]> cvs.zerfleddert.de Git - proxmark3-svn/blob - client/mifarehost.c
ADD: printConfiguration method for a nice printout of the selected configuration.
[proxmark3-svn] / client / mifarehost.c
1 // Merlok, 2011, 2012
2 // people from mifare@nethemba.com, 2010
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // mifare commands
9 //-----------------------------------------------------------------------------
10
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <pthread.h>
15 #include "mifarehost.h"
16 #include "proxmark3.h"
17
18 // MIFARE
19 int compar_int(const void * a, const void * b) {
20 // didn't work: (the result is truncated to 32 bits)
21 //return (*(uint64_t*)b - *(uint64_t*)a);
22
23 // better:
24 if (*(uint64_t*)b == *(uint64_t*)a) return 0;
25 else if (*(uint64_t*)b > *(uint64_t*)a) return 1;
26 else return -1;
27 }
28
29 // Compare 16 Bits out of cryptostate
30 int Compare16Bits(const void * a, const void * b) {
31 if ((*(uint64_t*)b & 0x00ff000000ff0000) == (*(uint64_t*)a & 0x00ff000000ff0000)) return 0;
32 else if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1;
33 else return -1;
34 }
35
36 typedef
37 struct {
38 union {
39 struct Crypto1State *slhead;
40 uint64_t *keyhead;
41 } head;
42 union {
43 struct Crypto1State *sltail;
44 uint64_t *keytail;
45 } tail;
46 uint32_t len;
47 uint32_t uid;
48 uint32_t blockNo;
49 uint32_t keyType;
50 uint32_t nt;
51 uint32_t ks1;
52 } StateList_t;
53
54
55 // wrapper function for multi-threaded lfsr_recovery32
56 void* nested_worker_thread(void *arg)
57 {
58 struct Crypto1State *p1;
59 StateList_t *statelist = arg;
60
61 statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid);
62 for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++);
63 statelist->len = p1 - statelist->head.slhead;
64 statelist->tail.sltail = --p1;
65 qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits);
66
67 return statelist->head.slhead;
68 }
69
70 int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t * resultKey, bool calibrate)
71 {
72 uint16_t i, len;
73 uint32_t uid;
74 UsbCommand resp;
75 StateList_t statelists[2];
76 struct Crypto1State *p1, *p2, *p3, *p4;
77
78 // flush queue
79 WaitForResponseTimeout(CMD_ACK,NULL,100);
80
81 UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
82 memcpy(c.d.asBytes, key, 6);
83 SendCommand(&c);
84
85 if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
86 len = resp.arg[1];
87 if (len == 2) {
88 memcpy(&uid, resp.d.asBytes, 4);
89 PrintAndLog("uid:%08x len=%d trgbl=%d trgkey=%x", uid, len, (uint16_t)resp.arg[2] & 0xff, (uint16_t)resp.arg[2] >> 8);
90
91 for (i = 0; i < 2; i++) {
92 statelists[i].blockNo = resp.arg[2] & 0xff;
93 statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
94 statelists[i].uid = uid;
95
96 memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
97 memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
98 }
99 }
100 else {
101 PrintAndLog("Got 0 keys from proxmark.");
102 return 1;
103 }
104 }
105
106 // calc keys
107
108 pthread_t thread_id[2];
109
110 // create and run worker threads
111 for (i = 0; i < 2; i++) {
112 pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
113 }
114
115 // wait for threads to terminate:
116 for (i = 0; i < 2; i++) {
117 pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
118 }
119
120
121 // the first 16 Bits of the cryptostate already contain part of our key.
