1 //-----------------------------------------------------------------------------
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
16 //un_comment to allow debug print calls when used not on device
17 void dummy(char *fmt
, ...){}
21 #include "cmdparser.h"
23 #define prnt PrintAndLog
25 uint8_t g_debugMode
=0;
29 uint8_t justNoise(uint8_t *BitStream
, size_t size
)
31 static const uint8_t THRESHOLD
= 123;
32 //test samples are not just noise
33 uint8_t justNoise1
= 1;
34 for(size_t idx
=0; idx
< size
&& justNoise1
;idx
++){
35 justNoise1
= BitStream
[idx
] < THRESHOLD
;
41 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
42 int getHiLo(uint8_t *BitStream
, size_t size
, int *high
, int *low
, uint8_t fuzzHi
, uint8_t fuzzLo
)
46 // get high and low thresholds
47 for (size_t i
=0; i
< size
; i
++){
48 if (BitStream
[i
] > *high
) *high
= BitStream
[i
];
49 if (BitStream
[i
] < *low
) *low
= BitStream
[i
];
51 if (*high
< 123) return -1; // just noise
52 *high
= ((*high
-128)*fuzzHi
+ 12800)/100;
53 *low
= ((*low
-128)*fuzzLo
+ 12800)/100;
58 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
59 // returns 1 if passed
60 uint8_t parityTest(uint32_t bits
, uint8_t bitLen
, uint8_t pType
)
63 for (uint8_t i
= 0; i
< bitLen
; i
++){
64 ans
^= ((bits
>> i
) & 1);
66 //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
67 return (ans
== pType
);
71 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
72 // Parity Type (1 for odd; 0 for even; 2 Always 1's), and binary Length (length to run)
73 size_t removeParity(uint8_t *BitStream
, size_t startIdx
, uint8_t pLen
, uint8_t pType
, size_t bLen
)
75 uint32_t parityWd
= 0;
76 size_t j
= 0, bitCnt
= 0;
77 for (int word
= 0; word
< (bLen
); word
+=pLen
){
78 for (int bit
=0; bit
< pLen
; bit
++){
79 parityWd
= (parityWd
<< 1) | BitStream
[startIdx
+word
+bit
];
80 BitStream
[j
++] = (BitStream
[startIdx
+word
+bit
]);
82 j
--; // overwrite parity with next data
83 // if parity fails then return 0
84 if (pType
== 2) { // then marker bit which should be a 1
85 if (!BitStream
[j
]) return 0;
87 if (parityTest(parityWd
, pLen
, pType
) == 0) return 0;
92 // if we got here then all the parities passed
93 //return ID start index and size
98 // takes a array of binary values, length of bits per parity (includes parity bit),
99 // Parity Type (1 for odd; 0 for even; 2 Always 1's), and binary Length (length to run)
100 size_t addParity(uint8_t *BitSource
, uint8_t *dest
, uint8_t sourceLen
, uint8_t pLen
, uint8_t pType
)
102 uint32_t parityWd
= 0;
103 size_t j
= 0, bitCnt
= 0;
104 for (int word
= 0; word
< sourceLen
; word
+=pLen
-1) {
105 for (int bit
=0; bit
< pLen
-1; bit
++){
106 parityWd
= (parityWd
<< 1) | BitSource
[word
+bit
];
107 dest
[j
++] = (BitSource
[word
+bit
]);
109 // if parity fails then return 0
110 if (pType
== 2) { // then marker bit which should be a 1
113 dest
[j
++] = parityTest(parityWd
, pLen
-1, pType
) ^ 1;
118 // if we got here then all the parities passed
119 //return ID start index and size
123 uint32_t bytebits_to_byte(uint8_t *src
, size_t numbits
)
126 for(int i
= 0 ; i
< numbits
; i
++)
128 num
= (num
<< 1) | (*src
);
134 //least significant bit first
135 uint32_t bytebits_to_byteLSBF(uint8_t *src
, size_t numbits
)
138 for(int i
= 0 ; i
< numbits
; i
++)
140 num
= (num
<< 1) | *(src
+ (numbits
-(i
+1)));
146 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
147 uint8_t preambleSearch(uint8_t *BitStream
, uint8_t *preamble
, size_t pLen
, size_t *size
, size_t *startIdx
)
150 for (int idx
=0; idx
< *size
- pLen
; idx
++){
151 if (memcmp(BitStream
+idx
, preamble
, pLen
) == 0){
158 *size
= idx
- *startIdx
;
167 //takes 1s and 0s and searches for EM410x format - output EM ID
168 uint8_t Em410xDecode(uint8_t *BitStream
, size_t *size
, size_t *startIdx
, uint32_t *hi
, uint64_t *lo
)
170 //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
171 // otherwise could be a void with no arguments
174 if (BitStream
[1]>1) return 0; //allow only 1s and 0s
176 // 111111111 bit pattern represent start of frame
177 // include 0 in front to help get start pos
178 uint8_t preamble
[] = {0,1,1,1,1,1,1,1,1,1};
180 uint32_t parityBits
= 0;
184 errChk
= preambleSearch(BitStream
, preamble
, sizeof(preamble
), size
, startIdx
);
185 if (errChk
== 0 || *size
< 64) return 0;
186 if (*size
> 64) FmtLen
= 22;
187 *startIdx
+= 1; //get rid of 0 from preamble
189 for (i
=0; i
<FmtLen
; i
++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
190 parityBits
= bytebits_to_byte(BitStream
+(i
*5)+idx
,5);
191 //check even parity - quit if failed
192 if (parityTest(parityBits
, 5, 0) == 0) return 0;
193 //set uint64 with ID from BitStream
194 for (uint8_t ii
=0; ii
<4; ii
++){
195 *hi
= (*hi
<< 1) | (*lo
>> 63);
196 *lo
= (*lo
<< 1) | (BitStream
[(i
*5)+ii
+idx
]);
199 if (errChk
!= 0) return 1;
200 //skip last 5 bit parity test for simplicity.
