1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
24 // + 22279: : 0c 03 e8 01
26 // ...with an incorrect answer...
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
30 // We still left the error signalling bytes in the traces like 0xbb
32 // A correct trace should look like this:
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
37 //-----------------------------------------------------------------------------
39 #include "../include/proxmark3.h"
45 // Needed for CRC in emulation mode;
46 // same construction as in ISO 14443;
47 // different initial value (CRC_ICLASS)
48 #include "../common/iso14443crc.h"
49 #include "../common/iso15693tools.h"
50 //#include "iso15693tools.h"
51 #include "protocols.h"
52 #include "optimized_cipher.h"
54 static int timeout
= 4096;
57 static int SendIClassAnswer(uint8_t *resp
, int respLen
, int delay
);
59 //-----------------------------------------------------------------------------
60 // The software UART that receives commands from the reader, and its state
62 //-----------------------------------------------------------------------------
66 STATE_START_OF_COMMUNICATION
,
86 static RAMFUNC
int OutOfNDecoding(int bit
)
92 Uart
.bitBuffer
= bit
^ 0xFF0;
97 Uart
.bitBuffer
^= bit
;
101 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
104 if(Uart.byteCnt > 15) { return TRUE; }
110 if(Uart
.state
!= STATE_UNSYNCD
) {
113 if((Uart
.bitBuffer
& Uart
.syncBit
) ^ Uart
.syncBit
) {
119 if(((Uart
.bitBuffer
<< 1) & Uart
.syncBit
) ^ Uart
.syncBit
) {
125 if(bit
!= bitright
) { bit
= bitright
; }
128 // So, now we only have to deal with *bit*, lets see...
129 if(Uart
.posCnt
== 1) {
130 // measurement first half bitperiod
132 // Drop in first half means that we are either seeing
135 if(Uart
.nOutOfCnt
== 1) {
136 // End of Communication
137 Uart
.state
= STATE_UNSYNCD
;
139 if(Uart
.byteCnt
== 0) {
140 // Its not straightforward to show single EOFs
141 // So just leave it and do not return TRUE
142 Uart
.output
[0] = 0xf0;
149 else if(Uart
.state
!= STATE_START_OF_COMMUNICATION
) {
150 // When not part of SOF or EOF, it is an error
151 Uart
.state
= STATE_UNSYNCD
;
158 // measurement second half bitperiod
159 // Count the bitslot we are in... (ISO 15693)
163 if(Uart
.dropPosition
) {
164 if(Uart
.state
== STATE_START_OF_COMMUNICATION
) {
170 // It is an error if we already have seen a drop in current frame
171 Uart
.state
= STATE_UNSYNCD
;
175 Uart
.dropPosition
= Uart
.nOutOfCnt
;
182 if(Uart
.nOutOfCnt
== Uart
.OutOfCnt
&& Uart
.OutOfCnt
== 4) {
185 if(Uart
.state
== STATE_START_OF_COMMUNICATION
) {
186 if(Uart
.dropPosition
== 4) {
187 Uart
.state
= STATE_RECEIVING
;
190 else if(Uart
.dropPosition
== 3) {
191 Uart
.state
= STATE_RECEIVING
;
193 //Uart.output[Uart.byteCnt] = 0xdd;
197 Uart
.state
= STATE_UNSYNCD
;
200 Uart
.dropPosition
= 0;
205 if(!Uart
.dropPosition
) {
206 Uart
.state
= STATE_UNSYNCD
;
215 //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
216 //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
218 Uart
.shiftReg
^= ((Uart
.dropPosition
& 0x03) << 6);
220 Uart
.dropPosition
= 0;
222 if(Uart
.bitCnt
== 8) {
223 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
& 0xff);
231 else if(Uart
.nOutOfCnt
== Uart
.OutOfCnt
) {
234 if(!Uart
.dropPosition
) {
235 Uart
.state
= STATE_UNSYNCD
;
241 Uart
.output
[Uart
.byteCnt
] = (Uart
.dropPosition
& 0xff);
246 Uart
.dropPosition
= 0;
251 Uart.output[Uart.byteCnt] = 0xAA;
253 Uart.output[Uart.byteCnt] = error & 0xFF;
255 Uart.output[Uart.byteCnt] = 0xAA;
257 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
259 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
261 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
263 Uart.output[Uart.byteCnt] = 0xAA;
271 bit
= Uart
.bitBuffer
& 0xf0;
273 bit
^= 0x0F; // drops become 1s ;-)
275 // should have been high or at least (4 * 128) / fc
276 // according to ISO this should be at least (9 * 128 + 20) / fc
277 if(Uart
.highCnt
== 8) {
278 // we went low, so this could be start of communication
279 // it turns out to be safer to choose a less significant
280 // syncbit... so we check whether the neighbour also represents the drop
281 Uart
.posCnt
= 1; // apparently we are busy with our first half bit period
282 Uart
.syncBit
= bit
& 8;
284 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; }
285 else if(bit
& 4) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; bit
<<= 2; }
286 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; }
287 else if(bit
& 2) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; bit
<<= 1; }
288 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0;
289 if(Uart
.syncBit
&& (Uart
.bitBuffer
& 8)) {
292 // the first half bit period is expected in next sample
297 else if(bit
& 1) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0; }
300 Uart
.state
= STATE_START_OF_COMMUNICATION
;
304 Uart
.OutOfCnt
= 4; // Start at 1/4, could switch to 1/256
305 Uart
.dropPosition
= 0;
314 if(Uart
.highCnt
< 8) {
323 //=============================================================================
325 //=============================================================================
330 DEMOD_START_OF_COMMUNICATION
,
331 DEMOD_START_OF_COMMUNICATION2
,
332 DEMOD_START_OF_COMMUNICATION3
,
336 DEMOD_END_OF_COMMUNICATION
,
337 DEMOD_END_OF_COMMUNICATION2
,
360 static RAMFUNC
int ManchesterDecoding(int v
)
367 Demod
.buffer
= Demod
.buffer2
;
368 Demod
.buffer2
= Demod
.buffer3
;
376 if(Demod
.state
==DEMOD_UNSYNCD
) {
377 Demod
.output
[Demod
.len
] = 0xfa;
380 Demod
.posCount
= 1; // This is the first half bit period, so after syncing handle the second part
383 Demod
.syncBit
= 0x08;
390 Demod
.syncBit
= 0x04;
397 Demod
.syncBit
= 0x02;
400 if(bit
& 0x01 && Demod
.syncBit
) {
401 Demod
.syncBit
= 0x01;
406 Demod
.state
= DEMOD_START_OF_COMMUNICATION
;
407 Demod
.sub
= SUB_FIRST_HALF
;
412 //if(trigger) LED_A_OFF(); // Not useful in this case...
