all the parities passed
117 //return ID start index and size
122 // takes a array of binary values, length of bits per parity (includes parity bit),
123 // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
124 // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added
125 size_t addParity ( uint8_t * BitSource
, uint8_t * dest
, uint8_t sourceLen
, uint8_t pLen
, uint8_t pType
) {
126 uint32_t parityWd
= 0 ;
127 size_t j
= 0 , bitCnt
= 0 ;
128 for ( int word
= 0 ; word
< sourceLen
; word
+= pLen
- 1 ) {
129 for ( int bit
= 0 ; bit
< pLen
- 1 ; bit
++){
130 parityWd
= ( parityWd
<< 1 ) | BitSource
[ word
+ bit
];
131 dest
[ j
++] = ( BitSource
[ word
+ bit
]);
133 // if parity fails then return 0
135 case 3 : dest
[ j
++]= 0 ; break ; // marker bit which should be a 0
136 case 2 : dest
[ j
++]= 1 ; break ; // marker bit which should be a 1
138 dest
[ j
++] = parityTest ( parityWd
, pLen
- 1 , pType
) ^ 1 ;
144 // if we got here then all the parities passed
145 //return ID start index and size
149 uint32_t bytebits_to_byte ( uint8_t * src
, size_t numbits
) {
151 for ( int i
= 0 ; i
< numbits
; i
++)
153 num
= ( num
<< 1 ) | (* src
);
159 //least significant bit first
160 uint32_t bytebits_to_byteLSBF ( uint8_t * src
, size_t numbits
) {
162 for ( int i
= 0 ; i
< numbits
; i
++)
164 num
= ( num
<< 1 ) | *( src
+ ( numbits
-( i
+ 1 )));
169 // search for given preamble in given BitStream and return success=1 or fail=0 and startIndex (where it was found) and length if not fineone
170 // fineone does not look for a repeating preamble for em4x05/4x69 sends preamble once, so look for it once in the first pLen bits
171 bool preambleSearchEx ( uint8_t * BitStream
, uint8_t * preamble
, size_t pLen
, size_t * size
, size_t * startIdx
, bool findone
) {
172 // Sanity check. If preamble length is bigger than bitstream length.
173 if ( * size
<= pLen
) return false ;
175 uint8_t foundCnt
= 0 ;
176 for ( size_t idx
= 0 ; idx
< * size
- pLen
; idx
++) {
177 if ( memcmp ( BitStream
+ idx
, preamble
, pLen
) == 0 ) {
181 if ( g_debugMode
) prnt ( "DEBUG: preamble found at %u" , idx
);
183 if ( findone
) return true ;
184 } else if ( foundCnt
== 2 ) {
185 * size
= idx
- * startIdx
;
194 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
195 uint8_t preambleSearch ( uint8_t * BitStream
, uint8_t * preamble
, size_t pLen
, size_t * size
, size_t * startIdx
) {
196 return ( preambleSearchEx ( BitStream
, preamble
, pLen
, size
, startIdx
, false )) ? 1 : 0 ;
199 // find start of modulating data (for fsk and psk) in case of beginning noise or slow chip startup.
200 size_t findModStart ( uint8_t dest
[], size_t size
, uint8_t expWaveSize
) {
202 size_t waveSizeCnt
= 0 ;
203 uint8_t thresholdCnt
= 0 ;
204 bool isAboveThreshold
= dest
[ i
++] >= FSK_PSK_THRESHOLD
;
205 for (; i
< size
- 20 ; i
++ ) {
206 if ( dest
[ i
] < FSK_PSK_THRESHOLD
&& isAboveThreshold
) {
208 if ( thresholdCnt
> 2 && waveSizeCnt
< expWaveSize
+ 1 ) break ;
209 isAboveThreshold
= false ;
211 } else if ( dest
[ i
] >= FSK_PSK_THRESHOLD
&& ! isAboveThreshold
) {
213 if ( thresholdCnt
> 2 && waveSizeCnt
< expWaveSize
+ 1 ) break ;
214 isAboveThreshold
= true ;
219 if ( thresholdCnt
> 10 ) break ;
221 if ( g_debugMode
== 2 ) prnt ( "DEBUG: threshold Count reached at %u, count: %u" , i
, thresholdCnt
);
225 int getClosestClock ( int testclk
) {
226 uint8_t fndClk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 128 };
228 for ( uint8_t clkCnt
= 0 ; clkCnt
< 7 ; clkCnt
++)
229 if ( testclk
>= fndClk
[ clkCnt
]-( fndClk
[ clkCnt
]/ 8 ) && testclk
<= fndClk
[ clkCnt
]+ 1 )
230 return fndClk
[ clkCnt
];
235 void getNextLow ( uint8_t samples
[], size_t size
, int low
, size_t * i
) {
236 while (( samples
[* i
] > low
) && (* i
< size
))
240 void getNextHigh ( uint8_t samples
[], size_t size
, int high
, size_t * i
) {
241 while (( samples
[* i
] < high
) && (* i
< size
))
245 // load wave counters
246 bool loadWaveCounters ( uint8_t samples
[], size_t size
, int lowToLowWaveLen
[], int highToLowWaveLen
[], int * waveCnt
, int * skip
, int * minClk
, int * high
, int * low
) {
247 size_t i
= 0 , firstLow
, firstHigh
;
248 size_t testsize
= ( size
< 512 ) ? size
: 512 ;
250 if ( getHiLo ( samples
, testsize
, high
, low
, 80 , 80 ) == - 1 ) {
251 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: just noise detected - quitting" );
252 return false ; //just noise
255 // get to first full low to prime loop and skip incomplete first pulse
256 getNextHigh ( samples
, size
, * high
, & i
);
257 getNextLow ( samples
, size
, * low
, & i
);
260 // populate tmpbuff buffer with pulse lengths
262 // measure from low to low
264 //find first high point for this wave
265 getNextHigh ( samples
, size
, * high
, & i
);
268 getNextLow ( samples
, size
, * low
, & i
);
270 if (* waveCnt
>= ( size
/ LOWEST_DEFAULT_CLOCK
))
273 highToLowWaveLen
[* waveCnt
] = i
- firstHigh
; //first high to first low
274 lowToLowWaveLen
[* waveCnt
] = i
- firstLow
;
276 if ( i
- firstLow
< * minClk
&& i
< size
) {
277 * minClk
= i
- firstLow
;
284 //amplify based on ask edge detection - not accurate enough to use all the time
285 void askAmp ( uint8_t * BitStream
, size_t size
) {
287 for ( size_t i
= 1 ; i
< size
; i
++){
288 if ( BitStream
[ i
]- BitStream
[ i
- 1 ]>= 30 ) //large jump up
290 else if ( BitStream
[ i
- 1 ]- BitStream
[ i
]>= 20 ) //large jump down
293 BitStream
[ i
- 1 ] = Last
;
298 uint32_t manchesterEncode2Bytes ( uint16_t datain
) {
301 for ( uint8_t i
= 0 ; i
< 16 ; i
++) {
302 curBit
= ( datain
>> ( 15 - i
) & 1 );
303 output
|= ( 1 <<((( 15 - i
)* 2 )+ curBit
));
309 //encode binary data into binary manchester
310 //NOTE: BitStream must have double the size available in memory to do the swap
311 int ManchesterEncode ( uint8_t * BitStream
, size_t size
) {
312 size_t modIdx
= size
, i
= 0 ;
313 if ( size
> modIdx
) return - 1 ;
314 for ( size_t idx
= 0 ; idx
< size
; idx
++){
315 BitStream
[ idx
+ modIdx
++] = BitStream
[ idx
];
316 BitStream
[ idx
+ modIdx
++] = BitStream
[ idx
]^ 1 ;
318 for (; i
<( size
* 2 ); i
++){
319 BitStream
[ i
] = BitStream
[ i
+ size
];
325 // to detect a wave that has heavily clipped (clean) samples
326 uint8_t DetectCleanAskWave ( uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
) {
327 bool allArePeaks
= true ;
329 size_t loopEnd
= 512 + 160 ;
330 if ( loopEnd
> size
) loopEnd
= size
;
331 for ( size_t i
= 160 ; i
< loopEnd
; i
++){
332 if ( dest
[ i
]> low
&& dest
[ i
]< high
)
338 if ( cntPeaks
> 300 ) return true ;
343 //**********************************************************************************************
344 //-------------------Clock / Bitrate Detection Section------------------------------------------
345 //**********************************************************************************************
348 // to help detect clocks on heavily clipped samples
349 // based on count of low to low
350 int DetectStrongAskClock ( uint8_t dest
[], size_t size
, int high
, int low
, int * clock
) {
354 int shortestWaveIdx
= 0 ;
355 // get to first full low to prime loop and skip incomplete first pulse
356 getNextHigh ( dest
, size
, high
, & i
);
357 getNextLow ( dest
, size
, low
, & i
);
359 // loop through all samples
361 // measure from low to low
364 getNextHigh ( dest
, size
, high
, & i
);
365 getNextLow ( dest
, size
, low
, & i
);
366 //get minimum measured distance
367 if ( i
- startwave
< minClk
&& i
< size
) {
368 minClk
= i
- startwave
;
369 shortestWaveIdx
= startwave
;
373 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: DetectStrongAskClock smallest wave: %d" , minClk
);
374 * clock
= getClosestClock ( minClk
);
378 return shortestWaveIdx
;
382 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
383 // maybe somehow adjust peak trimming value based on samples to fix?