206 //demodulates strong heavily clipped samples
207 int cleanAskRawDemod(uint8_t *BinStream
, size_t *size
, int clk
, int invert
, int high
, int low
)
209 size_t bitCnt
=0, smplCnt
=0, errCnt
=0;
210 uint8_t waveHigh
= 0;
211 for (size_t i
=0; i
< *size
; i
++){
212 if (BinStream
[i
] >= high
&& waveHigh
){
214 } else if (BinStream
[i
] <= low
&& !waveHigh
){
216 } else { //transition
217 if ((BinStream
[i
] >= high
&& !waveHigh
) || (BinStream
[i
] <= low
&& waveHigh
)){
218 if (smplCnt
> clk
-(clk
/4)-1) { //full clock
219 if (smplCnt
> clk
+ (clk
/4)+1) { //too many samples
221 BinStream
[bitCnt
++]=7;
222 } else if (waveHigh
) {
223 BinStream
[bitCnt
++] = invert
;
224 BinStream
[bitCnt
++] = invert
;
225 } else if (!waveHigh
) {
226 BinStream
[bitCnt
++] = invert
^ 1;
227 BinStream
[bitCnt
++] = invert
^ 1;
231 } else if (smplCnt
> (clk
/2) - (clk
/4)-1) {
233 BinStream
[bitCnt
++] = invert
;
234 } else if (!waveHigh
) {
235 BinStream
[bitCnt
++] = invert
^ 1;
239 } else if (!bitCnt
) {
241 waveHigh
= (BinStream
[i
] >= high
);
245 //transition bit oops
247 } else { //haven't hit new high or new low yet
257 void askAmp(uint8_t *BitStream
, size_t size
)
259 for(size_t i
= 1; i
<size
; i
++){
260 if (BitStream
[i
]-BitStream
[i
-1]>=30) //large jump up
262 else if(BitStream
[i
]-BitStream
[i
-1]<=-20) //large jump down
269 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
270 int askdemod(uint8_t *BinStream
, size_t *size
, int *clk
, int *invert
, int maxErr
, uint8_t amp
, uint8_t askType
)
272 if (*size
==0) return -1;
273 int start
= DetectASKClock(BinStream
, *size
, clk
, maxErr
); //clock default
274 if (*clk
==0 || start
< 0) return -3;
275 if (*invert
!= 1) *invert
= 0;
276 if (amp
==1) askAmp(BinStream
, *size
);
277 if (g_debugMode
==2) prnt("DEBUG: clk %d, beststart %d", *clk
, start
);
279 uint8_t initLoopMax
= 255;
280 if (initLoopMax
> *size
) initLoopMax
= *size
;
281 // Detect high and lows
282 //25% clip in case highs and lows aren't clipped [marshmellow]
284 if (getHiLo(BinStream
, initLoopMax
, &high
, &low
, 75, 75) < 1)
285 return -2; //just noise
288 // if clean clipped waves detected run alternate demod
289 if (DetectCleanAskWave(BinStream
, *size
, high
, low
)) {
290 if (g_debugMode
==2) prnt("DEBUG: Clean Wave Detected");
291 errCnt
= cleanAskRawDemod(BinStream
, size
, *clk
, *invert
, high
, low
);
292 if (askType
) //askman
293 return manrawdecode(BinStream
, size
, 0);
298 int lastBit
; //set first clock check - can go negative
299 size_t i
, bitnum
= 0; //output counter
301 uint8_t tol
= 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
302 if (*clk
<= 32) tol
= 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
303 size_t MaxBits
= 3072;
304 lastBit
= start
- *clk
;
306 for (i
= start
; i
< *size
; ++i
) {
307 if (i
-lastBit
>= *clk
-tol
){
308 if (BinStream
[i
] >= high
) {
309 BinStream
[bitnum
++] = *invert
;
310 } else if (BinStream
[i
] <= low
) {
311 BinStream
[bitnum
++] = *invert
^ 1;
312 } else if (i
-lastBit
>= *clk
+tol
) {
314 BinStream
[bitnum
++]=7;
317 } else { //in tolerance - looking for peak
322 } else if (i
-lastBit
>= (*clk
/2-tol
) && !midBit
&& !askType
){
323 if (BinStream
[i
] >= high
) {
324 BinStream
[bitnum
++] = *invert
;
325 } else if (BinStream
[i
] <= low
) {
326 BinStream
[bitnum
++] = *invert
^ 1;
327 } else if (i
-lastBit
>= *clk
/2+tol
) {
328 BinStream
[bitnum
] = BinStream
[bitnum
-1];
330 } else { //in tolerance - looking for peak
335 if (bitnum
>= MaxBits
) break;
342 //take 10 and 01 and manchester decode
343 //run through 2 times and take least errCnt
344 int manrawdecode(uint8_t * BitStream
, size_t *size
, uint8_t invert
)
346 uint16_t bitnum
=0, MaxBits
= 512, errCnt
= 0;
348 uint16_t bestErr
= 1000, bestRun
= 0;
349 if (*size
< 16) return -1;
350 //find correct start position [alignment]
351 for (ii
=0;ii
<2;++ii
){
352 for (i
=ii
; i
<*size
-3; i
+=2)
353 if (BitStream
[i
]==BitStream
[i
+1])
363 for (i
=bestRun
; i
< *size
-3; i
+=2){
364 if(BitStream
[i
] == 1 && (BitStream
[i
+1] == 0)){
365 BitStream
[bitnum
++]=invert
;
366 } else if((BitStream
[i
] == 0) && BitStream
[i
+1] == 1){
367 BitStream
[bitnum
++]=invert
^1;
369 BitStream
[bitnum
++]=7;
371 if(bitnum
>MaxBits
) break;
377 uint32_t manchesterEncode2Bytes(uint16_t datain
) {
380 for (uint8_t i
=0; i
<16; i
++) {
381 curBit
= (datain
>> (15-i
) & 1);
382 output
|= (1<<(((15-i
)*2)+curBit
));
388 //encode binary data into binary manchester
389 int ManchesterEncode(uint8_t *BitStream
, size_t size
)
391 size_t modIdx
=20000, i
=0;
392 if (size
>modIdx
) return -1;
393 for (size_t idx
=0; idx
< size
; idx
++){
394 BitStream
[idx
+modIdx
++] = BitStream
[idx
];
395 BitStream
[idx
+modIdx
++] = BitStream
[idx
]^1;
397 for (; i
<(size
*2); i
++){
398 BitStream
[i
] = BitStream
[i
+20000];
404 //take 01 or 10 = 1 and 11 or 00 = 0
405 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
406 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
407 int BiphaseRawDecode(uint8_t *BitStream
, size_t *size
, int offset
, int invert
)
412 uint16_t MaxBits
=512;
413 //if not enough samples - error
414 if (*size
< 51) return -1;
415 //check for phase change faults - skip one sample if faulty
416 uint8_t offsetA
= 1, offsetB
= 1;
418 if (BitStream
[i
+1]==BitStream
[i
+2]) offsetA
=0;
419 if (BitStream
[i
+2]==BitStream
[i
+3]) offsetB
=0;
421 if (!offsetA
&& offsetB
) offset
++;
422 for (i
=offset
; i
<*size
-3; i
+=2){
423 //check for phase error
424 if (BitStream
[i
+1]==BitStream
[i
+2]) {
425 BitStream
[bitnum
++]=7;
428 if((BitStream
[i
]==1 && BitStream
[i
+1]==0) || (BitStream
[i
]==0 && BitStream
[i
+1]==1)){
429 BitStream
[bitnum
++]=1^invert
;
430 } else if((BitStream
[i
]==0 && BitStream
[i
+1]==0) || (BitStream
[i
]==1 && BitStream
[i
+1]==1)){
431 BitStream
[bitnum
++]=invert
;
433 BitStream
[bitnum
++]=7;
436 if(bitnum
>MaxBits
) break;
443 // demod gProxIIDemod
444 // error returns as -x
445 // success returns start position in BitStream