413 switch(Demod
.syncBit
) {
414 case 0x08: Demod
.samples
= 3; break;
415 case 0x04: Demod
.samples
= 2; break;
416 case 0x02: Demod
.samples
= 1; break;
417 case 0x01: Demod
.samples
= 0; break;
419 // SOF must be long burst... otherwise stay unsynced!!!
420 if(!(Demod
.buffer
& Demod
.syncBit
) || !(Demod
.buffer2
& Demod
.syncBit
)) {
421 Demod
.state
= DEMOD_UNSYNCD
;
425 // SOF must be long burst... otherwise stay unsynced!!!
426 if(!(Demod
.buffer2
& Demod
.syncBit
) || !(Demod
.buffer3
& Demod
.syncBit
)) {
427 Demod
.state
= DEMOD_UNSYNCD
;
437 modulation
= bit
& Demod
.syncBit
;
438 modulation
|= ((bit
<< 1) ^ ((Demod
.buffer
& 0x08) >> 3)) & Demod
.syncBit
;
442 if(Demod
.posCount
==0) {
445 Demod
.sub
= SUB_FIRST_HALF
;
448 Demod
.sub
= SUB_NONE
;
453 /*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
454 if(Demod.state!=DEMOD_ERROR_WAIT) {
455 Demod.state = DEMOD_ERROR_WAIT;
456 Demod.output[Demod.len] = 0xaa;
460 //else if(modulation) {
462 if(Demod
.sub
== SUB_FIRST_HALF
) {
463 Demod
.sub
= SUB_BOTH
;
466 Demod
.sub
= SUB_SECOND_HALF
;
469 else if(Demod
.sub
== SUB_NONE
) {
470 if(Demod
.state
== DEMOD_SOF_COMPLETE
) {
471 Demod
.output
[Demod
.len
] = 0x0f;
473 Demod
.state
= DEMOD_UNSYNCD
;
478 Demod
.state
= DEMOD_ERROR_WAIT
;
481 /*if(Demod.state!=DEMOD_ERROR_WAIT) {
482 Demod.state = DEMOD_ERROR_WAIT;
483 Demod.output[Demod.len] = 0xaa;
488 switch(Demod
.state
) {
489 case DEMOD_START_OF_COMMUNICATION
:
490 if(Demod
.sub
== SUB_BOTH
) {
491 //Demod.state = DEMOD_MANCHESTER_D;
492 Demod
.state
= DEMOD_START_OF_COMMUNICATION2
;
494 Demod
.sub
= SUB_NONE
;
497 Demod
.output
[Demod
.len
] = 0xab;
498 Demod
.state
= DEMOD_ERROR_WAIT
;
502 case DEMOD_START_OF_COMMUNICATION2
:
503 if(Demod
.sub
== SUB_SECOND_HALF
) {
504 Demod
.state
= DEMOD_START_OF_COMMUNICATION3
;
507 Demod
.output
[Demod
.len
] = 0xab;
508 Demod
.state
= DEMOD_ERROR_WAIT
;
512 case DEMOD_START_OF_COMMUNICATION3
:
513 if(Demod
.sub
== SUB_SECOND_HALF
) {
514 // Demod.state = DEMOD_MANCHESTER_D;
515 Demod
.state
= DEMOD_SOF_COMPLETE
;
516 //Demod.output[Demod.len] = Demod.syncBit & 0xFF;
520 Demod
.output
[Demod
.len
] = 0xab;
521 Demod
.state
= DEMOD_ERROR_WAIT
;
525 case DEMOD_SOF_COMPLETE
:
526 case DEMOD_MANCHESTER_D
:
527 case DEMOD_MANCHESTER_E
:
528 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
529 // 00001111 = 1 (0 in 14443)
530 if(Demod
.sub
== SUB_SECOND_HALF
) { // SUB_FIRST_HALF
532 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) ^ 0x100;
533 Demod
.state
= DEMOD_MANCHESTER_D
;
535 else if(Demod
.sub
== SUB_FIRST_HALF
) { // SUB_SECOND_HALF
537 Demod
.shiftReg
>>= 1;
538 Demod
.state
= DEMOD_MANCHESTER_E
;
540 else if(Demod
.sub
== SUB_BOTH
) {
541 Demod
.state
= DEMOD_MANCHESTER_F
;
544 Demod
.state
= DEMOD_ERROR_WAIT
;
549 case DEMOD_MANCHESTER_F
:
550 // Tag response does not need to be a complete byte!