384 // return start index of best starting position for that clock and return clock (by reference)
385 int DetectASKClock ( uint8_t dest
[], size_t size
, int * clock
, int maxErr
) {
387 uint8_t clk
[] = { 255 , 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 };
389 uint8_t loopCnt
= 255 ; //don't need to loop through entire array...
390 if ( size
<= loopCnt
+ 60 ) return - 1 ; //not enough samples
391 size
-= 60 ; //sometimes there is a strange end wave - filter out this....
392 //if we already have a valid clock
395 if ( clk
[ i
] == * clock
) clockFnd
= i
;
396 //clock found but continue to find best startpos
398 //get high and low peak
400 if ( getHiLo ( dest
, loopCnt
, & peak
, & low
, 75 , 75 ) < 1 ) return - 1 ;
402 //test for large clean peaks
404 if ( DetectCleanAskWave ( dest
, size
, peak
, low
)== 1 ){
405 int ans
= DetectStrongAskClock ( dest
, size
, peak
, low
, clock
);
406 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %i, ShortestWave: %i" , clock
, ans
);
408 return ans
; //return shortest wave start position
413 uint8_t clkCnt
, tol
= 0 ;
414 uint16_t bestErr
[]={ 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 };
415 uint8_t bestStart
[]={ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
417 size_t arrLoc
, loopEnd
;
425 //test each valid clock from smallest to greatest to see which lines up
426 for (; clkCnt
< clkEnd
; clkCnt
++){
427 if ( clk
[ clkCnt
] <= 32 ){
432 //if no errors allowed - keep start within the first clock
433 if (! maxErr
&& size
> clk
[ clkCnt
]* 2 + tol
&& clk
[ clkCnt
]< 128 ) loopCnt
= clk
[ clkCnt
]* 2 ;
434 bestErr
[ clkCnt
]= 1000 ;
435 //try lining up the peaks by moving starting point (try first few clocks)
436 for ( ii
= 0 ; ii
< loopCnt
; ii
++){
437 if ( dest
[ ii
] < peak
&& dest
[ ii
] > low
) continue ;
440 // now that we have the first one lined up test rest of wave array
441 loopEnd
= (( size
- ii
- tol
) / clk
[ clkCnt
]) - 1 ;
442 for ( i
= 0 ; i
< loopEnd
; ++ i
){
443 arrLoc
= ii
+ ( i
* clk
[ clkCnt
]);
444 if ( dest
[ arrLoc
] >= peak
|| dest
[ arrLoc
] <= low
){
445 } else if ( dest
[ arrLoc
- tol
] >= peak
|| dest
[ arrLoc
- tol
] <= low
){
446 } else if ( dest
[ arrLoc
+ tol
] >= peak
|| dest
[ arrLoc
+ tol
] <= low
){
447 } else { //error no peak detected
451 //if we found no errors then we can stop here and a low clock (common clocks)
452 // this is correct one - return this clock
453 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, err %d, startpos %d, endpos %d" , clk
[ clkCnt
], errCnt
, ii
, i
);
454 if ( errCnt
== 0 && clkCnt
< 7 ) {
455 if (! clockFnd
) * clock
= clk
[ clkCnt
];
458 //if we found errors see if it is lowest so far and save it as best run
459 if ( errCnt
< bestErr
[ clkCnt
]){
460 bestErr
[ clkCnt
]= errCnt
;
461 bestStart
[ clkCnt
]= ii
;
467 for ( iii
= 1 ; iii
< clkEnd
; ++ iii
){
468 if ( bestErr
[ iii
] < bestErr
[ best
]){
469 if ( bestErr
[ iii
] == 0 ) bestErr
[ iii
]= 1 ;
470 // current best bit to error ratio vs new bit to error ratio
471 if ( ( size
/ clk
[ best
])/ bestErr
[ best
] < ( size
/ clk
[ iii
])/ bestErr
[ iii
] ){
475 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d" , clk
[ iii
], bestErr
[ iii
], clk
[ best
], bestStart
[ best
]);
477 if (! clockFnd
) * clock
= clk
[ best
];
478 return bestStart
[ best
];
481 int DetectStrongNRZClk ( uint8_t * dest
, size_t size
, int peak
, int low
){
482 //find shortest transition from high to low
484 size_t transition1
= 0 ;
485 int lowestTransition
= 255 ;
486 bool lastWasHigh
= false ;
488 //find first valid beginning of a high or low wave
489 while (( dest
[ i
] >= peak
|| dest
[ i
] <= low
) && ( i
< size
))
491 while (( dest
[ i
] < peak
&& dest
[ i
] > low
) && ( i
< size
))
493 lastWasHigh
= ( dest
[ i
] >= peak
);
495 if ( i
== size
) return 0 ;
498 for (; i
< size
; i
++) {
499 if (( dest
[ i
] >= peak
&& ! lastWasHigh
) || ( dest
[ i
] <= low
&& lastWasHigh
)) {
500 lastWasHigh
= ( dest
[ i
] >= peak
);
501 if ( i
- transition1
< lowestTransition
) lowestTransition
= i
- transition1
;
505 if ( lowestTransition
== 255 ) lowestTransition
= 0 ;
506 if ( g_debugMode
== 2 ) prnt ( "DEBUG NRZ: detectstrongNRZclk smallest wave: %d" , lowestTransition
);
507 return lowestTransition
;
511 //detect nrz clock by reading #peaks vs no peaks(or errors)
512 int DetectNRZClock ( uint8_t dest
[], size_t size
, int clock
, size_t * clockStartIdx
) {
514 uint8_t clk
[]={ 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 };
515 size_t loopCnt
= 4096 ; //don't need to loop through entire array...
516 if ( size
== 0 ) return 0 ;
517 if ( size
< loopCnt
) loopCnt
= size
- 20 ;
518 //if we already have a valid clock quit
520 if ( clk
[ i
] == clock
) return clock
;
522 //get high and low peak
524 if ( getHiLo ( dest
, loopCnt
, & peak
, & low
, 75 , 75 ) < 1 ) return 0 ;
526 int lowestTransition
= DetectStrongNRZClk ( dest
, size
- 20 , peak
, low
);
530 uint16_t smplCnt
= 0 ;
532 int16_t peaksdet
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
533 uint16_t maxPeak
= 255 ;
534 bool firstpeak
= false ;
535 //test for large clipped waves
536 for ( i
= 0 ; i
< loopCnt
; i
++){
537 if ( dest
[ i
] >= peak
|| dest
[ i
] <= low
){
538 if (! firstpeak
) continue ;
543 if ( maxPeak
> smplCnt
){
545 //prnt("maxPk: %d",maxPeak);
548 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
555 uint8_t ignoreCnt
= 0 ;
556 uint8_t ignoreWindow
= 4 ;
557 bool lastPeakHigh
= 0 ;
559 size_t bestStart
[]={ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
561 //test each valid clock from smallest to greatest to see which lines up
562 for ( clkCnt
= 0 ; clkCnt
< 8 ; ++ clkCnt
){
563 //ignore clocks smaller than smallest peak
564 if ( clk
[ clkCnt
] < maxPeak
- ( clk
[ clkCnt
]/ 4 )) continue ;
565 //try lining up the peaks by moving starting point (try first 256)
566 for ( ii
= 20 ; ii
< loopCnt
; ++ ii
){
567 if (( dest
[ ii
] >= peak
) || ( dest
[ ii
] <= low
)){
571 lastBit
= ii
- clk
[ clkCnt
];
572 //loop through to see if this start location works
573 for ( i
= ii
; i
< size
- 20 ; ++ i
) {
574 //if we are at a clock bit
575 if (( i
>= lastBit
+ clk
[ clkCnt
] - tol
) && ( i
<= lastBit
+ clk
[ clkCnt
] + tol
)) {
577 if ( dest
[ i
] >= peak
|| dest
[ i
] <= low
) {
578 //if same peak don't count it
579 if (( dest
[ i
] >= peak
&& ! lastPeakHigh
) || ( dest
[ i
] <= low
&& lastPeakHigh
)) {
582 lastPeakHigh
= ( dest
[ i
] >= peak
);
585 ignoreCnt
= ignoreWindow
;
586 lastBit
+= clk
[ clkCnt
];
587 } else if ( i
== lastBit
+ clk
[ clkCnt
] + tol
) {
588 lastBit
+= clk
[ clkCnt
];
590 //else if not a clock bit and no peaks
591 } else if ( dest
[ i
] < peak
&& dest
[ i
] > low
){
594 if ( errBitHigh
== true ) peakcnt
--;
599 // else if not a clock bit but we have a peak
600 } else if (( dest
[ i
]>= peak
|| dest
[ i
]<= low
) && (! bitHigh
)) {
601 //error bar found no clock...