122 // Create the intersection of the two lists based on these 16 Bits and
123 // roll back the cryptostate
124 p1 = p3 = statelists[0].head.slhead;
125 p2 = p4 = statelists[1].head.slhead;
126 while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) {
127 if (Compare16Bits(p1, p2) == 0) {
128 struct Crypto1State savestate, *savep = &savestate;
129 savestate = *p1;
130 while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
131 *p3 = *p1;
132 lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0);
133 p3++;
134 p1++;
135 }
136 savestate = *p2;
137 while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
138 *p4 = *p2;
139 lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0);
140 p4++;
141 p2++;
142 }
143 }
144 else {
145 while (Compare16Bits(p1, p2) == -1) p1++;
146 while (Compare16Bits(p1, p2) == 1) p2++;
147 }
148 }
149 p3->even = 0; p3->odd = 0;
150 p4->even = 0; p4->odd = 0;
151 statelists[0].len = p3 - statelists[0].head.slhead;
152 statelists[1].len = p4 - statelists[1].head.slhead;
153 statelists[0].tail.sltail=--p3;
154 statelists[1].tail.sltail=--p4;
155
156 // the statelists now contain possible keys. The key we are searching for must be in the
157 // intersection of both lists. Create the intersection:
158 qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compar_int);
159 qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compar_int);
160
161 uint64_t *p5, *p6, *p7;
162 p5 = p7 = statelists[0].head.keyhead;
163 p6 = statelists[1].head.keyhead;
164 while (p5 <= statelists[0].tail.keytail && p6 <= statelists[1].tail.keytail) {
165 if (compar_int(p5, p6) == 0) {
166 *p7++ = *p5++;
167 p6++;
168 }
169 else {
170 while (compar_int(p5, p6) == -1) p5++;
171 while (compar_int(p5, p6) == 1) p6++;
172 }
173 }
174 statelists[0].len = p7 - statelists[0].head.keyhead;
175 statelists[0].tail.keytail=--p7;
176
177 memset(resultKey, 0, 6);
178 // The list may still contain several key candidates. Test each of them with mfCheckKeys
179 for (i = 0; i < statelists[0].len; i++) {
180 uint8_t keyBlock[6];
181 uint64_t key64;
182 crypto1_get_lfsr(statelists[0].head.slhead + i, &key64);
183 num_to_bytes(key64, 6, keyBlock);
184 key64 = 0;
185 if (!mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, 1, keyBlock, &key64)) {
186 num_to_bytes(key64, 6, resultKey);
187 break;
188 }
189 }
190
191 free(statelists[0].head.slhead);
192 free(statelists[1].head.slhead);
193
194 return 0;
195 }
196
197 int mfCheckKeys (uint8_t blockNo, uint8_t keyType, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){
198
199 *key = 0;
200
201 UsbCommand c = {CMD_MIFARE_CHKKEYS, {blockNo, keyType, keycnt}};
202 memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
203 SendCommand(&c);
204
205 UsbCommand resp;
206 if (!WaitForResponseTimeout(CMD_ACK,&resp,3000)) return 1;
207 if ((resp.arg[0] & 0xff) != 0x01) return 2;
208 *key = bytes_to_num(resp.d.asBytes, 6);
209 return 0;
210 }
211
212 // EMULATOR
213
214 int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
215 UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}};
216 SendCommand(&c);
217
218 UsbCommand resp;
219 if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) return 1;
220 memcpy(data, resp.d.asBytes, blocksCount * 16);
221 return 0;
222 }
223
224 int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) {
225 UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, 0}};
226 memcpy(c.d.asBytes, data, blocksCount * 16);
227 SendCommand(&c);
228 return 0;
229 }
230
231 // "MAGIC" CARD
232
233 int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, bool wantWipe) {
234 uint8_t oldblock0[16] = {0x00};
235 uint8_t block0[16] = {0x00};
236
237 int old = mfCGetBlock(0, oldblock0, CSETBLOCK_SINGLE_OPER);
238 if (old == 0) {
239 memcpy(block0, oldblock0, 16);
240 PrintAndLog("old block 0: %s", sprint_hex(block0,16));
241 } else {
242 PrintAndLog("Couldn't get old data. Will write over the last bytes of Block 0.");
243 }
244
245 // fill in the new values
246 // UID
247 memcpy(block0, uid, 4);
248 // Mifare UID BCC
249 block0[4] = block0[0]^block0[1]^block0[2]^block0[3];
250 // mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed)
251 if (sak!=NULL)
252 block0[5]=sak[0];
253 if (atqa!=NULL) {
254 block0[6]=atqa[1];
255 block0[7]=atqa[0];
256 }
257 PrintAndLog("new block 0: %s", sprint_hex(block0,16));
258 return mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER);
259 }
260
261 int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, bool wantWipe, uint8_t params) {
262
263 uint8_t isOK = 0;
264 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
265 memcpy(c.d.asBytes, data, 16);
266 SendCommand(&c);