551 if(Demod
.len
> 0 || Demod
.bitCount
> 0) {
552 if(Demod
.bitCount
> 1) { // was > 0, do not interpret last closing bit, is part of EOF
553 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align data
554 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
558 Demod
.state
= DEMOD_UNSYNCD
;
562 Demod
.output
[Demod
.len
] = 0xad;
563 Demod
.state
= DEMOD_ERROR_WAIT
;
568 case DEMOD_ERROR_WAIT
:
569 Demod
.state
= DEMOD_UNSYNCD
;
573 Demod
.output
[Demod
.len
] = 0xdd;
574 Demod
.state
= DEMOD_UNSYNCD
;
578 /*if(Demod.bitCount>=9) {
579 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
582 Demod.parityBits <<= 1;
583 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
588 if(Demod
.bitCount
>=8) {
589 Demod
.shiftReg
>>= 1;
590 Demod
.output
[Demod
.len
] = (Demod
.shiftReg
& 0xff);
597 Demod
.output
[Demod
.len
] = 0xBB;
599 Demod
.output
[Demod
.len
] = error
& 0xFF;
601 Demod
.output
[Demod
.len
] = 0xBB;
603 Demod
.output
[Demod
.len
] = bit
& 0xFF;
605 Demod
.output
[Demod
.len
] = Demod
.buffer
& 0xFF;
608 Demod
.output
[Demod
.len
] = Demod
.buffer2
& 0xFF;
610 Demod
.output
[Demod
.len
] = Demod
.syncBit
& 0xFF;
612 Demod
.output
[Demod
.len
] = 0xBB;
619 } // end (state != UNSYNCED)
624 //=============================================================================
625 // Finally, a `sniffer' for iClass communication
626 // Both sides of communication!
627 //=============================================================================
629 //-----------------------------------------------------------------------------
630 // Record the sequence of commands sent by the reader to the tag, with
631 // triggering so that we start recording at the point that the tag is moved
633 //-----------------------------------------------------------------------------
634 void RAMFUNC
SnoopIClass(void)
638 // We won't start recording the frames that we acquire until we trigger;
639 // a good trigger condition to get started is probably when we see a
640 // response from the tag.
641 //int triggered = FALSE; // FALSE to wait first for card
643 // The command (reader -> tag) that we're receiving.
644 // The length of a received command will in most cases be no more than 18 bytes.
645 // So 32 should be enough!
646 #define ICLASS_BUFFER_SIZE 32
647 uint8_t readerToTagCmd
[ICLASS_BUFFER_SIZE
];
648 // The response (tag -> reader) that we're receiving.
649 uint8_t tagToReaderResponse
[ICLASS_BUFFER_SIZE
];
651 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
653 // free all BigBuf memory
655 // The DMA buffer, used to stream samples from the FPGA
656 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
660 iso14a_set_trigger(FALSE
);
667 // Count of samples received so far, so that we can include timing
668 // information in the trace buffer.
672 // Set up the demodulator for tag -> reader responses.
673 Demod
.output
= tagToReaderResponse
;
675 Demod
.state
= DEMOD_UNSYNCD
;
677 // Setup for the DMA.
680 lastRxCounter
= DMA_BUFFER_SIZE
;
681 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
683 // And the reader -> tag commands
684 memset(&Uart
, 0, sizeof(Uart
));
685 Uart
.output
= readerToTagCmd
;
686 Uart
.byteCntMax
= 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
687 Uart
.state
= STATE_UNSYNCD
;
689 // And put the FPGA in the appropriate mode
690 // Signal field is off with the appropriate LED
692 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
693 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
695 uint32_t time_0
= GetCountSspClk();
696 uint32_t time_start
= 0;
697 uint32_t time_stop
= 0;
704 // And now we loop, receiving samples.
708 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) &
710 if(behindBy
> maxBehindBy
) {
711 maxBehindBy
= behindBy
;
712 if(behindBy
> (9 * DMA_BUFFER_SIZE
/ 10)) {
713 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy
);
717 if(behindBy
< 1) continue;
723 if(upTo
- dmaBuf
> DMA_BUFFER_SIZE
) {
724 upTo
-= DMA_BUFFER_SIZE
;
725 lastRxCounter
+= DMA_BUFFER_SIZE
;
726 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
727 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
734 decbyte
^= (1 << (3 - div
));
737 // FOR READER SIDE COMMUMICATION...
740 decbyter
^= (smpl
& 0x30);
744 if((div
+ 1) % 2 == 0) {
746 if(OutOfNDecoding((smpl
& 0xF0) >> 4)) {
747 rsamples
= samples
- Uart
.samples
;
748 time_stop
= (GetCountSspClk()-time_0
) << 4;
751 //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break;
752 //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
754 uint8_t parity
[MAX_PARITY_SIZE
];
755 GetParity(Uart
.output
, Uart
.byteCnt
, parity
);
756 LogTrace(Uart
.output
,Uart
.byteCnt
, time_start
, time_stop
, parity
, TRUE
);
760 /* And ready to receive another command. */
761 Uart
.state
= STATE_UNSYNCD
;
762 /* And also reset the demod code, which might have been */
763 /* false-triggered by the commands from the reader. */
764 Demod
.state
= DEMOD_UNSYNCD
;
768 time_start
= (GetCountSspClk()-time_0
) << 4;
775 if(ManchesterDecoding(smpl
& 0x0F)) {
776 time_stop
= (GetCountSspClk()-time_0
) << 4;
778 rsamples
= samples
- Demod
.samples
;
782 uint8_t parity
[MAX_PARITY_SIZE
];
783 GetParity(Demod
.output
, Demod
.len
, parity
);
784 LogTrace(Demod
.output
, Demod
.len
, time_start
, time_stop
, parity
, FALSE
);
787 // And ready to receive another response.
788 memset(&Demod
, 0, sizeof(Demod
));
789 Demod
.output
= tagToReaderResponse
;
790 Demod
.state
= DEMOD_UNSYNCD
;
793 time_start
= (GetCountSspClk()-time_0
) << 4;
802 DbpString("cancelled_a");
807 DbpString("COMMAND FINISHED");
809 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
810 Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]);
813 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
814 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
815 Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]);
822 void rotateCSN(uint8_t* originalCSN
, uint8_t* rotatedCSN
) {
824 for(i
= 0; i
< 8; i
++) {
825 rotatedCSN
[i
] = (originalCSN
[i
] >> 3) | (originalCSN
[(i
+1)%8] << 5);
829 //-----------------------------------------------------------------------------
830 // Wait for commands from reader
831 // Stop when button is pressed
832 // Or return TRUE when command is captured
833 //-----------------------------------------------------------------------------
834 static int GetIClassCommandFromReader(uint8_t *received
, int *len
, int maxLen
)
836 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
837 // only, since we are receiving, not transmitting).