605 if ( peakcnt
> peaksdet
[ clkCnt
]) {
606 bestStart
[ clkCnt
]= ii
;
607 peaksdet
[ clkCnt
]= peakcnt
;
614 for ( iii
= 7 ; iii
> 0 ; iii
--){
615 if (( peaksdet
[ iii
] >= ( peaksdet
[ best
]- 1 )) && ( peaksdet
[ iii
] <= peaksdet
[ best
]+ 1 ) && lowestTransition
) {
616 if ( clk
[ iii
] > ( lowestTransition
- ( clk
[ iii
]/ 8 )) && clk
[ iii
] < ( lowestTransition
+ ( clk
[ iii
]/ 8 ))) {
619 } else if ( peaksdet
[ iii
] > peaksdet
[ best
]){
622 if ( g_debugMode
== 2 ) prnt ( "DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d" , clk
[ iii
], peaksdet
[ iii
], maxPeak
, clk
[ best
], lowestTransition
);
624 * clockStartIdx
= bestStart
[ best
];
629 //countFC is to detect the field clock lengths.
630 //counts and returns the 2 most common wave lengths
631 //mainly used for FSK field clock detection
632 uint16_t countFC ( uint8_t * BitStream
, size_t size
, uint8_t fskAdj
) {
633 uint8_t fcLens
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
634 uint16_t fcCnts
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
635 uint8_t fcLensFnd
= 0 ;
636 uint8_t lastFCcnt
= 0 ;
637 uint8_t fcCounter
= 0 ;
639 if ( size
< 180 ) return 0 ;
641 // prime i to first up transition
642 for ( i
= 160 ; i
< size
- 20 ; i
++)
643 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
] >= BitStream
[ i
+ 1 ])
646 for (; i
< size
- 20 ; i
++){
647 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
] >= BitStream
[ i
+ 1 ]){
651 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
652 if ( lastFCcnt
== 5 && fcCounter
== 9 ) fcCounter
--;
653 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
654 if (( fcCounter
== 9 ) || fcCounter
== 4 ) fcCounter
++;
655 // save last field clock count (fc/xx)
656 lastFCcnt
= fcCounter
;
658 // find which fcLens to save it to:
659 for ( int ii
= 0 ; ii
< 15 ; ii
++){
660 if ( fcLens
[ ii
]== fcCounter
){
666 if ( fcCounter
> 0 && fcLensFnd
< 15 ){
669 fcLens
[ fcLensFnd
++]= fcCounter
;
678 uint8_t best1
= 14 , best2
= 14 , best3
= 14 ;
680 // go through fclens and find which ones are bigest 2
681 for ( i
= 0 ; i
< 15 ; i
++){
682 // get the 3 best FC values
683 if ( fcCnts
[ i
]> maxCnt1
) {
688 } else if ( fcCnts
[ i
]> fcCnts
[ best2
]){
691 } else if ( fcCnts
[ i
]> fcCnts
[ best3
]){
694 if ( g_debugMode
== 2 ) prnt ( "DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u" , fcLens
[ i
], fcCnts
[ i
], fcLens
[ best1
], fcLens
[ best2
]);
696 if ( fcLens
[ best1
]== 0 ) return 0 ;
697 uint8_t fcH
= 0 , fcL
= 0 ;
698 if ( fcLens
[ best1
]> fcLens
[ best2
]){
705 if (( size
- 180 )/ fcH
/ 3 > fcCnts
[ best1
]+ fcCnts
[ best2
]) {
706 if ( g_debugMode
== 2 ) prnt ( "DEBUG countfc: fc is too large: %u > %u. Not psk or fsk" ,( size
- 180 )/ fcH
/ 3 , fcCnts
[ best1
]+ fcCnts
[ best2
]);
707 return 0 ; //lots of waves not psk or fsk
709 // TODO: take top 3 answers and compare to known Field clocks to get top 2
711 uint16_t fcs
= ((( uint16_t ) fcH
)<< 8 ) | fcL
;
712 if ( fskAdj
) return fcs
;
713 return fcLens
[ best1
];
717 //detect psk clock by reading each phase shift
718 // a phase shift is determined by measuring the sample length of each wave
719 int DetectPSKClock_ext ( uint8_t dest
[], size_t size
, int clock
, int * firstPhaseShift
) {
720 uint8_t clk
[]={ 255 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 }; //255 is not a valid clock
721 uint16_t loopCnt
= 4096 ; //don't need to loop through entire array...
722 if ( size
== 0 ) return 0 ;
723 if ( size
< loopCnt
) loopCnt
= size
- 20 ;
725 //if we already have a valid clock quit
728 if ( clk
[ i
] == clock
) return clock
;
730 size_t waveStart
= 0 , waveEnd
= 0 , firstFullWave
= 0 , lastClkBit
= 0 ;
731 uint8_t clkCnt
, fc
= 0 , fullWaveLen
= 0 , tol
= 1 ;
732 uint16_t peakcnt
= 0 , errCnt
= 0 , waveLenCnt
= 0 ;
733 uint16_t bestErr
[]={ 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 };
734 uint16_t peaksdet
[]={ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
735 fc
= countFC ( dest
, size
, 0 );
736 if ( fc
!= 2 && fc
!= 4 && fc
!= 8 ) return - 1 ;
737 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: FC: %d" , fc
);
739 //find first full wave
740 for ( i
= 160 ; i
< loopCnt
; i
++){
741 if ( dest
[ i
] < dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
742 if ( waveStart
== 0 ) {
744 //prnt("DEBUG: waveStart: %d",waveStart);
747 //prnt("DEBUG: waveEnd: %d",waveEnd);
748 waveLenCnt
= waveEnd
- waveStart
;
749 if ( waveLenCnt
> fc
){
750 firstFullWave
= waveStart
;
751 fullWaveLen
= waveLenCnt
;
758 * firstPhaseShift
= firstFullWave
;
759 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: firstFullWave: %d, waveLen: %d" , firstFullWave
, fullWaveLen
);
760 //test each valid clock from greatest to smallest to see which lines up
761 for ( clkCnt
= 7 ; clkCnt
>= 1 ; clkCnt
--){
762 lastClkBit
= firstFullWave
; //set end of wave as clock align
766 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: clk: %d, lastClkBit: %d" , clk
[ clkCnt
], lastClkBit
);
768 for ( i
= firstFullWave
+ fullWaveLen
- 1 ; i
< loopCnt
- 2 ; i
++){
769 //top edge of wave = start of new wave
770 if ( dest
[ i
] < dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
771 if ( waveStart
== 0 ) {
776 waveLenCnt
= waveEnd
- waveStart
;
777 if ( waveLenCnt
> fc
){
778 //if this wave is a phase shift
779 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d" , waveStart
, waveLenCnt
, lastClkBit
+ clk
[ clkCnt
]- tol
, i
+ 1 , fc
);
780 if ( i
+ 1 >= lastClkBit
+ clk
[ clkCnt
] - tol
){ //should be a clock bit
782 lastClkBit
+= clk
[ clkCnt
];
783 } else if ( i
< lastClkBit
+ 8 ){
784 //noise after a phase shift - ignore
785 } else { //phase shift before supposed to based on clock
788 } else if ( i
+ 1 > lastClkBit
+ clk
[ clkCnt
] + tol
+ fc
){
789 lastClkBit
+= clk
[ clkCnt
]; //no phase shift but clock bit
798 if ( errCnt
<= bestErr
[ clkCnt
]) bestErr
[ clkCnt
]= errCnt
;
799 if ( peakcnt
> peaksdet
[ clkCnt
]) peaksdet
[ clkCnt
]= peakcnt
;
801 //all tested with errors
802 //return the highest clk with the most peaks found
804 for ( i
= 7 ; i
>= 1 ; i
--){
805 if ( peaksdet
[ i
] > peaksdet
[ best
]) {
808 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d" , clk
[ i
], peaksdet
[ i
], bestErr
[ i
], clk
[ best
]);
813 int DetectPSKClock ( uint8_t dest
[], size_t size
, int clock
) {
814 int firstPhaseShift
= 0 ;
815 return DetectPSKClock_ext ( dest
, size
, clock
, & firstPhaseShift
);
819 //detects the bit clock for FSK given the high and low Field Clocks
820 uint8_t detectFSKClk_ext ( uint8_t * BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
, int * firstClockEdge
) {
821 uint8_t clk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 0 };
822 uint16_t rfLens
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
823 uint8_t rfCnts
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
824 uint8_t rfLensFnd
= 0 ;
825 uint8_t lastFCcnt
= 0 ;
826 uint16_t fcCounter
= 0 ;
827 uint16_t rfCounter
= 0 ;
828 uint8_t firstBitFnd
= 0 ;
830 if ( size
== 0 ) return 0 ;
832 uint8_t fcTol
= (( fcHigh
* 100 - fcLow
* 100 )/ 2 + 50 )/ 100 ; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
837 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
838 // prime i to first peak / up transition
839 for ( i
= 160 ; i
< size
- 20 ; i
++)
840 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
]>= BitStream
[ i
+ 1 ])
843 for (; i
< size
- 20 ; i
++){
847 if ( BitStream
[ i
] <= BitStream
[ i
- 1 ] || BitStream
[ i
] < BitStream
[ i
+ 1 ])
850 // if we got less than the small fc + tolerance then set it to the small fc
851 // if it is inbetween set it to the last counter
852 if ( fcCounter
< fcHigh
&& fcCounter
> fcLow
)
853 fcCounter
= lastFCcnt
;
854 else if ( fcCounter
< fcLow
+ fcTol
)
856 else //set it to the large fc
859 //look for bit clock (rf/xx)
860 if (( fcCounter
< lastFCcnt
|| fcCounter
> lastFCcnt
)){
861 //not the same size as the last wave - start of new bit sequence
862 if ( firstBitFnd
> 1 ){ //skip first wave change - probably not a complete bit
863 for ( int ii
= 0 ; ii
< 15 ; ii
++){
864 if ( rfLens
[ ii
] >= ( rfCounter
- 4 ) && rfLens
[ ii
] <= ( rfCounter
+ 4 )){
870 if ( rfCounter
> 0 && rfLensFnd
< 15 ){
871 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
873 rfLens
[ rfLensFnd
++] = rfCounter
;
884 uint8_t rfHighest
= 15 , rfHighest2
= 15 , rfHighest3
= 15 ;
886 for ( i
= 0 ; i
< 15 ; i
++){
887 //get highest 2 RF values (might need to get more values to compare or compare all?)