267
268 UsbCommand resp;
269 if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
270 isOK = resp.arg[0] & 0xff;
271 if (uid != NULL)
272 memcpy(uid, resp.d.asBytes, 4);
273 if (!isOK)
274 return 2;
275 } else {
276 PrintAndLog("Command execute timeout");
277 return 1;
278 }
279 return 0;
280 }
281
282 int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) {
283 uint8_t isOK = 0;
284
285 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
286 SendCommand(&c);
287
288 UsbCommand resp;
289 if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
290 isOK = resp.arg[0] & 0xff;
291 memcpy(data, resp.d.asBytes, 16);
292 if (!isOK) return 2;
293 } else {
294 PrintAndLog("Command execute timeout");
295 return 1;
296 }
297 return 0;
298 }
299
300 // SNIFFER
301
302 // constants
303 static uint8_t trailerAccessBytes[4] = {0x08, 0x77, 0x8F, 0x00};
304
305 // variables
306 char logHexFileName[FILE_PATH_SIZE] = {0x00};
307 static uint8_t traceCard[4096] = {0x00};
308 static char traceFileName[FILE_PATH_SIZE] = {0x00};
309 static int traceState = TRACE_IDLE;
310 static uint8_t traceCurBlock = 0;
311 static uint8_t traceCurKey = 0;
312
313 struct Crypto1State *traceCrypto1 = NULL;
314
315 struct Crypto1State *revstate;
316 uint64_t lfsr;
317 uint32_t ks2;
318 uint32_t ks3;
319
320 uint32_t uid; // serial number
321 uint32_t nt; // tag challenge
322 uint32_t nr_enc; // encrypted reader challenge
323 uint32_t ar_enc; // encrypted reader response
324 uint32_t at_enc; // encrypted tag response
325
326 int isTraceCardEmpty(void) {
327 return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0));
328 }
329
330 int isBlockEmpty(int blockN) {
331 for (int i = 0; i < 16; i++)
332 if (traceCard[blockN * 16 + i] != 0) return 0;
333
334 return 1;
335 }
336
337 int isBlockTrailer(int blockN) {
338 return ((blockN & 0x03) == 0x03);
339 }
340
341 int loadTraceCard(uint8_t *tuid) {
342 FILE * f;
343 char buf[64] = {0x00};
344 uint8_t buf8[64] = {0x00};
345 int i, blockNum;
346
347 if (!isTraceCardEmpty())
348 saveTraceCard();
349
350 memset(traceCard, 0x00, 4096);
351 memcpy(traceCard, tuid + 3, 4);
352
353 FillFileNameByUID(traceFileName, tuid, ".eml", 7);
354
355 f = fopen(traceFileName, "r");
356 if (!f) {
357 fclose(f);
358 return 1;
359 }
360
361 blockNum = 0;
362
363 while(!feof(f)){
364
365 memset(buf, 0, sizeof(buf));
366 if (fgets(buf, sizeof(buf), f) == NULL) {
367 PrintAndLog("File reading error.");
368 fclose(f);
369 return 2;
370 }
371
372 if (strlen(buf) < 32){
373 if (feof(f)) break;
374 PrintAndLog("File content error. Block data must include 32 HEX symbols");
375 fclose(f);
376 return 2;
377 }
378 for (i = 0; i < 32; i += 2)
379 sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]);
380
381 memcpy(traceCard + blockNum * 16, buf8, 16);
382
383 blockNum++;
384 }
385 fclose(f);
386
387 return 0;
388 }
389
390 int saveTraceCard(void) {
391 FILE * f;
392
393 if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0;
394
395 f = fopen(traceFileName, "w+");
396 if ( !f ) {
397 fclose(f);
398 return 1;
399 }
400
401 for (int i = 0; i < 64; i++) { // blocks
402 for (int j = 0; j < 16; j++) // bytes
403 fprintf(f, "%02x", *(traceCard + i * 16 + j));
404 fprintf(f,"\n");
405 }
406 fclose(f);
407 return 0;
408 }
409
410 int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) {
411
412 if (traceCrypto1)
413 crypto1_destroy(traceCrypto1);
414
415 traceCrypto1 = NULL;
416
417 if (wantSaveToEmlFile)
418 loadTraceCard(tuid);
419
420 traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3];
421 traceCard[5] = sak;
422 memcpy(&traceCard[6], atqa, 2);
423 traceCurBlock = 0;
424 uid = bytes_to_num(tuid + 3, 4);
425
426 traceState = TRACE_IDLE;
427
428 return 0;
429 }
430
431 void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){
432 uint8_t bt = 0;
433 int i;
434
435 if (len != 1) {
436 for (i = 0; i < len; i++)
437 data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i];
438 } else {
439 bt = 0;
440 for (i = 0; i < 4; i++)
441 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], i)) << i;
442
443 data[0] = bt;
444 }
445 return;
446 }
447
448
449 int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
450 uint8_t data[64];
451
452 if (traceState == TRACE_ERROR) return 1;
453 if (len > 64) {
454 traceState = TRACE_ERROR;
455 return 1;
456 }
457
458 memcpy(data, data_src, len);
459 if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) {
460 mf_crypto1_decrypt(traceCrypto1, data, len, 0);
461 PrintAndLog("dec> %s", sprint_hex(data, len));
462 AddLogHex(logHexFileName, "dec> ", data, len);
463 }
464
465 switch (traceState) {
466 case TRACE_IDLE:
467 // check packet crc16!