838 // Signal field is off with the appropriate LED
840 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
842 // Now run a `software UART' on the stream of incoming samples.
843 Uart
.output
= received
;
844 Uart
.byteCntMax
= maxLen
;
845 Uart
.state
= STATE_UNSYNCD
;
850 if(BUTTON_PRESS()) return FALSE
;
852 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
853 AT91C_BASE_SSC
->SSC_THR
= 0x00;
855 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
856 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
858 if(OutOfNDecoding(b
& 0x0f)) {
866 static uint8_t encode4Bits(const uint8_t b
)
869 // OTA, the least significant bits first
871 // 1 - Bit value to send
872 // 2 - Reversed (big-endian)
878 case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
879 case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
880 case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
881 case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
882 case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
883 case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
884 case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
885 case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
886 case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
887 case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
888 case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
889 case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
890 case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
891 case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
892 case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
893 default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
898 //-----------------------------------------------------------------------------
899 // Prepare tag messages
900 //-----------------------------------------------------------------------------
901 static void CodeIClassTagAnswer(const uint8_t *cmd
, int len
)
905 * SOF comprises 3 parts;
906 * * An unmodulated time of 56.64 us
907 * * 24 pulses of 423.75 KHz (fc/32)
908 * * A logic 1, which starts with an unmodulated time of 18.88us
909 * followed by 8 pulses of 423.75kHz (fc/32)
912 * EOF comprises 3 parts:
913 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
915 * - 24 pulses of fc/32
916 * - An unmodulated time of 56.64 us
919 * A logic 0 starts with 8 pulses of fc/32
920 * followed by an unmodulated time of 256/fc (~18,88us).
922 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
923 * 8 pulses of fc/32 (also 18.88us)
925 * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag,
927 * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us).
928 * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us
930 * In this mode the SOF can be written as 00011101 = 0x1D
931 * The EOF can be written as 10111000 = 0xb8
942 ToSend
[++ToSendMax
] = 0x1D;
944 for(i
= 0; i
< len
; i
++) {
946 ToSend
[++ToSendMax
] = encode4Bits(b
& 0xF); //Least significant half
947 ToSend
[++ToSendMax
] = encode4Bits((b
>>4) & 0xF);//Most significant half
951 ToSend
[++ToSendMax
] = 0xB8;
952 //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
953 // Convert from last byte pos to length
958 static void CodeIClassTagSOF()
960 //So far a dummy implementation, not used
961 //int lastProxToAirDuration =0;
965 ToSend
[++ToSendMax
] = 0x1D;
966 // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
968 // Convert from last byte pos to length
971 #define MODE_SIM_CSN 0
972 #define MODE_EXIT_AFTER_MAC 1
973 #define MODE_FULLSIM 2
975 int doIClassSimulation(int simulationMode
, uint8_t *reader_mac_buf
);
977 * @brief SimulateIClass simulates an iClass card.
978 * @param arg0 type of simulation
979 * - 0 uses the first 8 bytes in usb data as CSN
980 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
981 * in the usb data. This mode collects MAC from the reader, in order to do an offline
982 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
983 * - Other : Uses the default CSN (031fec8af7ff12e0)
984 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
988 void SimulateIClass(uint32_t arg0
, uint32_t arg1
, uint32_t arg2
, uint8_t *datain
)
990 uint32_t simType
= arg0
;
991 uint32_t numberOfCSNS
= arg1
;
992 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
994 // Enable and clear the trace
997 //Use the emulator memory for SIM
998 uint8_t *emulator
= BigBuf_get_EM_addr();
1001 // Use the CSN from commandline
1002 memcpy(emulator
, datain
, 8);
1003 doIClassSimulation(MODE_SIM_CSN
,NULL
);
1004 }else if(simType
== 1)
1007 uint8_t csn_crc
[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
1008 // Use the CSN from commandline
1009 memcpy(emulator
, csn_crc
, 8);
1010 doIClassSimulation(MODE_SIM_CSN
,NULL
);
1012 else if(simType
== 2)
1015 uint8_t mac_responses
[USB_CMD_DATA_SIZE
] = { 0 };
1016 Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS
);
1017 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
1018 // in order to collect MAC's from the reader. This can later be used in an offlne-attack
1019 // in order to obtain the keys, as in the "dismantling iclass"-paper.
1021 for( ; i
< numberOfCSNS
&& i
*8+8 < USB_CMD_DATA_SIZE
; i
++)
1023 // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
1025 memcpy(emulator
, datain
+(i
*8), 8);
1026 if(doIClassSimulation(MODE_EXIT_AFTER_MAC
,mac_responses
+i
*8))
1028 cmd_send(CMD_ACK
,CMD_SIMULATE_TAG_ICLASS
,i
,0,mac_responses
,i
*8);
1029 return; // Button pressed
1032 cmd_send(CMD_ACK
,CMD_SIMULATE_TAG_ICLASS
,i
,0,mac_responses
,i
*8);
1034 }else if(simType
== 3){
1035 //This is 'full sim' mode, where we use the emulator storage for data.
1036 doIClassSimulation(MODE_FULLSIM
, NULL
);
1039 // We may want a mode here where we hardcode the csns to use (from proxclone).
1040 // That will speed things up a little, but not required just yet.
1041 Dbprintf("The mode is not implemented, reserved for future use");
1043 Dbprintf("Done...");
1046 void AppendCrc(uint8_t* data
, int len
)
1048 ComputeCrc14443(CRC_ICLASS
,data
,len
,data
+len
,data
+len
+1);
1052 * @brief Does the actual simulation
1053 * @param csn - csn to use
1054 * @param breakAfterMacReceived if true, returns after reader MAC has been received.