888 if ( rfCnts
[ i
]> rfCnts
[ rfHighest
]){
889 rfHighest3
= rfHighest2
;
890 rfHighest2
= rfHighest
;
892 } else if ( rfCnts
[ i
]> rfCnts
[ rfHighest2
]){
893 rfHighest3
= rfHighest2
;
895 } else if ( rfCnts
[ i
]> rfCnts
[ rfHighest3
]){
898 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: RF %d, cnts %d" , rfLens
[ i
], rfCnts
[ i
]);
900 // set allowed clock remainder tolerance to be 1 large field clock length+1
901 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
902 uint8_t tol1
= fcHigh
+ 1 ;
904 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d" , rfLens
[ rfHighest
], rfLens
[ rfHighest2
], rfLens
[ rfHighest3
]);
906 // loop to find the highest clock that has a remainder less than the tolerance
907 // compare samples counted divided by
908 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
911 if ( rfLens
[ rfHighest
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest
] % clk
[ ii
] > clk
[ ii
]- tol1
){
912 if ( rfLens
[ rfHighest2
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest2
] % clk
[ ii
] > clk
[ ii
]- tol1
){
913 if ( rfLens
[ rfHighest3
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest3
] % clk
[ ii
] > clk
[ ii
]- tol1
){
914 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: clk %d divides into the 3 most rf values within tolerance" , clk
[ ii
]);
921 if ( ii
< 2 ) return 0 ; // oops we went too far
926 uint8_t detectFSKClk ( uint8_t * BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
) {
927 int firstClockEdge
= 0 ;
928 return detectFSKClk_ext ( BitStream
, size
, fcHigh
, fcLow
, & firstClockEdge
);
931 //**********************************************************************************************
932 //--------------------Modulation Demods &/or Decoding Section-----------------------------------
933 //**********************************************************************************************
935 // look for Sequence Terminator - should be pulses of clk*(1 or 2), clk*2, clk*(1.5 or 2), by idx we mean graph position index...
936 bool findST ( int * stStopLoc
, int * stStartIdx
, int lowToLowWaveLen
[], int highToLowWaveLen
[], int clk
, int tol
, int buffSize
, size_t * i
) {
937 for (; * i
< buffSize
- 4 ; * i
+= 1 ) {
938 * stStartIdx
+= lowToLowWaveLen
[* i
]; //caution part of this wave may be data and part may be ST.... to be accounted for in main function for now...
939 if ( lowToLowWaveLen
[* i
] >= clk
* 1 - tol
&& lowToLowWaveLen
[* i
] <= ( clk
* 2 )+ tol
&& highToLowWaveLen
[* i
] < clk
+ tol
) { //1 to 2 clocks depending on 2 bits prior
940 if ( lowToLowWaveLen
[* i
+ 1 ] >= clk
* 2 - tol
&& lowToLowWaveLen
[* i
+ 1 ] <= clk
* 2 + tol
&& highToLowWaveLen
[* i
+ 1 ] > clk
* 3 / 2 - tol
) { //2 clocks and wave size is 1 1/2
941 if ( lowToLowWaveLen
[* i
+ 2 ] >= ( clk
* 3 )/ 2 - tol
&& lowToLowWaveLen
[* i
+ 2 ] <= clk
* 2 + tol
&& highToLowWaveLen
[* i
+ 2 ] > clk
- tol
) { //1 1/2 to 2 clocks and at least one full clock wave
942 if ( lowToLowWaveLen
[* i
+ 3 ] >= clk
* 1 - tol
&& lowToLowWaveLen
[* i
+ 3 ] <= clk
* 2 + tol
) { //1 to 2 clocks for end of ST + first bit
953 //attempt to identify a Sequence Terminator in ASK modulated raw wave
954 bool DetectST_ext ( uint8_t buffer
[], size_t * size
, int * foundclock
, size_t * ststart
, size_t * stend
) {
955 size_t bufsize
= * size
;
956 //need to loop through all samples and identify our clock, look for the ST pattern
959 int j
, high
, low
, skip
, start
, end
, minClk
= 255 ;
961 //probably should malloc... || test if memory is available ... handle device side? memory danger!!! [marshmellow]
962 int tmpbuff
[ bufsize
/ LOWEST_DEFAULT_CLOCK
]; // low to low wave count //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured
963 int waveLen
[ bufsize
/ LOWEST_DEFAULT_CLOCK
]; // high to low wave count //if clock is larger then we waste memory in array size that is not needed...
964 //size_t testsize = (bufsize < 512) ? bufsize : 512;
967 memset ( tmpbuff
, 0 , sizeof ( tmpbuff
));
968 memset ( waveLen
, 0 , sizeof ( waveLen
));
970 if (! loadWaveCounters ( buffer
, bufsize
, tmpbuff
, waveLen
, & j
, & skip
, & minClk
, & high
, & low
)) return false ;
971 // set clock - might be able to get this externally and remove this work...
972 clk
= getClosestClock ( minClk
);
973 // clock not found - ERROR
975 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: clock not found - quitting" );
981 if (! findST (& start
, & skip
, tmpbuff
, waveLen
, clk
, tol
, j
, & i
)) {
982 // first ST not found - ERROR
983 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: first STT not found - quitting" );
986 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: first STT found at wave: %i, skip: %i, j=%i" , start
, skip
, j
);
988 if ( waveLen
[ i
+ 2 ] > clk
* 1 + tol
)
993 // skip over the remainder of ST
994 skip
+= clk
* 7 / 2 ; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
996 // now do it again to find the end
1000 if (! findST (& dummy1
, & end
, tmpbuff
, waveLen
, clk
, tol
, j
, & i
)) {
1001 //didn't find second ST - ERROR
1002 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: second STT not found - quitting" );
1006 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d" , skip
, end
, end
- skip
, clk
, ( end
- skip
)/ clk
, phaseoff
);
1007 //now begin to trim out ST so we can use normal demod cmds
1009 size_t datalen
= end
- start
;
1010 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
1011 if ( clk
- ( datalen
% clk
) <= clk
/ 8 ) {
1012 // padd the amount off - could be problematic... but shouldn't happen often
1013 datalen
+= clk
- ( datalen
% clk
);
1014 } else if ( ( datalen
% clk
) <= clk
/ 8 ) {
1015 // padd the amount off - could be problematic... but shouldn't happen often
1016 datalen
-= datalen
% clk
;
1018 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting" , datalen
, clk
, datalen
% clk
);
1021 // if datalen is less than one t55xx block - ERROR
1022 if ( datalen
/ clk
< 8 * 4 ) {
1023 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: datalen is less than 1 full t55xx block - quitting" );
1026 size_t dataloc
= start
;
1027 if ( buffer
[ dataloc
-( clk
* 4 )-( clk
/ 8 )] <= low
&& buffer
[ dataloc
] <= low
&& buffer
[ dataloc
-( clk
* 4 )] >= high
) {
1028 //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start
1029 for ( i
= 0 ; i
<= ( clk
/ 8 ); ++ i
) {
1030 if ( buffer
[ dataloc
- ( clk
* 4 ) - i
] <= low
) {
1039 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: Starting STT trim - start: %d, datalen: %d " , dataloc
, datalen
);
1040 bool firstrun
= true ;
1041 // warning - overwriting buffer given with raw wave data with ST removed...
1042 while ( dataloc
< bufsize
-( clk
/ 2 ) ) {
1043 //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
1044 if ( buffer
[ dataloc
]< high
&& buffer
[ dataloc
]> low
&& buffer
[ dataloc
+ 3 ]< high
&& buffer
[ dataloc
+ 3 ]> low
) {
1045 for ( i
= 0 ; i
< clk
/ 2 - tol
; ++ i
) {
1046 buffer
[ dataloc
+ i
] = high
+ 5 ;
1048 } //test for single sample outlier (high between two lows) in the case of very strong waves
1049 if ( buffer
[ dataloc
] >= high
&& buffer
[ dataloc
+ 2 ] <= low
) {
1050 buffer
[ dataloc
] = buffer
[ dataloc
+ 2 ];
1051 buffer
[ dataloc
+ 1 ] = buffer
[ dataloc
+ 2 ];
1055 * ststart
= dataloc
-( clk
* 4 );
1058 for ( i
= 0 ; i
< datalen
; ++ i
) {
1059 if ( i
+ newloc
< bufsize
) {
1060 if ( i
+ newloc
< dataloc
)
1061 buffer
[ i
+ newloc
] = buffer
[ dataloc
];
1067 //skip next ST - we just assume it will be there from now on...