446 // BitStream must contain previously askrawdemod and biphasedemoded data
447 int gProxII_Demod(uint8_t BitStream
[], size_t *size
)
450 uint8_t preamble
[] = {1,1,1,1,1,0};
452 uint8_t errChk
= preambleSearch(BitStream
, preamble
, sizeof(preamble
), size
, &startIdx
);
453 if (errChk
== 0) return -3; //preamble not found
454 if (*size
!= 96) return -2; //should have found 96 bits
455 //check first 6 spacer bits to verify format
456 if (!BitStream
[startIdx
+5] && !BitStream
[startIdx
+10] && !BitStream
[startIdx
+15] && !BitStream
[startIdx
+20] && !BitStream
[startIdx
+25] && !BitStream
[startIdx
+30]){
457 //confirmed proper separator bits found
458 //return start position
459 return (int) startIdx
;
464 //translate wave to 11111100000 (1 for each short wave 0 for each long wave)
465 size_t fsk_wave_demod(uint8_t * dest
, size_t size
, uint8_t fchigh
, uint8_t fclow
)
467 size_t last_transition
= 0;
470 if (fchigh
==0) fchigh
=10;
471 if (fclow
==0) fclow
=8;
472 //set the threshold close to 0 (graph) or 128 std to avoid static
473 uint8_t threshold_value
= 123;
474 size_t preLastSample
= 0;
475 size_t LastSample
= 0;
476 size_t currSample
= 0;
477 // sync to first lo-hi transition, and threshold
479 // Need to threshold first sample
480 // skip 160 samples to allow antenna/samples to settle
481 if(dest
[160] < threshold_value
) dest
[0] = 0;
485 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
486 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
487 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
488 for(idx
= 161; idx
< size
-20; idx
++) {
489 // threshold current value
491 if (dest
[idx
] < threshold_value
) dest
[idx
] = 0;
494 // Check for 0->1 transition
495 if (dest
[idx
-1] < dest
[idx
]) { // 0 -> 1 transition
496 preLastSample
= LastSample
;
497 LastSample
= currSample
;
498 currSample
= idx
-last_transition
;
499 if (currSample
< (fclow
-2)){ //0-5 = garbage noise (or 0-3)
500 //do nothing with extra garbage
501 } else if (currSample
< (fchigh
-1)) { //6-8 = 8 sample waves or 3-6 = 5
502 if (LastSample
> (fchigh
-2) && (preLastSample
< (fchigh
-1) || preLastSample
== 0 )){
503 dest
[numBits
-1]=1; //correct previous 9 wave surrounded by 8 waves
507 } else if (currSample
> (fchigh
) && !numBits
) { //12 + and first bit = garbage
508 //do nothing with beginning garbage
509 } else if (currSample
== (fclow
+1) && LastSample
== (fclow
-1)) { // had a 7 then a 9 should be two 8's
511 } else { //9+ = 10 sample waves
514 last_transition
= idx
;
517 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
520 //translate 11111100000 to 10
521 size_t aggregate_bits(uint8_t *dest
, size_t size
, uint8_t rfLen
,
522 uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
524 uint8_t lastval
=dest
[0];
528 for( idx
=1; idx
< size
; idx
++) {
530 if (dest
[idx
]==lastval
) continue;
532 //if lastval was 1, we have a 1->0 crossing
533 if (dest
[idx
-1]==1) {
534 n
= (n
* fclow
+ rfLen
/2) / rfLen
;
535 } else {// 0->1 crossing
536 n
= (n
* fchigh
+ rfLen
/2) / rfLen
;
540 memset(dest
+numBits
, dest
[idx
-1]^invert
, n
);
545 // if valid extra bits at the end were all the same frequency - add them in
546 if (n
> rfLen
/fchigh
) {
547 if (dest
[idx
-2]==1) {
548 n
= (n
* fclow
+ rfLen
/2) / rfLen
;
550 n
= (n
* fchigh
+ rfLen
/2) / rfLen
;
552 memset(dest
+numBits
, dest
[idx
-1]^invert
, n
);
558 //by marshmellow (from holiman's base)
559 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
560 int fskdemod(uint8_t *dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
563 size
= fsk_wave_demod(dest
, size
, fchigh
, fclow
);
564 size
= aggregate_bits(dest
, size
, rfLen
, invert
, fchigh
, fclow
);
568 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
569 int HIDdemodFSK(uint8_t *dest
, size_t *size
, uint32_t *hi2
, uint32_t *hi
, uint32_t *lo
)
571 if (justNoise(dest
, *size
)) return -1;
573 size_t numStart
=0, size2
=*size
, startIdx
=0;
575 *size
= fskdemod(dest
, size2
,50,1,10,8); //fsk2a
576 if (*size
< 96*2) return -2;
577 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
578 uint8_t preamble
[] = {0,0,0,1,1,1,0,1};
579 // find bitstring in array
580 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
581 if (errChk
== 0) return -3; //preamble not found
583 numStart
= startIdx
+ sizeof(preamble
);
584 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
585 for (size_t idx
= numStart
; (idx
-numStart
) < *size
- sizeof(preamble
); idx
+=2){
586 if (dest
[idx
] == dest
[idx
+1]){
587 return -4; //not manchester data
589 *hi2
= (*hi2
<<1)|(*hi
>>31);
590 *hi
= (*hi
<<1)|(*lo
>>31);
591 //Then, shift in a 0 or one into low
592 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
597 return (int)startIdx
;
600 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
601 int ParadoxdemodFSK(uint8_t *dest
, size_t *size
, uint32_t *hi2
, uint32_t *hi
, uint32_t *lo
)
603 if (justNoise(dest
, *size
)) return -1;
605 size_t numStart
=0, size2
=*size
, startIdx
=0;
607 *size
= fskdemod(dest
, size2
,50,1,10,8); //fsk2a
608 if (*size
< 96) return -2;
610 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
611 uint8_t preamble
[] = {0,0,0,0,1,1,1,1};
613 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
614 if (errChk
== 0) return -3; //preamble not found
616 numStart
= startIdx
+ sizeof(preamble
);
617 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
618 for (size_t idx
= numStart
; (idx
-numStart
) < *size
- sizeof(preamble
); idx
+=2){
619 if (dest
[idx
] == dest
[idx
+1])
620 return -4; //not manchester data
621 *hi2
= (*hi2
<<1)|(*hi
>>31);
622 *hi
= (*hi
<<1)|(*lo
>>31);
623 //Then, shift in a 0 or one into low
624 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
629 return (int)startIdx
;
632 int IOdemodFSK(uint8_t *dest
, size_t size
)
634 if (justNoise(dest
, size
)) return -1;
635 //make sure buffer has data
636 if (size
< 66*64) return -2;
638 size
= fskdemod(dest
, size
, 64, 1, 10, 8); // FSK2a RF/64
639 if (size
< 65) return -3; //did we get a good demod?