1056 int doIClassSimulation( int simulationMode
, uint8_t *reader_mac_buf
)
1058 // free eventually allocated BigBuf memory
1059 BigBuf_free_keep_EM();
1062 // State cipher_state_reserve;
1063 uint8_t *csn
= BigBuf_get_EM_addr();
1064 uint8_t *emulator
= csn
;
1065 uint8_t sof_data
[] = { 0x0F} ;
1066 // CSN followed by two CRC bytes
1067 uint8_t anticoll_data
[10] = { 0 };
1068 uint8_t csn_data
[10] = { 0 };
1069 memcpy(csn_data
,csn
,sizeof(csn_data
));
1070 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn
[0],csn
[1],csn
[2],csn
[3],csn
[4],csn
[5],csn
[6],csn
[7]);
1072 // Construct anticollision-CSN
1073 rotateCSN(csn_data
,anticoll_data
);
1075 // Compute CRC on both CSNs
1076 ComputeCrc14443(CRC_ICLASS
, anticoll_data
, 8, &anticoll_data
[8], &anticoll_data
[9]);
1077 ComputeCrc14443(CRC_ICLASS
, csn_data
, 8, &csn_data
[8], &csn_data
[9]);
1079 uint8_t diversified_key
[8] = { 0 };
1081 uint8_t card_challenge_data
[8] = { 0x00 };
1082 if(simulationMode
== MODE_FULLSIM
)
1084 //The diversified key should be stored on block 3
1085 //Get the diversified key from emulator memory
1086 memcpy(diversified_key
, emulator
+(8*3),8);
1088 //Card challenge, a.k.a e-purse is on block 2
1089 memcpy(card_challenge_data
,emulator
+ (8 * 2) , 8);
1090 //Precalculate the cipher state, feeding it the CC
1091 cipher_state
= opt_doTagMAC_1(card_challenge_data
,diversified_key
);
1099 // Tag anticoll. CSN
1100 // Reader 81 anticoll. CSN
1103 uint8_t *modulated_response
;
1104 int modulated_response_size
= 0;
1105 uint8_t* trace_data
= NULL
;
1106 int trace_data_size
= 0;
1109 // Respond SOF -- takes 1 bytes
1110 uint8_t *resp_sof
= BigBuf_malloc(2);
1113 // Anticollision CSN (rotated CSN)
1114 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1115 uint8_t *resp_anticoll
= BigBuf_malloc(28);
1116 int resp_anticoll_len
;
1119 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1120 uint8_t *resp_csn
= BigBuf_malloc(30);
1124 // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
1125 uint8_t *resp_cc
= BigBuf_malloc(20);
1128 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
1129 memset(receivedCmd
, 0x44, MAX_FRAME_SIZE
);
1132 // Prepare card messages
1135 // First card answer: SOF
1137 memcpy(resp_sof
, ToSend
, ToSendMax
); resp_sof_Len
= ToSendMax
;
1139 // Anticollision CSN
1140 CodeIClassTagAnswer(anticoll_data
, sizeof(anticoll_data
));
1141 memcpy(resp_anticoll
, ToSend
, ToSendMax
); resp_anticoll_len
= ToSendMax
;
1144 CodeIClassTagAnswer(csn_data
, sizeof(csn_data
));
1145 memcpy(resp_csn
, ToSend
, ToSendMax
); resp_csn_len
= ToSendMax
;
1148 CodeIClassTagAnswer(card_challenge_data
, sizeof(card_challenge_data
));
1149 memcpy(resp_cc
, ToSend
, ToSendMax
); resp_cc_len
= ToSendMax
;
1151 //This is used for responding to READ-block commands or other data which is dynamically generated
1152 //First the 'trace'-data, not encoded for FPGA
1153 uint8_t *data_generic_trace
= BigBuf_malloc(8 + 2);//8 bytes data + 2byte CRC is max tag answer
1154 //Then storage for the modulated data
1155 //Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes)
1156 uint8_t *data_response
= BigBuf_malloc( (8+2) * 2 + 2);
1158 // Start from off (no field generated)
1159 //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1161 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1164 // We need to listen to the high-frequency, peak-detected path.
1165 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1168 // To control where we are in the protocol
1170 uint32_t time_0
= GetCountSspClk();
1171 uint32_t t2r_time
=0;
1172 uint32_t r2t_time
=0;
1175 bool buttonPressed
= false;
1176 uint8_t response_delay
= 1;
1181 // Can be used to get a trigger for an oscilloscope..
1184 if(!GetIClassCommandFromReader(receivedCmd
, &len
, 100)) {
1185 buttonPressed
= true;
1188 r2t_time
= GetCountSspClk();
1192 // Okay, look at the command now.
1193 if(receivedCmd
[0] == ICLASS_CMD_ACTALL
) {
1194 // Reader in anticollission phase
1195 modulated_response
= resp_sof
; modulated_response_size
= resp_sof_Len
; //order = 1;
1196 trace_data
= sof_data
;
1197 trace_data_size
= sizeof(sof_data
);
1198 } else if(receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY
&& len
== 1) {
1199 // Reader asks for anticollission CSN
1200 modulated_response
= resp_anticoll
; modulated_response_size
= resp_anticoll_len
; //order = 2;
1201 trace_data
= anticoll_data
;
1202 trace_data_size
= sizeof(anticoll_data
);
1203 //DbpString("Reader requests anticollission CSN:");
1204 } else if(receivedCmd
[0] == ICLASS_CMD_SELECT
) {
1205 // Reader selects anticollission CSN.