1068 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: skipping STT at %d to %d" , dataloc
, dataloc
+( clk
* 4 ));
1074 bool DetectST ( uint8_t buffer
[], size_t * size
, int * foundclock
) {
1075 size_t ststart
= 0 , stend
= 0 ;
1076 return DetectST_ext ( buffer
, size
, foundclock
, & ststart
, & stend
);
1080 //take 11 10 01 11 00 and make 01100 ... miller decoding
1081 //check for phase errors - should never have half a 1 or 0 by itself and should never exceed 1111 or 0000 in a row
1082 //decodes miller encoded binary
1083 //NOTE askrawdemod will NOT demod miller encoded ask unless the clock is manually set to 1/2 what it is detected as!
1084 int millerRawDecode ( uint8_t * BitStream
, size_t * size
, int invert
) {
1085 if (* size
< 16 ) return - 1 ;
1086 uint16_t MaxBits
= 512 , errCnt
= 0 ;
1088 uint8_t alignCnt
= 0 , curBit
= BitStream
[ 0 ], alignedIdx
= 0 ;
1089 uint8_t halfClkErr
= 0 ;
1090 //find alignment, needs 4 1s or 0s to properly align
1091 for ( i
= 1 ; i
< * size
- 1 ; i
++) {
1092 alignCnt
= ( BitStream
[ i
] == curBit
) ? alignCnt
+ 1 : 0 ;
1093 curBit
= BitStream
[ i
];
1094 if ( alignCnt
== 4 ) break ;
1096 // for now error if alignment not found. later add option to run it with multiple offsets...
1097 if ( alignCnt
!= 4 ) {
1098 if ( g_debugMode
) prnt ( "ERROR MillerDecode: alignment not found so either your bitstream is not miller or your data does not have a 101 in it" );
1101 alignedIdx
= ( i
- 1 ) % 2 ;
1102 for ( i
= alignedIdx
; i
< * size
- 3 ; i
+= 2 ) {
1103 halfClkErr
= ( uint8_t )(( halfClkErr
<< 1 | BitStream
[ i
]) & 0xFF );
1104 if ( ( halfClkErr
& 0x7 ) == 5 || ( halfClkErr
& 0x7 ) == 2 || ( i
> 2 && ( halfClkErr
& 0x7 ) == 0 ) || ( halfClkErr
& 0x1F ) == 0x1F ) {
1106 BitStream
[ bitCnt
++] = 7 ;
1109 BitStream
[ bitCnt
++] = BitStream
[ i
] ^ BitStream
[ i
+ 1 ] ^ invert
;
1111 if ( bitCnt
> MaxBits
) break ;
1118 //take 01 or 10 = 1 and 11 or 00 = 0
1119 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
1120 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
1121 int BiphaseRawDecode ( uint8_t * BitStream
, size_t * size
, int offset
, int invert
) {
1122 uint16_t bitnum
= 0 ;
1123 uint16_t errCnt
= 0 ;
1125 uint16_t MaxBits
= 512 ;
1126 //if not enough samples - error
1127 if (* size
< 51 ) return - 1 ;
1128 //check for phase change faults - skip one sample if faulty
1129 uint8_t offsetA
= 1 , offsetB
= 1 ;
1131 if ( BitStream
[ i
+ 1 ]== BitStream
[ i
+ 2 ]) offsetA
= 0 ;
1132 if ( BitStream
[ i
+ 2 ]== BitStream
[ i
+ 3 ]) offsetB
= 0 ;
1134 if (! offsetA
&& offsetB
) offset
++;
1135 for ( i
= offset
; i
<* size
- 3 ; i
+= 2 ){
1136 //check for phase error
1137 if ( BitStream
[ i
+ 1 ]== BitStream
[ i
+ 2 ]) {
1138 BitStream
[ bitnum
++]= 7 ;
1141 if (( BitStream
[ i
]== 1 && BitStream
[ i
+ 1 ]== 0 ) || ( BitStream
[ i
]== 0 && BitStream
[ i
+ 1 ]== 1 )){
1142 BitStream
[ bitnum
++]= 1 ^ invert
;
1143 } else if (( BitStream
[ i
]== 0 && BitStream
[ i
+ 1 ]== 0 ) || ( BitStream
[ i
]== 1 && BitStream
[ i
+ 1 ]== 1 )){
1144 BitStream
[ bitnum
++]= invert
;
1146 BitStream
[ bitnum
++]= 7 ;
1149 if ( bitnum
> MaxBits
) break ;
1156 //take 10 and 01 and manchester decode
1157 //run through 2 times and take least errCnt
1158 int manrawdecode ( uint8_t * BitStream
, size_t * size
, uint8_t invert
, uint8_t * alignPos
) {
1159 uint16_t bitnum
= 0 , MaxBits
= 512 , errCnt
= 0 ;
1161 uint16_t bestErr
= 1000 , bestRun
= 0 ;
1162 if (* size
< 16 ) return - 1 ;
1163 //find correct start position [alignment]
1164 for ( ii
= 0 ; ii
< 2 ;++ ii
){
1165 for ( i
= ii
; i
<* size
- 3 ; i
+= 2 )
1166 if ( BitStream
[ i
]== BitStream
[ i
+ 1 ])
1169 if ( bestErr
> errCnt
){
1177 for ( i
= bestRun
; i
< * size
- 3 ; i
+= 2 ){
1178 if ( BitStream
[ i
] == 1 && ( BitStream
[ i
+ 1 ] == 0 )){
1179 BitStream
[ bitnum
++]= invert
;
1180 } else if (( BitStream
[ i
] == 0 ) && BitStream
[ i
+ 1 ] == 1 ){
1181 BitStream
[ bitnum
++]= invert
^ 1 ;
1183 BitStream
[ bitnum
++]= 7 ;
1185 if ( bitnum
> MaxBits
) break ;
1192 //demodulates strong heavily clipped samples
1193 int cleanAskRawDemod ( uint8_t * BinStream
, size_t * size
, int clk
, int invert
, int high
, int low
, int * startIdx
)
1196 size_t bitCnt
= 0 , smplCnt
= 1 , errCnt
= 0 ;
1197 bool waveHigh
= ( BinStream
[ 0 ] >= high
);
1198 for ( size_t i
= 1 ; i
< * size
; i
++){
1199 if ( BinStream
[ i
] >= high
&& waveHigh
){
1201 } else if ( BinStream
[ i
] <= low
&& ! waveHigh
){
1203 } else { //transition
1204 if (( BinStream
[ i
] >= high
&& ! waveHigh
) || ( BinStream
[ i
] <= low
&& waveHigh
)){
1205 if ( smplCnt
> clk
-( clk
/ 4 )- 1 ) { //full clock
1206 if ( smplCnt
> clk
+ ( clk
/ 4 )+ 1 ) { //too many samples
1208 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Modulation Error at: %u" , i
);
1209 BinStream
[ bitCnt
++] = 7 ;
1210 } else if ( waveHigh
) {
1211 BinStream
[ bitCnt
++] = invert
;
1212 BinStream
[ bitCnt
++] = invert
;
1213 } else if (! waveHigh
) {
1214 BinStream
[ bitCnt
++] = invert
^ 1 ;
1215 BinStream
[ bitCnt
++] = invert
^ 1 ;
1217 if (* startIdx
== 0 ) * startIdx
= i
- clk
;
1218 waveHigh
= ! waveHigh
;
1220 } else if ( smplCnt
> ( clk
/ 2 ) - ( clk
/ 4 )- 1 ) { //half clock
1222 BinStream
[ bitCnt
++] = invert
;
1223 } else if (! waveHigh
) {
1224 BinStream
[ bitCnt
++] = invert
^ 1 ;
1226 if (* startIdx
== 0 ) * startIdx
= i
-( clk
/ 2 );
1227 waveHigh
= ! waveHigh
;
1231 //transition bit oops
1233 } else { //haven't hit new high or new low yet
1243 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
1244 int askdemod_ext ( uint8_t * BinStream
, size_t * size
, int * clk
, int * invert
, int maxErr
, uint8_t amp
, uint8_t askType
, int * startIdx
) {
1245 if (* size
== 0 ) return - 1 ;
1246 int start
= DetectASKClock ( BinStream
, * size
, clk
, maxErr
); //clock default
1247 if (* clk
== 0 || start
< 0 ) return - 3 ;
1248 if (* invert
!= 1 ) * invert
= 0 ;
1249 if ( amp
== 1 ) askAmp ( BinStream
, * size
);
1250 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, beststart %d, amp %d" , * clk
, start
, amp
);
1252 //start pos from detect ask clock is 1/2 clock offset
1253 // NOTE: can be negative (demod assumes rest of wave was there)
1254 * startIdx
= start
- (* clk
/ 2 );
1255 uint8_t initLoopMax
= 255 ;
1256 if ( initLoopMax
> * size
) initLoopMax
= * size
;
1257 // Detect high and lows
1258 //25% clip in case highs and lows aren't clipped [marshmellow]
1260 if ( getHiLo ( BinStream
, initLoopMax
, & high
, & low
, 75 , 75 ) < 1 )
1261 return - 2 ; //just noise
1264 // if clean clipped waves detected run alternate demod
1265 if ( DetectCleanAskWave ( BinStream
, * size
, high
, low
)) {
1266 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Clean Wave Detected - using clean wave demod" );
1267 errCnt
= cleanAskRawDemod ( BinStream
, size
, * clk
, * invert
, high
, low
, startIdx
);
1268 if ( askType
) { //askman
1269 uint8_t alignPos
= 0 ;
1270 errCnt
= manrawdecode ( BinStream
, size
, 0 , & alignPos
);
1271 * startIdx
+= * clk
/ 2 * alignPos
;
1272 if ( g_debugMode
) prnt ( "DEBUG ASK CLEAN: startIdx %i, alignPos %u" , * startIdx
, alignPos
);
1278 if ( g_debugMode
) prnt ( "DEBUG ASK WEAK: startIdx %i" , * startIdx
);
1279 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Weak Wave Detected - using weak wave demod" );
1281 int lastBit
; //set first clock check - can go negative
1282 size_t i
, bitnum
= 0 ; //output counter
1284 uint8_t tol
= 0 ; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
1285 if (* clk
<= 32 ) tol
= 1 ; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
1286 size_t MaxBits
= 3072 ; //max bits to collect
1287 lastBit
= start
- * clk
;