641 //0 10 20 30 40 50 60
643 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
644 //-----------------------------------------------------------------------------
645 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
647 //XSF(version)facility:codeone+codetwo
650 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,1};
651 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), &size
, &startIdx
);
652 if (errChk
== 0) return -4; //preamble not found
654 if (!dest
[startIdx
+8] && dest
[startIdx
+17]==1 && dest
[startIdx
+26]==1 && dest
[startIdx
+35]==1 && dest
[startIdx
+44]==1 && dest
[startIdx
+53]==1){
655 //confirmed proper separator bits found
656 //return start position
657 return (int) startIdx
;
663 // find viking preamble 0xF200 in already demoded data
664 int VikingDemod_AM(uint8_t *dest
, size_t *size
) {
665 //make sure buffer has data
666 if (*size
< 64*2) return -2;
669 uint8_t preamble
[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
670 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
671 if (errChk
== 0) return -4; //preamble not found
672 uint32_t checkCalc
= bytebits_to_byte(dest
+startIdx
,8) ^ bytebits_to_byte(dest
+startIdx
+8,8) ^ bytebits_to_byte(dest
+startIdx
+16,8)
673 ^ bytebits_to_byte(dest
+startIdx
+24,8) ^ bytebits_to_byte(dest
+startIdx
+32,8) ^ bytebits_to_byte(dest
+startIdx
+40,8)
674 ^ bytebits_to_byte(dest
+startIdx
+48,8) ^ bytebits_to_byte(dest
+startIdx
+56,8);
675 if ( checkCalc
!= 0xA8 ) return -5;
676 if (*size
!= 64) return -6;
677 //return start position
678 return (int) startIdx
;
681 // Ask/Biphase Demod then try to locate an ISO 11784/85 ID
682 // BitStream must contain previously askrawdemod and biphasedemoded data
683 int FDXBdemodBI(uint8_t *dest
, size_t *size
)
685 //make sure buffer has enough data
686 if (*size
< 128) return -1;
689 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,0,1};
691 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
692 if (errChk
== 0) return -2; //preamble not found
693 return (int)startIdx
;
697 // FSK Demod then try to locate an AWID ID
698 int AWIDdemodFSK(uint8_t *dest
, size_t *size
)
700 //make sure buffer has enough data
701 if (*size
< 96*50) return -1;
703 if (justNoise(dest
, *size
)) return -2;
706 *size
= fskdemod(dest
, *size
, 50, 1, 10, 8); // fsk2a RF/50
707 if (*size
< 96) return -3; //did we get a good demod?
709 uint8_t preamble
[] = {0,0,0,0,0,0,0,1};
711 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
712 if (errChk
== 0) return -4; //preamble not found
713 if (*size
!= 96) return -5;
714 return (int)startIdx
;
718 // FSK Demod then try to locate a Farpointe Data (pyramid) ID
719 int PyramiddemodFSK(uint8_t *dest
, size_t *size
)
721 //make sure buffer has data
722 if (*size
< 128*50) return -5;
724 //test samples are not just noise
725 if (justNoise(dest
, *size
)) return -1;
728 *size
= fskdemod(dest
, *size
, 50, 1, 10, 8); // fsk2a RF/50
729 if (*size
< 128) return -2; //did we get a good demod?
731 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
733 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
734 if (errChk
== 0) return -4; //preamble not found
735 if (*size
!= 128) return -3;
736 return (int)startIdx
;
740 // to detect a wave that has heavily clipped (clean) samples
741 uint8_t DetectCleanAskWave(uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
)
743 bool allArePeaks
= true;
745 size_t loopEnd
= 512+160;
746 if (loopEnd
> size
) loopEnd
= size
;
747 for (size_t i
=160; i
<loopEnd
; i
++){
748 if (dest
[i
]>low
&& dest
[i
]<high
)
754 if (cntPeaks
> 300) return true;
759 // to help detect clocks on heavily clipped samples
760 // based on count of low to low
761 int DetectStrongAskClock(uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
)
763 uint8_t fndClk
[] = {8,16,32,40,50,64,128};
767 // get to first full low to prime loop and skip incomplete first pulse
768 while ((dest
[i
] < high
) && (i
< size
))
770 while ((dest
[i
] > low
) && (i
< size
))
773 // loop through all samples
775 // measure from low to low
776 while ((dest
[i
] > low
) && (i
< size
))
779 while ((dest
[i
] < high
) && (i
< size
))
781 while ((dest
[i
] > low
) && (i
< size
))
783 //get minimum measured distance
784 if (i
-startwave
< minClk
&& i
< size
)
785 minClk
= i
- startwave
;
788 if (g_debugMode
==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk
);
789 for (uint8_t clkCnt
= 0; clkCnt
<7; clkCnt
++) {
790 if (minClk
>= fndClk
[clkCnt
]-(fndClk
[clkCnt
]/8) && minClk
<= fndClk
[clkCnt
]+1)
791 return fndClk
[clkCnt
];
797 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
798 // maybe somehow adjust peak trimming value based on samples to fix?