1206 // Tag sends the corresponding real CSN
1207 modulated_response
= resp_csn
; modulated_response_size
= resp_csn_len
; //order = 3;
1208 trace_data
= csn_data
;
1209 trace_data_size
= sizeof(csn_data
);
1210 //DbpString("Reader selects anticollission CSN:");
1211 } else if(receivedCmd
[0] == ICLASS_CMD_READCHECK_KD
) {
1212 // Read e-purse (88 02)
1213 modulated_response
= resp_cc
; modulated_response_size
= resp_cc_len
; //order = 4;
1214 trace_data
= card_challenge_data
;
1215 trace_data_size
= sizeof(card_challenge_data
);
1217 } else if(receivedCmd
[0] == ICLASS_CMD_CHECK
) {
1218 // Reader random and reader MAC!!!
1219 if(simulationMode
== MODE_FULLSIM
)
1221 //NR, from reader, is in receivedCmd +1
1222 opt_doTagMAC_2(cipher_state
,receivedCmd
+1,data_generic_trace
,diversified_key
);
1224 trace_data
= data_generic_trace
;
1225 trace_data_size
= 4;
1226 CodeIClassTagAnswer(trace_data
, trace_data_size
);
1227 memcpy(data_response
, ToSend
, ToSendMax
);
1228 modulated_response
= data_response
;
1229 modulated_response_size
= ToSendMax
;
1230 response_delay
= 0;//We need to hurry here...
1233 { //Not fullsim, we don't respond
1234 // We do not know what to answer, so lets keep quiet
1235 modulated_response
= resp_sof
; modulated_response_size
= 0;
1237 trace_data_size
= 0;
1238 if (simulationMode
== MODE_EXIT_AFTER_MAC
){
1240 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
1241 ,csn
[0],csn
[1],csn
[2],csn
[3],csn
[4],csn
[5],csn
[6],csn
[7]);
1242 Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len
,
1243 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1244 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1245 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1246 if (reader_mac_buf
!= NULL
)
1248 memcpy(reader_mac_buf
,receivedCmd
+1,8);
1254 } else if(receivedCmd
[0] == ICLASS_CMD_HALT
&& len
== 1) {
1255 // Reader ends the session
1256 modulated_response
= resp_sof
; modulated_response_size
= 0; //order = 0;
1258 trace_data_size
= 0;
1259 } else if(simulationMode
== MODE_FULLSIM
&& receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY
&& len
== 4){
1261 uint16_t blk
= receivedCmd
[1];
1263 memcpy(data_generic_trace
, emulator
+(blk
<< 3),8);
1265 AppendCrc(data_generic_trace
, 8);
1266 trace_data
= data_generic_trace
;
1267 trace_data_size
= 10;
1268 CodeIClassTagAnswer(trace_data
, trace_data_size
);
1269 memcpy(data_response
, ToSend
, ToSendMax
);
1270 modulated_response
= data_response
;
1271 modulated_response_size
= ToSendMax
;
1272 }else if(receivedCmd
[0] == ICLASS_CMD_UPDATE
&& simulationMode
== MODE_FULLSIM
)
1273 {//Probably the reader wants to update the nonce. Let's just ignore that for now.
1274 // OBS! If this is implemented, don't forget to regenerate the cipher_state
1275 //We're expected to respond with the data+crc, exactly what's already in the receivedcmd
1276 //receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b|
1279 memcpy(data_generic_trace
, receivedCmd
+2,8);
1281 AppendCrc(data_generic_trace
, 8);
1282 trace_data
= data_generic_trace
;
1283 trace_data_size
= 10;
1284 CodeIClassTagAnswer(trace_data
, trace_data_size
);
1285 memcpy(data_response
, ToSend
, ToSendMax
);
1286 modulated_response
= data_response
;
1287 modulated_response_size
= ToSendMax
;
1289 else if(receivedCmd
[0] == ICLASS_CMD_PAGESEL
)
1291 //Pagesel enables to select a page in the selected chip memory and return its configuration block
1292 //Chips with a single page will not answer to this command
1293 // It appears we're fine ignoring this.
1294 //Otherwise, we should answer 8bytes (block) + 2bytes CRC
1297 //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
1298 // Never seen this command before
1299 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1301 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1302 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1303 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1305 modulated_response
= resp_sof
; modulated_response_size
= 0; //order = 0;
1307 trace_data_size
= 0;
1310 if(cmdsRecvd
> 100) {
1311 //DbpString("100 commands later...");
1318 A legit tag has about 380us delay between reader EOT and tag SOF.
1320 if(modulated_response_size
> 0) {
1321 SendIClassAnswer(modulated_response
, modulated_response_size
, response_delay
);
1322 t2r_time
= GetCountSspClk();
1326 uint8_t parity
[MAX_PARITY_SIZE
];
1327 GetParity(receivedCmd
, len
, parity
);
1328 LogTrace(receivedCmd
,len
, (r2t_time
-time_0
)<< 4, (r2t_time
-time_0
) << 4, parity
, TRUE
);
1330 if (trace_data
!= NULL
) {
1331 GetParity(trace_data
, trace_data_size
, parity
);
1332 LogTrace(trace_data
, trace_data_size
, (t2r_time
-time_0
) << 4, (t2r_time
-time_0
) << 4, parity
, FALSE
);
1335 DbpString("Trace full");
1340 memset(receivedCmd
, 0x44, MAX_FRAME_SIZE
);
1343 //Dbprintf("%x", cmdsRecvd);
1350 DbpString("Button pressed");
1352 return buttonPressed
;
1355 static int SendIClassAnswer(uint8_t *resp
, int respLen
, int delay
)
1357 int i
= 0, d
=0;//, u = 0, d = 0;
1360 //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
1361 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT
);
1363 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1365 while(!BUTTON_PRESS()) {
1366 if((AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
)){
1367 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1369 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)){
1382 AT91C_BASE_SSC
->SSC_THR
= b
;
1385 // if (i > respLen +4) break;
1386 if (i
> respLen
+1) break;
1394 //-----------------------------------------------------------------------------
1395 // Transmit the command (to the tag) that was placed in ToSend[].