1289 for ( i
= start
; i
< * size
; ++ i
) {
1290 if ( i
- lastBit
>= * clk
- tol
){
1291 if ( BinStream
[ i
] >= high
) {
1292 BinStream
[ bitnum
++] = * invert
;
1293 } else if ( BinStream
[ i
] <= low
) {
1294 BinStream
[ bitnum
++] = * invert
^ 1 ;
1295 } else if ( i
- lastBit
>= * clk
+ tol
) {
1297 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Modulation Error at: %u" , i
);
1298 BinStream
[ bitnum
++]= 7 ;
1301 } else { //in tolerance - looking for peak
1306 } else if ( i
- lastBit
>= (* clk
/ 2 - tol
) && ! midBit
&& ! askType
){
1307 if ( BinStream
[ i
] >= high
) {
1308 BinStream
[ bitnum
++] = * invert
;
1309 } else if ( BinStream
[ i
] <= low
) {
1310 BinStream
[ bitnum
++] = * invert
^ 1 ;
1311 } else if ( i
- lastBit
>= * clk
/ 2 + tol
) {
1312 BinStream
[ bitnum
] = BinStream
[ bitnum
- 1 ];
1314 } else { //in tolerance - looking for peak
1319 if ( bitnum
>= MaxBits
) break ;
1325 int askdemod ( uint8_t * BinStream
, size_t * size
, int * clk
, int * invert
, int maxErr
, uint8_t amp
, uint8_t askType
) {
1327 return askdemod_ext ( BinStream
, size
, clk
, invert
, maxErr
, amp
, askType
, & start
);
1330 // by marshmellow - demodulate NRZ wave - requires a read with strong signal
1331 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1332 int nrzRawDemod ( uint8_t * dest
, size_t * size
, int * clk
, int * invert
, int * startIdx
) {
1333 if ( justNoise ( dest
, * size
)) return - 1 ;
1334 size_t clkStartIdx
= 0 ;
1335 * clk
= DetectNRZClock ( dest
, * size
, * clk
, & clkStartIdx
);
1336 if (* clk
== 0 ) return - 2 ;
1337 size_t i
, gLen
= 4096 ;
1338 if ( gLen
>* size
) gLen
= * size
- 20 ;
1340 if ( getHiLo ( dest
, gLen
, & high
, & low
, 75 , 75 ) < 1 ) return - 3 ; //25% fuzz on high 25% fuzz on low
1343 //convert wave samples to 1's and 0's
1344 for ( i
= 20 ; i
< * size
- 20 ; i
++){
1345 if ( dest
[ i
] >= high
) bit
= 1 ;
1346 if ( dest
[ i
] <= low
) bit
= 0 ;
1349 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1352 for ( i
= 21 ; i
< * size
- 20 ; i
++) {
1353 //if transition detected or large number of same bits - store the passed bits
1354 if ( dest
[ i
] != dest
[ i
- 1 ] || ( i
- lastBit
) == ( 10 * * clk
)) {
1355 memset ( dest
+ numBits
, dest
[ i
- 1 ] ^ * invert
, ( i
- lastBit
+ (* clk
/ 4 )) / * clk
);
1356 numBits
+= ( i
- lastBit
+ (* clk
/ 4 )) / * clk
;
1358 * startIdx
= i
- ( numBits
* * clk
);
1359 if ( g_debugMode
== 2 ) prnt ( "DEBUG NRZ: startIdx %i" , * startIdx
);
1368 //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
1369 size_t fsk_wave_demod ( uint8_t * dest
, size_t size
, uint8_t fchigh
, uint8_t fclow
, int * startIdx
) {
1370 size_t last_transition
= 0 ;
1372 if ( fchigh
== 0 ) fchigh
= 10 ;
1373 if ( fclow
== 0 ) fclow
= 8 ;
1374 //set the threshold close to 0 (graph) or 128 std to avoid static
1375 size_t preLastSample
= 0 ;
1376 size_t LastSample
= 0 ;
1377 size_t currSample
= 0 ;
1378 if ( size
< 1024 ) return 0 ; // not enough samples
1380 //find start of modulating data in trace
1381 idx
= findModStart ( dest
, size
, fchigh
);
1382 // Need to threshold first sample
1383 if ( dest
[ idx
] < FSK_PSK_THRESHOLD
) dest
[ 0 ] = 0 ;
1386 last_transition
= idx
;
1389 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
1390 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
1391 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
1392 // (could also be fc/5 && fc/7 for fsk1 = 4-9)
1393 for (; idx
< size
; idx
++) {
1394 // threshold current value
1395 if ( dest
[ idx
] < FSK_PSK_THRESHOLD
) dest
[ idx
] = 0 ;
1398 // Check for 0->1 transition
1399 if ( dest
[ idx
- 1 ] < dest
[ idx
]) {
1400 preLastSample
= LastSample
;
1401 LastSample
= currSample
;
1402 currSample
= idx
- last_transition
;
1403 if ( currSample
< ( fclow
- 2 )) { //0-5 = garbage noise (or 0-3)
1404 //do nothing with extra garbage
1405 } else if ( currSample
< ( fchigh
- 1 )) { //6-8 = 8 sample waves (or 3-6 = 5)
1406 //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
1407 if ( numBits
> 1 && LastSample
> ( fchigh
- 2 ) && ( preLastSample
< ( fchigh
- 1 ))){
1411 if ( numBits
> 0 && * startIdx
== 0 ) * startIdx
= idx
- fclow
;
1412 } else if ( currSample
> ( fchigh
+ 1 ) && numBits
< 3 ) { //12 + and first two bit = unusable garbage
1413 //do nothing with beginning garbage and reset.. should be rare..
1415 } else if ( currSample
== ( fclow
+ 1 ) && LastSample
== ( fclow
- 1 )) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
1417 if ( numBits
> 0 && * startIdx
== 0 ) * startIdx
= idx
- fclow
;
1418 } else { //9+ = 10 sample waves (or 6+ = 7)
1420 if ( numBits
> 0 && * startIdx
== 0 ) * startIdx
= idx
- fchigh
;
1422 last_transition
= idx
;
1425 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
1428 //translate 11111100000 to 10
1429 //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
1430 size_t aggregate_bits ( uint8_t * dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
, int * startIdx
) {
1431 uint8_t lastval
= dest
[ 0 ];
1435 for ( idx
= 1 ; idx
< size
; idx
++) {
1437 if ( dest
[ idx
]== lastval
) continue ; //skip until we hit a transition
1439 //find out how many bits (n) we collected (use 1/2 clk tolerance)
1440 //if lastval was 1, we have a 1->0 crossing
1441 if ( dest
[ idx
- 1 ]== 1 ) {
1442 n
= ( n
* fclow
+ rfLen
/ 2 ) / rfLen
;
1443 } else { // 0->1 crossing
1444 n
= ( n
* fchigh
+ rfLen
/ 2 ) / rfLen
;
1448 //first transition - save startidx
1450 if ( lastval
== 1 ) { //high to low
1451 * startIdx
+= ( fclow
* idx
) - ( n
* rfLen
);
1452 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: startIdx %i, fclow*idx %i, n*rflen %u" , * startIdx
, fclow
*( idx
), n
* rfLen
);
1454 * startIdx
+= ( fchigh
* idx
) - ( n
* rfLen
);
1455 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: startIdx %i, fchigh*idx %i, n*rflen %u" , * startIdx
, fchigh
*( idx
), n
* rfLen
);
1459 //add to our destination the bits we collected
1460 memset ( dest
+ numBits
, dest
[ idx
- 1 ]^ invert
, n
);
1465 // if valid extra bits at the end were all the same frequency - add them in
1466 if ( n
> rfLen
/ fchigh
) {
1467 if ( dest
[ idx
- 2 ]== 1 ) {
1468 n
= ( n
* fclow
+ rfLen
/ 2 ) / rfLen
;
1470 n
= ( n
* fchigh
+ rfLen
/ 2 ) / rfLen
;
1472 memset ( dest
+ numBits
, dest
[ idx
- 1 ]^ invert
, n
);
1478 //by marshmellow (from holiman's base)
1479 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
1480 int fskdemod_ext ( uint8_t * dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
, int * startIdx
) {
1482 size
= fsk_wave_demod ( dest
, size
, fchigh
, fclow
, startIdx
);
1483 size
= aggregate_bits ( dest
, size
, rfLen
, invert
, fchigh
, fclow
, startIdx
);
1487 int fskdemod ( uint8_t * dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
) {
1489 return fskdemod_ext ( dest
, size
, rfLen
, invert
, fchigh
, fclow
, & startIdx
);
1493 // convert psk1 demod to psk2 demod
1494 // only transition waves are 1s
1495 void psk1TOpsk2 ( uint8_t * BitStream
, size_t size
) {
1497 uint8_t lastBit
= BitStream
[ 0 ];
1498 for (; i
< size
; i
++){
1499 if ( BitStream
[ i
]== 7 ){
1501 } else if ( lastBit
!= BitStream
[ i
]){
1502 lastBit
= BitStream
[ i
];
1512 // convert psk2 demod to psk1 demod
1513 // from only transition waves are 1s to phase shifts change bit
1514 void psk2TOpsk1 ( uint8_t * BitStream
, size_t size
) {
1516 for ( size_t i
= 0 ; i
< size
; i
++){
1517 if ( BitStream
[ i
]== 1 ){
1525 size_t pskFindFirstPhaseShift ( uint8_t samples
[], size_t size
, uint8_t * curPhase
, size_t waveStart
, uint16_t fc
, uint16_t * fullWaveLen
) {
1526 uint16_t loopCnt
= ( size
+ 3 < 4096 ) ? size
: 4096 ; //don't need to loop through entire array...