799 // return start index of best starting position for that clock and return clock (by reference)
800 int DetectASKClock(uint8_t dest
[], size_t size
, int *clock
, int maxErr
)
803 uint8_t clk
[] = {255,8,16,32,40,50,64,100,128,255};
805 uint8_t loopCnt
= 255; //don't need to loop through entire array...
806 if (size
<= loopCnt
+60) return -1; //not enough samples
807 size
-= 60; //sometimes there is a strange end wave - filter out this....
808 //if we already have a valid clock
811 if (clk
[i
] == *clock
) clockFnd
= i
;
812 //clock found but continue to find best startpos
814 //get high and low peak
816 if (getHiLo(dest
, loopCnt
, &peak
, &low
, 75, 75) < 1) return -1;
818 //test for large clean peaks
820 if (DetectCleanAskWave(dest
, size
, peak
, low
)==1){
821 int ans
= DetectStrongAskClock(dest
, size
, peak
, low
);
822 if (g_debugMode
==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d",ans
);
823 for (i
=clkEnd
-1; i
>0; i
--){
827 return 0; // for strong waves i don't use the 'best start position' yet...
828 //break; //clock found but continue to find best startpos [not yet]
834 uint8_t clkCnt
, tol
= 0;
835 uint16_t bestErr
[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
836 uint8_t bestStart
[]={0,0,0,0,0,0,0,0,0};
838 size_t arrLoc
, loopEnd
;
846 //test each valid clock from smallest to greatest to see which lines up
847 for(; clkCnt
< clkEnd
; clkCnt
++){
848 if (clk
[clkCnt
] <= 32){
853 //if no errors allowed - keep start within the first clock
854 if (!maxErr
&& size
> clk
[clkCnt
]*2 + tol
&& clk
[clkCnt
]<128) loopCnt
=clk
[clkCnt
]*2;
855 bestErr
[clkCnt
]=1000;
856 //try lining up the peaks by moving starting point (try first few clocks)
857 for (ii
=0; ii
< loopCnt
; ii
++){
858 if (dest
[ii
] < peak
&& dest
[ii
] > low
) continue;
861 // now that we have the first one lined up test rest of wave array
862 loopEnd
= ((size
-ii
-tol
) / clk
[clkCnt
]) - 1;
863 for (i
=0; i
< loopEnd
; ++i
){
864 arrLoc
= ii
+ (i
* clk
[clkCnt
]);
865 if (dest
[arrLoc
] >= peak
|| dest
[arrLoc
] <= low
){
866 }else if (dest
[arrLoc
-tol
] >= peak
|| dest
[arrLoc
-tol
] <= low
){
867 }else if (dest
[arrLoc
+tol
] >= peak
|| dest
[arrLoc
+tol
] <= low
){
868 }else{ //error no peak detected
872 //if we found no errors then we can stop here and a low clock (common clocks)
873 // this is correct one - return this clock
874 if (g_debugMode
== 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d",clk
[clkCnt
],errCnt
,ii
,i
);
875 if(errCnt
==0 && clkCnt
<7) {
876 if (!clockFnd
) *clock
= clk
[clkCnt
];
879 //if we found errors see if it is lowest so far and save it as best run
880 if(errCnt
<bestErr
[clkCnt
]){
881 bestErr
[clkCnt
]=errCnt
;
882 bestStart
[clkCnt
]=ii
;
888 for (iii
=1; iii
<clkEnd
; ++iii
){
889 if (bestErr
[iii
] < bestErr
[best
]){
890 if (bestErr
[iii
] == 0) bestErr
[iii
]=1;
891 // current best bit to error ratio vs new bit to error ratio
892 if ( (size
/clk
[best
])/bestErr
[best
] < (size
/clk
[iii
])/bestErr
[iii
] ){
896 if (g_debugMode
== 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d",clk
[iii
],bestErr
[iii
],clk
[best
],bestStart
[best
]);
898 if (!clockFnd
) *clock
= clk
[best
];
899 return bestStart
[best
];
903 //detect psk clock by reading each phase shift
904 // a phase shift is determined by measuring the sample length of each wave
905 int DetectPSKClock(uint8_t dest
[], size_t size
, int clock
)
907 uint8_t clk
[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
908 uint16_t loopCnt
= 4096; //don't need to loop through entire array...
909 if (size
== 0) return 0;
910 if (size
<loopCnt
) loopCnt
= size
-20;
912 //if we already have a valid clock quit
915 if (clk
[i
] == clock
) return clock
;
917 size_t waveStart
=0, waveEnd
=0, firstFullWave
=0, lastClkBit
=0;
918 uint8_t clkCnt
, fc
=0, fullWaveLen
=0, tol
=1;
919 uint16_t peakcnt
=0, errCnt
=0, waveLenCnt
=0;
920 uint16_t bestErr
[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
921 uint16_t peaksdet
[]={0,0,0,0,0,0,0,0,0};
922 fc
= countFC(dest
, size
, 0);
923 if (fc
!=2 && fc
!=4 && fc
!=8) return -1;
924 if (g_debugMode
==2) prnt("DEBUG PSK: FC: %d",fc
);
926 //find first full wave
927 for (i
=160; i
<loopCnt
; i
++){
928 if (dest
[i
] < dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
929 if (waveStart
== 0) {
931 //prnt("DEBUG: waveStart: %d",waveStart);
934 //prnt("DEBUG: waveEnd: %d",waveEnd);
935 waveLenCnt
= waveEnd
-waveStart
;
936 if (waveLenCnt
> fc
){
937 firstFullWave
= waveStart
;
938 fullWaveLen
=waveLenCnt
;
945 if (g_debugMode
==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave
,fullWaveLen
);
947 //test each valid clock from greatest to smallest to see which lines up
948 for(clkCnt
=7; clkCnt
>= 1 ; clkCnt
--){