468 if ((len >= 4) && (!CheckCrc14443(CRC_14443_A, data, len))) {
469 PrintAndLog("dec> CRC ERROR!!!");
470 AddLogLine(logHexFileName, "dec> ", "CRC ERROR!!!");
471 traceState = TRACE_ERROR; // do not decrypt the next commands
472 return 1;
473 }
474
475 // AUTHENTICATION
476 if ((len == 4) && ((data[0] == 0x60) || (data[0] == 0x61))) {
477 traceState = TRACE_AUTH1;
478 traceCurBlock = data[1];
479 traceCurKey = data[0] == 60 ? 1:0;
480 return 0;
481 }
482
483 // READ
484 if ((len ==4) && ((data[0] == 0x30))) {
485 traceState = TRACE_READ_DATA;
486 traceCurBlock = data[1];
487 return 0;
488 }
489
490 // WRITE
491 if ((len ==4) && ((data[0] == 0xA0))) {
492 traceState = TRACE_WRITE_OK;
493 traceCurBlock = data[1];
494 return 0;
495 }
496
497 // HALT
498 if ((len ==4) && ((data[0] == 0x50) && (data[1] == 0x00))) {
499 traceState = TRACE_ERROR; // do not decrypt the next commands
500 return 0;
501 }
502
503 return 0;
504 break;
505
506 case TRACE_READ_DATA:
507 if (len == 18) {
508 traceState = TRACE_IDLE;
509
510 if (isBlockTrailer(traceCurBlock)) {
511 memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4);
512 } else {
513 memcpy(traceCard + traceCurBlock * 16, data, 16);
514 }
515 if (wantSaveToEmlFile) saveTraceCard();
516 return 0;
517 } else {
518 traceState = TRACE_ERROR;
519 return 1;
520 }
521 break;
522
523 case TRACE_WRITE_OK:
524 if ((len == 1) && (data[0] == 0x0a)) {
525 traceState = TRACE_WRITE_DATA;
526
527 return 0;
528 } else {
529 traceState = TRACE_ERROR;
530 return 1;
531 }
532 break;
533
534 case TRACE_WRITE_DATA:
535 if (len == 18) {
536 traceState = TRACE_IDLE;
537
538 memcpy(traceCard + traceCurBlock * 16, data, 16);
539 if (wantSaveToEmlFile) saveTraceCard();
540 return 0;
541 } else {
542 traceState = TRACE_ERROR;
543 return 1;
544 }
545 break;
546
547 case TRACE_AUTH1:
548 if (len == 4) {
549 traceState = TRACE_AUTH2;
550 nt = bytes_to_num(data, 4);
551 return 0;
552 } else {
553 traceState = TRACE_ERROR;
554 return 1;
555 }
556 break;
557
558 case TRACE_AUTH2:
559 if (len == 8) {
560 traceState = TRACE_AUTH_OK;
561
562 nr_enc = bytes_to_num(data, 4);
563 ar_enc = bytes_to_num(data + 4, 4);
564 return 0;
565 } else {
566 traceState = TRACE_ERROR;
567 return 1;
568 }
569 break;
570
571 case TRACE_AUTH_OK:
572 if (len ==4) {
573 traceState = TRACE_IDLE;
574
575 at_enc = bytes_to_num(data, 4);
576
577 // decode key here)
578 ks2 = ar_enc ^ prng_successor(nt, 64);
579 ks3 = at_enc ^ prng_successor(nt, 96);
580 revstate = lfsr_recovery64(ks2, ks3);
581 lfsr_rollback_word(revstate, 0, 0);
582 lfsr_rollback_word(revstate, 0, 0);
583 lfsr_rollback_word(revstate, nr_enc, 1);
584 lfsr_rollback_word(revstate, uid ^ nt, 0);
585
586 crypto1_get_lfsr(revstate, &lfsr);
587 printf("key> %x%x\n", (unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF));
588 AddLogUint64(logHexFileName, "key> ", lfsr);
589
590 int blockShift = ((traceCurBlock & 0xFC) + 3) * 16;
591 if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4);
592
593 if (traceCurKey) {
594 num_to_bytes(lfsr, 6, traceCard + blockShift + 10);
595 } else {
596 num_to_bytes(lfsr, 6, traceCard + blockShift);
597 }
598 if (wantSaveToEmlFile) saveTraceCard();
599
600 if (traceCrypto1) {
601 crypto1_destroy(traceCrypto1);
602 }
603
604 // set cryptosystem state
605 traceCrypto1 = lfsr_recovery64(ks2, ks3);
606
607 // nt = crypto1_word(traceCrypto1, nt ^ uid, 1) ^ nt;
608
609 /* traceCrypto1 = crypto1_create(lfsr); // key in lfsr
610 crypto1_word(traceCrypto1, nt ^ uid, 0);
611 crypto1_word(traceCrypto1, ar, 1);
612 crypto1_word(traceCrypto1, 0, 0);
613 crypto1_word(traceCrypto1, 0, 0);*/
614
615 return 0;
616 } else {
617 traceState = TRACE_ERROR;
618 return 1;
619 }
620 break;
621
622 default:
623 traceState = TRACE_ERROR;
624 return 1;
625 }
626
627 return 0;
628 }
Impressum, Datenschutz