1528 uint16_t avgWaveVal
= 0 , lastAvgWaveVal
= 0 ;
1529 size_t i
= waveStart
, waveEnd
, waveLenCnt
, firstFullWave
;
1530 for (; i
< loopCnt
; i
++) {
1532 if ( samples
[ i
]+ fc
< samples
[ i
+ 1 ] && samples
[ i
+ 1 ] >= samples
[ i
+ 2 ]){
1534 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: waveEnd: %u, waveStart: %u" , waveEnd
, waveStart
);
1535 waveLenCnt
= waveEnd
- waveStart
;
1536 if ( waveLenCnt
> fc
&& waveStart
> fc
&& !( waveLenCnt
> fc
+ 8 )){ //not first peak and is a large wave but not out of whack
1537 lastAvgWaveVal
= avgWaveVal
/( waveLenCnt
);
1538 firstFullWave
= waveStart
;
1539 * fullWaveLen
= waveLenCnt
;
1540 //if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting)
1541 if ( lastAvgWaveVal
> FSK_PSK_THRESHOLD
) * curPhase
^= 1 ;
1542 return firstFullWave
;
1547 avgWaveVal
+= samples
[ i
+ 2 ];
1552 //by marshmellow - demodulate PSK1 wave
1553 //uses wave lengths (# Samples)
1554 int pskRawDemod_ext ( uint8_t dest
[], size_t * size
, int * clock
, int * invert
, int * startIdx
) {
1555 if (* size
< 170 ) return - 1 ;
1557 uint8_t curPhase
= * invert
;
1558 size_t i
= 0 , numBits
= 0 , waveStart
= 1 , waveEnd
= 0 , firstFullWave
= 0 , lastClkBit
= 0 ;
1559 uint16_t fc
= 0 , fullWaveLen
= 0 , waveLenCnt
= 0 , avgWaveVal
, tol
= 1 ;
1560 uint16_t errCnt
= 0 , errCnt2
= 0 ;
1562 fc
= countFC ( dest
, * size
, 1 );
1563 if (( fc
>> 8 ) == 10 ) return - 1 ; //fsk found - quit
1565 if ( fc
!= 2 && fc
!= 4 && fc
!= 8 ) return - 1 ;
1566 * clock
= DetectPSKClock ( dest
, * size
, * clock
);
1567 if (* clock
== 0 ) return - 1 ;
1569 //find start of modulating data in trace
1570 i
= findModStart ( dest
, * size
, fc
);
1572 //find first phase shift
1573 firstFullWave
= pskFindFirstPhaseShift ( dest
, * size
, & curPhase
, i
, fc
, & fullWaveLen
);
1574 if ( firstFullWave
== 0 ) {
1575 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1576 // so skip a little to ensure we are past any Start Signal
1577 firstFullWave
= 160 ;
1578 memset ( dest
, curPhase
, firstFullWave
/ * clock
);
1580 memset ( dest
, curPhase
^ 1 , firstFullWave
/ * clock
);
1583 numBits
+= ( firstFullWave
/ * clock
);
1584 * startIdx
= firstFullWave
- (* clock
* numBits
)+ 2 ;
1585 //set start of wave as clock align
1586 lastClkBit
= firstFullWave
;
1587 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: firstFullWave: %u, waveLen: %u, startIdx %i" , firstFullWave
, fullWaveLen
, * startIdx
);
1588 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: clk: %d, lastClkBit: %u, fc: %u" , * clock
, lastClkBit
,( unsigned int ) fc
);
1590 dest
[ numBits
++] = curPhase
; //set first read bit
1591 for ( i
= firstFullWave
+ fullWaveLen
- 1 ; i
< * size
- 3 ; i
++){
1592 //top edge of wave = start of new wave
1593 if ( dest
[ i
]+ fc
< dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1594 if ( waveStart
== 0 ) {
1597 avgWaveVal
= dest
[ i
+ 1 ];
1600 waveLenCnt
= waveEnd
- waveStart
;
1601 if ( waveLenCnt
> fc
){
1602 //this wave is a phase shift
1603 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1604 if ( i
+ 1 >= lastClkBit
+ * clock
- tol
){ //should be a clock bit
1606 dest
[ numBits
++] = curPhase
;
1607 lastClkBit
+= * clock
;
1608 } else if ( i
< lastClkBit
+ 10 + fc
){
1609 //noise after a phase shift - ignore
1610 } else { //phase shift before supposed to based on clock
1612 dest
[ numBits
++] = 7 ;
1614 } else if ( i
+ 1 > lastClkBit
+ * clock
+ tol
+ fc
){
1615 lastClkBit
+= * clock
; //no phase shift but clock bit
1616 dest
[ numBits
++] = curPhase
;
1617 } else if ( waveLenCnt
< fc
- 1 ) { //wave is smaller than field clock (shouldn't happen often)
1619 if ( errCnt2
> 101 ) return errCnt2
;
1625 avgWaveVal
+= dest
[ i
+ 1 ];
1631 int pskRawDemod ( uint8_t dest
[], size_t * size
, int * clock
, int * invert
) {
1633 return pskRawDemod_ext ( dest
, size
, clock
, invert
, & startIdx
);
1636 //**********************************************************************************************
1637 //-----------------Tag format detection section-------------------------------------------------
1638 //**********************************************************************************************
1641 // FSK Demod then try to locate an AWID ID
1642 int AWIDdemodFSK ( uint8_t * dest
, size_t * size
) {
1643 //make sure buffer has enough data
1644 if (* size
< 96 * 50 ) return - 1 ;
1646 if ( justNoise ( dest
, * size
)) return - 2 ;
1649 * size
= fskdemod ( dest
, * size
, 50 , 1 , 10 , 8 ); // fsk2a RF/50
1650 if (* size
< 96 ) return - 3 ; //did we get a good demod?