949 lastClkBit
= firstFullWave
; //set end of wave as clock align
953 if (g_debugMode
== 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk
[clkCnt
],lastClkBit
);
955 for (i
= firstFullWave
+fullWaveLen
-1; i
< loopCnt
-2; i
++){
956 //top edge of wave = start of new wave
957 if (dest
[i
] < dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
958 if (waveStart
== 0) {
963 waveLenCnt
= waveEnd
-waveStart
;
964 if (waveLenCnt
> fc
){
965 //if this wave is a phase shift
966 if (g_debugMode
== 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart
,waveLenCnt
,lastClkBit
+clk
[clkCnt
]-tol
,i
+1,fc
);
967 if (i
+1 >= lastClkBit
+ clk
[clkCnt
] - tol
){ //should be a clock bit
969 lastClkBit
+=clk
[clkCnt
];
970 } else if (i
<lastClkBit
+8){
971 //noise after a phase shift - ignore
972 } else { //phase shift before supposed to based on clock
975 } else if (i
+1 > lastClkBit
+ clk
[clkCnt
] + tol
+ fc
){
976 lastClkBit
+=clk
[clkCnt
]; //no phase shift but clock bit
985 if (errCnt
<= bestErr
[clkCnt
]) bestErr
[clkCnt
]=errCnt
;
986 if (peakcnt
> peaksdet
[clkCnt
]) peaksdet
[clkCnt
]=peakcnt
;
988 //all tested with errors
989 //return the highest clk with the most peaks found
991 for (i
=7; i
>=1; i
--){
992 if (peaksdet
[i
] > peaksdet
[best
]) {
995 if (g_debugMode
== 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk
[i
],peaksdet
[i
],bestErr
[i
],clk
[best
]);
1000 int DetectStrongNRZClk(uint8_t *dest
, size_t size
, int peak
, int low
){
1001 //find shortest transition from high to low
1003 size_t transition1
= 0;
1004 int lowestTransition
= 255;
1005 bool lastWasHigh
= false;
1007 //find first valid beginning of a high or low wave
1008 while ((dest
[i
] >= peak
|| dest
[i
] <= low
) && (i
< size
))
1010 while ((dest
[i
] < peak
&& dest
[i
] > low
) && (i
< size
))
1012 lastWasHigh
= (dest
[i
] >= peak
);
1014 if (i
==size
) return 0;
1017 for (;i
< size
; i
++) {
1018 if ((dest
[i
] >= peak
&& !lastWasHigh
) || (dest
[i
] <= low
&& lastWasHigh
)) {
1019 lastWasHigh
= (dest
[i
] >= peak
);
1020 if (i
-transition1
< lowestTransition
) lowestTransition
= i
-transition1
;
1024 if (lowestTransition
== 255) lowestTransition
= 0;
1025 if (g_debugMode
==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition
);
1026 return lowestTransition
;
1030 //detect nrz clock by reading #peaks vs no peaks(or errors)
1031 int DetectNRZClock(uint8_t dest
[], size_t size
, int clock
)
1034 uint8_t clk
[]={8,16,32,40,50,64,100,128,255};
1035 size_t loopCnt
= 4096; //don't need to loop through entire array...
1036 if (size
== 0) return 0;
1037 if (size
<loopCnt
) loopCnt
= size
-20;
1038 //if we already have a valid clock quit
1040 if (clk
[i
] == clock
) return clock
;
1042 //get high and low peak
1044 if (getHiLo(dest
, loopCnt
, &peak
, &low
, 75, 75) < 1) return 0;
1046 int lowestTransition
= DetectStrongNRZClk(dest
, size
-20, peak
, low
);
1050 uint16_t smplCnt
= 0;
1051 int16_t peakcnt
= 0;
1052 int16_t peaksdet
[] = {0,0,0,0,0,0,0,0};
1053 uint16_t maxPeak
= 255;
1054 bool firstpeak
= false;
1055 //test for large clipped waves
1056 for (i
=0; i
<loopCnt
; i
++){
1057 if (dest
[i
] >= peak
|| dest
[i
] <= low
){
1058 if (!firstpeak
) continue;
1063 if (maxPeak
> smplCnt
){
1065 //prnt("maxPk: %d",maxPeak);
1068 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
1073 bool errBitHigh
= 0;
1075 uint8_t ignoreCnt
= 0;
1076 uint8_t ignoreWindow
= 4;
1077 bool lastPeakHigh
= 0;
1080 //test each valid clock from smallest to greatest to see which lines up
1081 for(clkCnt
=0; clkCnt
< 8; ++clkCnt
){
1082 //ignore clocks smaller than smallest peak
1083 if (clk
[clkCnt
] < maxPeak
- (clk
[clkCnt
]/4)) continue;
1084 //try lining up the peaks by moving starting point (try first 256)
1085 for (ii
=20; ii
< loopCnt
; ++ii
){
1086 if ((dest
[ii
] >= peak
) || (dest
[ii
] <= low
)){
1090 lastBit
= ii
-clk
[clkCnt
];
1091 //loop through to see if this start location works
1092 for (i
= ii
; i
< size
-20; ++i
) {
1093 //if we are at a clock bit
1094 if ((i
>= lastBit
+ clk
[clkCnt
] - tol
) && (i
<= lastBit
+ clk
[clkCnt
] + tol
)) {
1096 if (dest
[i
] >= peak
|| dest
[i
] <= low
) {
1097 //if same peak don't count it
1098 if ((dest
[i
] >= peak
&& !lastPeakHigh
) || (dest
[i
] <= low
&& lastPeakHigh
)) {
1101 lastPeakHigh
= (dest
[i
] >= peak
);
1104 ignoreCnt
= ignoreWindow
;
1105 lastBit
+= clk
[clkCnt
];
1106 } else if (i
== lastBit
+ clk
[clkCnt
] + tol
) {
1107 lastBit
+= clk
[clkCnt
];
1109 //else if not a clock bit and no peaks
1110 } else if (dest
[i
] < peak
&& dest
[i
] > low
){
1113 if (errBitHigh
==true) peakcnt
--;
1118 // else if not a clock bit but we have a peak
1119 } else if ((dest
[i
]>=peak
|| dest
[i
]<=low
) && (!bitHigh
)) {
1120 //error bar found no clock...