1396 //-----------------------------------------------------------------------------
1397 static void TransmitIClassCommand(const uint8_t *cmd
, int len
, int *samples
, int *wait
)
1400 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1401 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1406 if(*wait
< 10) *wait
= 10;
1408 for(c
= 0; c
< *wait
;) {
1409 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1410 AT91C_BASE_SSC
->SSC_THR
= 0x00; // For exact timing!
1413 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1414 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1424 bool firstpart
= TRUE
;
1427 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1429 // DOUBLE THE SAMPLES!
1431 sendbyte
= (cmd
[c
] & 0xf0) | (cmd
[c
] >> 4);
1434 sendbyte
= (cmd
[c
] & 0x0f) | (cmd
[c
] << 4);
1437 if(sendbyte
== 0xff) {
1440 AT91C_BASE_SSC
->SSC_THR
= sendbyte
;
1441 firstpart
= !firstpart
;
1447 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1448 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1453 if (samples
) *samples
= (c
+ *wait
) << 3;
1457 //-----------------------------------------------------------------------------
1458 // Prepare iClass reader command to send to FPGA
1459 //-----------------------------------------------------------------------------
1460 void CodeIClassCommand(const uint8_t * cmd
, int len
)
1467 // Start of Communication: 1 out of 4
1468 ToSend
[++ToSendMax
] = 0xf0;
1469 ToSend
[++ToSendMax
] = 0x00;
1470 ToSend
[++ToSendMax
] = 0x0f;
1471 ToSend
[++ToSendMax
] = 0x00;
1473 // Modulate the bytes
1474 for (i
= 0; i
< len
; i
++) {
1476 for(j
= 0; j
< 4; j
++) {
1477 for(k
= 0; k
< 4; k
++) {
1479 ToSend
[++ToSendMax
] = 0x0f;
1482 ToSend
[++ToSendMax
] = 0x00;
1489 // End of Communication
1490 ToSend
[++ToSendMax
] = 0x00;
1491 ToSend
[++ToSendMax
] = 0x00;
1492 ToSend
[++ToSendMax
] = 0xf0;
1493 ToSend
[++ToSendMax
] = 0x00;
1495 // Convert from last character reference to length
1499 void ReaderTransmitIClass(uint8_t* frame
, int len
)
1504 // This is tied to other size changes
1505 CodeIClassCommand(frame
,len
);
1508 TransmitIClassCommand(ToSend
, ToSendMax
, &samples
, &wait
);
1512 // Store reader command in buffer
1514 uint8_t par
[MAX_PARITY_SIZE
];
1515 GetParity(frame
, len
, par
);
1516 LogTrace(frame
, len
, rsamples
, rsamples
, par
, TRUE
);
1520 //-----------------------------------------------------------------------------
1521 // Wait a certain time for tag response
1522 // If a response is captured return TRUE
1523 // If it takes too long return FALSE
1524 //-----------------------------------------------------------------------------
1525 static int GetIClassAnswer(uint8_t *receivedResponse
, int maxLen
, int *samples
, int *elapsed
) //uint8_t *buffer
1527 // buffer needs to be 512 bytes
1530 // Set FPGA mode to "reader listen mode", no modulation (listen
1531 // only, since we are receiving, not transmitting).
1532 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1534 // Now get the answer from the card
1535 Demod
.output
= receivedResponse
;
1537 Demod
.state
= DEMOD_UNSYNCD
;
1540 if (elapsed
) *elapsed
= 0;
1548 if(BUTTON_PRESS()) return FALSE
;
1550 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1551 AT91C_BASE_SSC
->SSC_THR
= 0x00; // To make use of exact timing of next command from reader!!
1552 if (elapsed
) (*elapsed
)++;
1554 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1555 if(c
< timeout
) { c
++; } else { return FALSE
; }
1556 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1560 if(ManchesterDecoding(b
& 0x0f)) {
1568 int ReaderReceiveIClass(uint8_t* receivedAnswer
)
1571 if (!GetIClassAnswer(receivedAnswer
,160,&samples
,0)) return FALSE
;
1572 rsamples
+= samples
;
1574 uint8_t parity
[MAX_PARITY_SIZE
];
1575 GetParity(receivedAnswer
, Demod
.len
, parity
);
1576 LogTrace(receivedAnswer
,Demod
.len
,rsamples
,rsamples
,parity
,FALSE
);
1578 if(samples
== 0) return FALSE
;
1582 void setupIclassReader()
1584 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1585 // Reset trace buffer
1591 // Start from off (no field generated)
1592 // Signal field is off with the appropriate LED
1594 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1597 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1599 // Now give it time to spin up.
1600 // Signal field is on with the appropriate LED
1601 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1607 size_t sendCmdGetResponseWithRetries(uint8_t* command
, size_t cmdsize
, uint8_t* resp
, uint8_t expected_size
, uint8_t retries
)
1609 while(retries
-- > 0)
1611 ReaderTransmitIClass(command
, cmdsize
);
1612 if(expected_size
== ReaderReceiveIClass(resp
)){
1620 * @brief Talks to an iclass tag, sends the commands to get CSN and CC.