1652 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
1653 size_t startIdx
= 0 ;
1654 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
1655 if ( errChk
== 0 ) return - 4 ; //preamble not found
1656 if (* size
!= 96 ) return - 5 ;
1657 return ( int ) startIdx
;
1661 //takes 1s and 0s and searches for EM410x format - output EM ID
1662 uint8_t Em410xDecode ( uint8_t * BitStream
, size_t * size
, size_t * startIdx
, uint32_t * hi
, uint64_t * lo
)
1665 if (* size
< 64 ) return 0 ;
1666 if ( BitStream
[ 1 ]> 1 ) return 0 ; //allow only 1s and 0s
1668 // 111111111 bit pattern represent start of frame
1669 // include 0 in front to help get start pos
1670 uint8_t preamble
[] = { 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 };
1672 uint8_t FmtLen
= 10 ; // sets of 4 bits = end data
1674 errChk
= preambleSearch ( BitStream
, preamble
, sizeof ( preamble
), size
, startIdx
);
1675 if ( errChk
== 0 || (* size
!= 64 && * size
!= 128 ) ) return 0 ;
1676 if (* size
== 128 ) FmtLen
= 22 ; // 22 sets of 4 bits
1678 //skip last 4bit parity row for simplicity
1679 * size
= removeParity ( BitStream
, * startIdx
+ sizeof ( preamble
), 5 , 0 , FmtLen
* 5 );
1680 if (* size
== 40 ) { // std em410x format
1682 * lo
= (( uint64_t )( bytebits_to_byte ( BitStream
, 8 )) << 32 ) | ( bytebits_to_byte ( BitStream
+ 8 , 32 ));
1683 } else if (* size
== 88 ) { // long em format
1684 * hi
= ( bytebits_to_byte ( BitStream
, 24 ));
1685 * lo
= (( uint64_t )( bytebits_to_byte ( BitStream
+ 24 , 32 )) << 32 ) | ( bytebits_to_byte ( BitStream
+ 24 + 32 , 32 ));
1692 // Ask/Biphase Demod then try to locate an ISO 11784/85 ID
1693 // BitStream must contain previously askrawdemod and biphasedemoded data
1694 int FDXBdemodBI ( uint8_t * dest
, size_t * size
) {
1695 //make sure buffer has enough data
1696 if (* size
< 128 ) return - 1 ;
1698 size_t startIdx
= 0 ;
1699 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
1701 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
1702 if ( errChk
== 0 ) return - 2 ; //preamble not found
1703 return ( int ) startIdx
;
1707 // demod gProxIIDemod
1708 // error returns as -x
1709 // success returns start position in BitStream
1710 // BitStream must contain previously askrawdemod and biphasedemoded data
1711 int gProxII_Demod ( uint8_t BitStream
[], size_t * size
) {
1713 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 1 , 0 };
1715 uint8_t errChk
= preambleSearch ( BitStream
, preamble
, sizeof ( preamble
), size
, & startIdx
);
1716 if ( errChk
== 0 ) return - 3 ; //preamble not found
1717 if (* size
!= 96 ) return - 2 ; //should have found 96 bits
1718 //check first 6 spacer bits to verify format
1719 if (! BitStream
[ startIdx
+ 5 ] && ! BitStream
[ startIdx
+ 10 ] && ! BitStream
[ startIdx
+ 15 ] && ! BitStream
[ startIdx
+ 20 ] && ! BitStream
[ startIdx
+ 25 ] && ! BitStream
[ startIdx
+ 30 ]){
1720 //confirmed proper separator bits found
1721 //return start position
1722 return ( int ) startIdx
;
1724 return - 5 ; //spacer bits not found - not a valid gproxII
1727 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
1728 int HIDdemodFSK ( uint8_t * dest
, size_t * size
, uint32_t * hi2
, uint32_t * hi
, uint32_t * lo
) {
1729 if ( justNoise ( dest
, * size
)) return - 1 ;
1731 size_t numStart
= 0 , size2
=* size
, startIdx
= 0 ;
1733 * size
= fskdemod ( dest
, size2
, 50 , 1 , 10 , 8 ); //fsk2a
1734 if (* size
< 96 * 2 ) return - 2 ;
1735 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
1736 uint8_t preamble
[] = { 0 , 0 , 0 , 1 , 1 , 1 , 0 , 1 };
1737 // find bitstring in array
1738 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
1739 if ( errChk
== 0 ) return - 3 ; //preamble not found
1741 numStart
= startIdx
+ sizeof ( preamble
);
1742 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
1743 for ( size_t idx
= numStart
; ( idx
- numStart
) < * size
- sizeof ( preamble
); idx
+= 2 ){
1744 if ( dest
[ idx
] == dest
[ idx
+ 1 ]){
1745 return - 4 ; //not manchester data
1747 * hi2
= (* hi2
<< 1 )|(* hi
>> 31 );
1748 * hi
= (* hi
<< 1 )|(* lo
>> 31 );
1749 //Then, shift in a 0 or one into low
1750 if ( dest
[ idx
] && ! dest
[ idx
+ 1 ]) // 1 0
1755 return ( int ) startIdx
;
1758 int IOdemodFSK ( uint8_t * dest
, size_t size
) {
1759 if ( justNoise ( dest
, size
)) return - 1 ;
1760 //make sure buffer has data
1761 if ( size
< 66 * 64 ) return - 2 ;
1763 size
= fskdemod ( dest
, size
, 64 , 1 , 10 , 8 ); // FSK2a RF/64
1764 if ( size
< 65 ) return - 3 ; //did we get a good demod?
1766 //0 10 20 30 40 50 60
1768 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1769 //-----------------------------------------------------------------------------
1770 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1772 //XSF(version)facility:codeone+codetwo
1774 size_t startIdx
= 0 ;
1775 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
1776 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), & size
, & startIdx
);
1777 if ( errChk
== 0 ) return - 4 ; //preamble not found
1779 if (! dest
[ startIdx
+ 8 ] && dest
[ startIdx
+ 17 ]== 1 && dest
[ startIdx
+ 26 ]== 1 && dest
[ startIdx
+ 35 ]== 1 && dest
[ startIdx
+ 44 ]== 1 && dest
[ startIdx
+ 53 ]== 1 ){
1780 //confirmed proper separator bits found
1781 //return start position
1782 return ( int ) startIdx
;
1787 // redesigned by marshmellow adjusted from existing decode functions
1788 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1789 int indala26decode ( uint8_t * bitStream
, size_t * size
, uint8_t * invert
) {
1790 //26 bit 40134 format (don't know other formats)
1791 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
1792 uint8_t preamble_i
[] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 };
1793 size_t startidx
= 0 ;
1794 if (! preambleSearch ( bitStream
, preamble
, sizeof ( preamble
), size
, & startidx
)){
1795 // if didn't find preamble try again inverting
1796 if (! preambleSearch ( bitStream
, preamble_i
, sizeof ( preamble_i
), size
, & startidx
)) return - 1 ;
1799 if (* size
!= 64 && * size
!= 224 ) return - 2 ;
1801 for ( size_t i
= startidx
; i
< * size
; i
++)
1804 return ( int ) startidx
;
1807 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
1808 int ParadoxdemodFSK ( uint8_t * dest
, size_t * size
, uint32_t * hi2
, uint32_t * hi
, uint32_t * lo
) {
1809 if ( justNoise ( dest
, * size
)) return - 1 ;
1811 size_t numStart
= 0 , size2
=* size
, startIdx
= 0 ;
1813 * size
= fskdemod ( dest
, size2
, 50 , 1 , 10 , 8 ); //fsk2a
1814 if (* size
< 96 ) return - 2 ;
1816 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
1817 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 };
1819 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
1820 if ( errChk
== 0 ) return - 3 ; //preamble not found
1822 numStart
= startIdx
+ sizeof ( preamble
);
1823 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
1824 for ( size_t idx
= numStart
; ( idx
- numStart
) < * size
- sizeof ( preamble
); idx
+= 2 ){
1825 if ( dest
[ idx
] == dest
[ idx
+ 1 ])
1826 return - 4 ; //not manchester data
1827 * hi2
= (* hi2
<< 1 )|(* hi
>> 31 );
1828 * hi
= (* hi
<< 1 )|(* lo
>> 31 );
1829 //Then, shift in a 0 or one into low
1830 if ( dest
[ idx
] && ! dest
[ idx
+ 1 ]) // 1 0
1835 return ( int ) startIdx
;
1838 // find presco preamble 0x10D in already demoded data
1839 int PrescoDemod ( uint8_t * dest
, size_t * size
) {
1840 //make sure buffer has data
1841 if (* size
< 64 * 2 ) return - 2 ;
1843 size_t startIdx
= 0 ;
1844 uint8_t preamble
[] = { 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1845 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
1846 if ( errChk
== 0 ) return - 4 ; //preamble not found
1847 //return start position
1848 return ( int ) startIdx
;
1852 // FSK Demod then try to locate a Farpointe Data (pyramid) ID
1853 int PyramiddemodFSK ( uint8_t * dest
, size_t * size
) {
1854 //make sure buffer has data
1855 if (* size
< 128 * 50 ) return - 5 ;
1857 //test samples are not just noise
1858 if ( justNoise ( dest
, * size
)) return - 1 ;
1861 * size
= fskdemod ( dest
, * size
, 50 , 1 , 10 , 8 ); // fsk2a RF/50
1862 if (* size
< 128 ) return - 2 ; //did we get a good demod?
1864 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
1865 size_t startIdx
= 0 ;
1866 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
1867 if ( errChk
== 0 ) return - 4 ; //preamble not found
1868 if (* size
!= 128 ) return - 3 ;
1869 return ( int ) startIdx
;
1873 // find viking preamble 0xF200 in already demoded data
1874 int VikingDemod_AM ( uint8_t * dest
, size_t * size
) {
1875 //make sure buffer has data
1876 if (* size
< 64 * 2 ) return - 2 ;
1878 size_t startIdx
= 0 ;
1879 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1880 uint8_t errChk
= preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
);
1881 if ( errChk
== 0 ) return - 4 ; //preamble not found
1882 uint32_t checkCalc
= bytebits_to_byte ( dest
+ startIdx
, 8 ) ^ bytebits_to_byte ( dest
+ startIdx
+ 8 , 8 ) ^ bytebits_to_byte ( dest
+ startIdx
+ 16 , 8 )
1883 ^ bytebits_to_byte ( dest
+ startIdx
+ 24 , 8 ) ^ bytebits_to_byte ( dest
+ startIdx
+ 32 , 8 ) ^ bytebits_to_byte ( dest
+ startIdx
+ 40 , 8 )
1884 ^ bytebits_to_byte ( dest
+ startIdx
+ 48 , 8 ) ^ bytebits_to_byte ( dest
+ startIdx
+ 56 , 8 );
1885 if ( checkCalc
!= 0xA8 ) return - 5 ;
1886 if (* size
!= 64 ) return - 6 ;
1887 //return start position
1888 return ( int ) startIdx
;
1892 // find Visa2000 preamble in already demoded data
1893 int Visa2kDemod_AM ( uint8_t * dest
, size_t * size
) {
1894 if (* size
< 96 ) return - 1 ; //make sure buffer has data
1895 size_t startIdx
= 0 ;
1896 uint8_t preamble
[] = { 0 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 0 };
1897 if ( preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
) == 0 )
1898 return - 2 ; //preamble not found
1899 if (* size
!= 96 ) return - 3 ; //wrong demoded size
1900 //return start position
1901 return ( int ) startIdx
;