1124 if(peakcnt
>peaksdet
[clkCnt
]) {
1125 peaksdet
[clkCnt
]=peakcnt
;
1132 for (iii
=7; iii
> 0; iii
--){
1133 if ((peaksdet
[iii
] >= (peaksdet
[best
]-1)) && (peaksdet
[iii
] <= peaksdet
[best
]+1) && lowestTransition
) {
1134 if (clk
[iii
] > (lowestTransition
- (clk
[iii
]/8)) && clk
[iii
] < (lowestTransition
+ (clk
[iii
]/8))) {
1137 } else if (peaksdet
[iii
] > peaksdet
[best
]){
1140 if (g_debugMode
==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk
[iii
],peaksdet
[iii
],maxPeak
, clk
[best
], lowestTransition
);
1147 // convert psk1 demod to psk2 demod
1148 // only transition waves are 1s
1149 void psk1TOpsk2(uint8_t *BitStream
, size_t size
)
1152 uint8_t lastBit
=BitStream
[0];
1153 for (; i
<size
; i
++){
1154 if (BitStream
[i
]==7){
1156 } else if (lastBit
!=BitStream
[i
]){
1157 lastBit
=BitStream
[i
];
1167 // convert psk2 demod to psk1 demod
1168 // from only transition waves are 1s to phase shifts change bit
1169 void psk2TOpsk1(uint8_t *BitStream
, size_t size
)
1172 for (size_t i
=0; i
<size
; i
++){
1173 if (BitStream
[i
]==1){
1181 // redesigned by marshmellow adjusted from existing decode functions
1182 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1183 int indala26decode(uint8_t *bitStream
, size_t *size
, uint8_t *invert
)
1185 //26 bit 40134 format (don't know other formats)
1186 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
1187 uint8_t preamble_i
[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0};
1188 size_t startidx
= 0;
1189 if (!preambleSearch(bitStream
, preamble
, sizeof(preamble
), size
, &startidx
)){
1190 // if didn't find preamble try again inverting
1191 if (!preambleSearch(bitStream
, preamble_i
, sizeof(preamble_i
), size
, &startidx
)) return -1;
1194 if (*size
!= 64 && *size
!= 224) return -2;
1196 for (size_t i
= startidx
; i
< *size
; i
++)
1199 return (int) startidx
;
1202 // by marshmellow - demodulate NRZ wave
1203 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1204 int nrzRawDemod(uint8_t *dest
, size_t *size
, int *clk
, int *invert
){
1205 if (justNoise(dest
, *size
)) return -1;
1206 *clk
= DetectNRZClock(dest
, *size
, *clk
);
1207 if (*clk
==0) return -2;
1208 size_t i
, gLen
= 4096;
1209 if (gLen
>*size
) gLen
= *size
-20;
1211 if (getHiLo(dest
, gLen
, &high
, &low
, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
1214 //convert wave samples to 1's and 0's
1215 for(i
=20; i
< *size
-20; i
++){
1216 if (dest
[i
] >= high
) bit
= 1;
1217 if (dest
[i
] <= low
) bit
= 0;
1220 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1223 for(i
=21; i
< *size
-20; i
++) {
1224 //if transition detected or large number of same bits - store the passed bits
1225 if (dest
[i
] != dest
[i
-1] || (i
-lastBit
) == (10 * *clk
)) {
1226 memset(dest
+numBits
, dest
[i
-1] ^ *invert
, (i
- lastBit
+ (*clk
/4)) / *clk
);
1227 numBits
+= (i
- lastBit
+ (*clk
/4)) / *clk
;
1236 //detects the bit clock for FSK given the high and low Field Clocks
1237 uint8_t detectFSKClk(uint8_t *BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
)
1239 uint8_t clk
[] = {8,16,32,40,50,64,100,128,0};
1240 uint16_t rfLens
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1241 uint8_t rfCnts
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1242 uint8_t rfLensFnd
= 0;
1243 uint8_t lastFCcnt
= 0;
1244 uint16_t fcCounter
= 0;
1245 uint16_t rfCounter
= 0;
1246 uint8_t firstBitFnd
= 0;
1248 if (size
== 0) return 0;
1250 uint8_t fcTol
= ((fcHigh
*100 - fcLow
*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
1255 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
1256 // prime i to first peak / up transition
1257 for (i
= 160; i
< size
-20; i
++)
1258 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
]>=BitStream
[i
+1])
1261 for (; i
< size
-20; i
++){
1265 if (BitStream
[i
] <= BitStream
[i
-1] || BitStream
[i
] < BitStream
[i
+1])
1268 // if we got less than the small fc + tolerance then set it to the small fc
1269 if (fcCounter
< fcLow
+fcTol
)
1271 else //set it to the large fc
1274 //look for bit clock (rf/xx)
1275 if ((fcCounter
< lastFCcnt
|| fcCounter
> lastFCcnt
)){
1276 //not the same size as the last wave - start of new bit sequence
1277 if (firstBitFnd
> 1){ //skip first wave change - probably not a complete bit
1278 for (int ii
=0; ii
<15; ii
++){
1279 if (rfLens
[ii
] >= (rfCounter
-4) && rfLens
[ii
] <= (rfCounter
+4)){
1285 if (rfCounter
> 0 && rfLensFnd
< 15){
1286 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1287 rfCnts
[rfLensFnd
]++;
1288 rfLens
[rfLensFnd
++] = rfCounter
;
1294 lastFCcnt
=fcCounter
;
1298 uint8_t rfHighest
=15, rfHighest2
=15, rfHighest3
=15;
1300 for (i
=0; i
<15; i
++){
1301 //get highest 2 RF values (might need to get more values to compare or compare all?)
1302 if (rfCnts
[i
]>rfCnts
[rfHighest
]){
1303 rfHighest3
=rfHighest2
;
1304 rfHighest2
=rfHighest
;
1306 } else if(rfCnts
[i
]>rfCnts
[rfHighest2
]){
1307 rfHighest3
=rfHighest2
;
1309 } else if(rfCnts
[i
]>rfCnts
[rfHighest3
]){
1312 if (g_debugMode
==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens
[i
], rfCnts
[i
]);
1314 // set allowed clock remainder tolerance to be 1 large field clock length+1
1315 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1316 uint8_t tol1
= fcHigh
+1;
1318 if (g_debugMode
==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens
[rfHighest
],rfLens
[rfHighest2
],rfLens
[rfHighest3
]);
1320 // loop to find the highest clock that has a remainder less than the tolerance
1321 // compare samples counted divided by
1322 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
1324 for (; ii
>=2; ii
--){
1325 if (rfLens
[rfHighest
] % clk
[ii
] < tol1
|| rfLens
[rfHighest
] % clk
[ii
] > clk
[ii
]-tol1
){
1326 if (rfLens
[rfHighest2
] % clk
[ii
] < tol1
|| rfLens
[rfHighest2
] % clk
[ii
] > clk
[ii
]-tol1
){
1327 if (rfLens
[rfHighest3
] % clk
[ii
] < tol1
|| rfLens
[rfHighest3
] % clk
[ii
] > clk
[ii
]-tol1
){
1328 if (g_debugMode
==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk
[ii
]);
1335 if (ii
<0) return 0; // oops we went too far
1341 //countFC is to detect the field clock lengths.
1342 //counts and returns the 2 most common wave lengths
1343 //mainly used for FSK field clock detection
1344 uint16_t countFC(uint8_t *BitStream
, size_t size
, uint8_t fskAdj
)
1346 uint8_t fcLens
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1347 uint16_t fcCnts
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1348 uint8_t fcLensFnd
= 0;
1349 uint8_t lastFCcnt
=0;
1350 uint8_t fcCounter
= 0;
1352 if (size
== 0) return 0;
1354 // prime i to first up transition
1355 for (i
= 160; i
< size
-20; i
++)
1356 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1])
1359 for (; i
< size
-20; i
++){
1360 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1]){
1361 // new up transition
1364 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1365 if (lastFCcnt
==5 && fcCounter
==9) fcCounter
--;
1366 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1367 if ((fcCounter
==9) || fcCounter
==4) fcCounter
++;
1368 // save last field clock count (fc/xx)
1369 lastFCcnt
= fcCounter
;
1371 // find which fcLens to save it to:
1372 for (int ii
=0; ii
<15; ii
++){
1373 if (fcLens
[ii
]==fcCounter
){
1379 if (fcCounter
>0 && fcLensFnd
<15){
1381 fcCnts
[fcLensFnd
]++;
1382 fcLens
[fcLensFnd
++]=fcCounter
;
1391 uint8_t best1
=14, best2
=14, best3
=14;
1393 // go through fclens and find which ones are bigest 2
1394 for (i
=0; i
<15; i
++){
1395 // get the 3 best FC values
1396 if (fcCnts
[i
]>maxCnt1
) {
1401 } else if(fcCnts
[i
]>fcCnts
[best2
]){
1404 } else if(fcCnts
[i
]>fcCnts
[best3
]){
1407 if (g_debugMode
==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens
[i
],fcCnts
[i
],fcLens
[best1
],fcLens
[best2
]);
1409 if (fcLens
[best1
]==0) return 0;
1410 uint8_t fcH
=0, fcL
=0;
1411 if (fcLens
[best1
]>fcLens
[best2
]){
1418 if ((size
-180)/fcH
/3 > fcCnts
[best1
]+fcCnts
[best2
]) {
1419 if (g_debugMode
==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size
-180)/fcH
/3,fcCnts
[best1
]+fcCnts
[best2
]);
1420 return 0; //lots of waves not psk or fsk
1422 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1424 uint16_t fcs
= (((uint16_t)fcH
)<<8) | fcL
;
1425 if (fskAdj
) return fcs
;
1426 return fcLens
[best1
];
1429 //by marshmellow - demodulate PSK1 wave
1430 //uses wave lengths (# Samples)
1431 int pskRawDemod(uint8_t dest
[], size_t *size
, int *clock
, int *invert
)
1433 if (size
== 0) return -1;
1434 uint16_t loopCnt
= 4096; //don't need to loop through entire array...
1435 if (*size
<loopCnt
) loopCnt
= *size
;
1438 uint8_t curPhase
= *invert
;
1439 size_t i
, waveStart
=1, waveEnd
=0, firstFullWave
=0, lastClkBit
=0;
1440 uint8_t fc
=0, fullWaveLen
=0, tol
=1;
1441 uint16_t errCnt
=0, waveLenCnt
=0;
1442 fc
= countFC(dest
, *size
, 0);
1443 if (fc
!=2 && fc
!=4 && fc
!=8) return -1;
1444 //PrintAndLog("DEBUG: FC: %d",fc);
1445 *clock
= DetectPSKClock(dest
, *size
, *clock
);
1446 if (*clock
== 0) return -1;
1447 int avgWaveVal
=0, lastAvgWaveVal
=0;
1448 //find first phase shift
1449 for (i
=0; i
<loopCnt
; i
++){
1450 if (dest
[i
]+fc
< dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
1452 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
1453 waveLenCnt
= waveEnd
-waveStart
;
1454 if (waveLenCnt
> fc
&& waveStart
> fc
&& !(waveLenCnt
> fc
+2)){ //not first peak and is a large wave but not out of whack
1455 lastAvgWaveVal
= avgWaveVal
/(waveLenCnt
);
1456 firstFullWave
= waveStart
;
1457 fullWaveLen
=waveLenCnt
;
1458 //if average wave value is > graph 0 then it is an up wave or a 1
1459 if (lastAvgWaveVal
> 123) curPhase
^= 1; //fudge graph 0 a little 123 vs 128
1465 avgWaveVal
+= dest
[i
+2];
1467 if (firstFullWave
== 0) {
1468 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1469 // so skip a little to ensure we are past any Start Signal
1470 firstFullWave
= 160;
1471 memset(dest
, curPhase
, firstFullWave
/ *clock
);
1473 memset(dest
, curPhase
^1, firstFullWave
/ *clock
);
1476 numBits
+= (firstFullWave
/ *clock
);
1477 //set start of wave as clock align
1478 lastClkBit
= firstFullWave
;
1479 //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
1480 //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
1482 dest
[numBits
++] = curPhase
; //set first read bit
1483 for (i
= firstFullWave
+ fullWaveLen
- 1; i
< *size
-3; i
++){
1484 //top edge of wave = start of new wave
1485 if (dest
[i
]+fc
< dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
1486 if (waveStart
== 0) {
1489 avgWaveVal
= dest
[i
+1];
1492 waveLenCnt
= waveEnd
-waveStart
;
1493 lastAvgWaveVal
= avgWaveVal
/waveLenCnt
;
1494 if (waveLenCnt
> fc
){
1495 //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1496 //this wave is a phase shift
1497 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1498 if (i
+1 >= lastClkBit
+ *clock
- tol
){ //should be a clock bit
1500 dest
[numBits
++] = curPhase
;
1501 lastClkBit
+= *clock
;
1502 } else if (i
< lastClkBit
+10+fc
){
1503 //noise after a phase shift - ignore
1504 } else { //phase shift before supposed to based on clock
1506 dest
[numBits
++] = 7;
1508 } else if (i
+1 > lastClkBit
+ *clock
+ tol
+ fc
){
1509 lastClkBit
+= *clock
; //no phase shift but clock bit
1510 dest
[numBits
++] = curPhase
;
1516 avgWaveVal
+= dest
[i
+1];