1621 * @param card_data where the CSN and CC are stored for return
1624 * 2 = Got CSN and CC
1626 uint8_t handshakeIclassTag(uint8_t *card_data
)
1628 static uint8_t act_all
[] = { 0x0a };
1629 static uint8_t identify
[] = { 0x0c };
1630 static uint8_t select
[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1631 static uint8_t readcheck_cc
[]= { 0x88, 0x02 };
1632 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1634 uint8_t read_status
= 0;
1637 ReaderTransmitIClass(act_all
, 1);
1639 if(!ReaderReceiveIClass(resp
)) return read_status
;//Fail
1641 ReaderTransmitIClass(identify
, 1);
1642 //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
1643 uint8_t len
= ReaderReceiveIClass(resp
);
1644 if(len
!= 10) return read_status
;//Fail
1646 //Copy the Anti-collision CSN to our select-packet
1647 memcpy(&select
[1],resp
,8);
1649 ReaderTransmitIClass(select
, sizeof(select
));
1650 //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
1651 len
= ReaderReceiveIClass(resp
);
1652 if(len
!= 10) return read_status
;//Fail
1654 //Success - level 1, we got CSN
1655 //Save CSN in response data
1656 memcpy(card_data
,resp
,8);
1658 //Flag that we got to at least stage 1, read CSN
1661 // Card selected, now read e-purse (cc)
1662 ReaderTransmitIClass(readcheck_cc
, sizeof(readcheck_cc
));
1663 if(ReaderReceiveIClass(resp
) == 8) {
1664 //Save CC (e-purse) in response data
1665 memcpy(card_data
+8,resp
,8);
1674 // Reader iClass Anticollission
1675 void ReaderIClass(uint8_t arg0
) {
1677 uint8_t card_data
[24]={0};
1678 uint8_t last_csn
[8]={0};
1681 bool abort_after_read
= arg0
& FLAG_ICLASS_READER_ONLY_ONCE
;
1682 bool get_cc
= arg0
& FLAG_ICLASS_READER_GET_CC
;
1684 setupIclassReader();
1686 size_t datasize
= 0;
1687 while(!BUTTON_PRESS())
1691 DbpString("Trace full");
1696 read_status
= handshakeIclassTag(card_data
);
1698 if(read_status
== 0) continue;
1699 if(read_status
== 1) datasize
= 8;
1700 if(read_status
== 2) datasize
= 16;
1702 //Todo, read the public blocks 1,5 aswell:
1704 // 0 : CSN (we already have)
1705 // 1 : Configuration
1706 // 2 : e-purse (we already have)
1708 // 5 Application issuer area
1710 //Then we can 'ship' back the 8 * 5 bytes of data,
1711 // with 0xFF:s in block 3 and 4.
1714 //Send back to client, but don't bother if we already sent this
1715 if(memcmp(last_csn
, card_data
, 8) != 0)
1718 if(!get_cc
|| (get_cc
&& read_status
== 2))
1720 cmd_send(CMD_ACK
,read_status
,0,0,card_data
,datasize
);
1721 if(abort_after_read
) {
1725 //Save that we already sent this....
1726 memcpy(last_csn
, card_data
, 8);
1728 //If 'get_cc' was specified and we didn't get a CC, we'll just keep trying...
1732 cmd_send(CMD_ACK
,0,0,0,card_data
, 0);
1736 void ReaderIClass_Replay(uint8_t arg0
, uint8_t *MAC
) {
1738 uint8_t card_data
[USB_CMD_DATA_SIZE
]={0};
1739 uint16_t block_crc_LUT
[255] = {0};
1741 {//Generate a lookup table for block crc
1742 for(int block
= 0; block
< 255; block
++){
1744 block_crc_LUT
[block
] = iclass_crc16(&bl
,1);
1747 //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
1749 uint8_t check
[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1750 uint8_t read
[] = { 0x0c, 0x00, 0x00, 0x00 };
1756 static struct memory_t
{
1764 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1766 setupIclassReader();
1769 while(!BUTTON_PRESS()) {
1774 DbpString("Trace full");
1778 uint8_t read_status
= handshakeIclassTag(card_data
);
1779 if(read_status
< 2) continue;
1781 //for now replay captured auth (as cc not updated)
1782 memcpy(check
+5,MAC
,4);
1784 if(sendCmdGetResponseWithRetries(check
, sizeof(check
),resp
, 4, 5))
1786 Dbprintf("Error: Authentication Fail!");
1790 //first get configuration block (block 1)
1791 crc
= block_crc_LUT
[1];
1794 read
[3] = crc
& 0xff;
1796 if(sendCmdGetResponseWithRetries(read
, sizeof(read
),resp
, 10, 10))
1798 Dbprintf("Dump config (block 1) failed");
1803 memory
.k16
= (mem
& 0x80);
1804 memory
.book
= (mem
& 0x20);
1805 memory
.k2
= (mem
& 0x8);
1806 memory
.lockauth
= (mem
& 0x2);
1807 memory
.keyaccess
= (mem
& 0x1);
1809 cardsize
= memory
.k16
? 255 : 32;
1811 //Set card_data to all zeroes, we'll fill it with data
1812 memset(card_data
,0x0,USB_CMD_DATA_SIZE
);
1813 uint8_t failedRead
=0;
1814 uint32_t stored_data_length
=0;
1815 //then loop around remaining blocks
1816 for(int block
=0; block
< cardsize
; block
++){
1819 crc
= block_crc_LUT
[block
];
1821 read
[3] = crc
& 0xff;
1823 if(!sendCmdGetResponseWithRetries(read
, sizeof(read
), resp
, 10, 10))
1825 Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
1826 block
, resp
[0], resp
[1], resp
[2],
1827 resp
[3], resp
[4], resp
[5],
1830 //Fill up the buffer
1831 memcpy(card_data
+stored_data_length
,resp
,8);
1832 stored_data_length
+= 8;
1833 if(stored_data_length
+8 > USB_CMD_DATA_SIZE
)
1834 {//Time to send this off and start afresh
1836 stored_data_length
,//data length
1837 failedRead
,//Failed blocks?
1839 card_data
, stored_data_length
);
1841 stored_data_length
= 0;
1847 stored_data_length
+=8;//Otherwise, data becomes misaligned
1848 Dbprintf("Failed to dump block %d", block
);
1852 //Send off any remaining data
1853 if(stored_data_length
> 0)
1856 stored_data_length
,//data length
1857 failedRead
,//Failed blocks?
1859 card_data
, stored_data_length
);
1861 //If we got here, let's break
1864 //Signal end of transmission
1874 //2. Create Read method (cut-down from above) based off responses from 1.
1875 // Since we have the MAC could continue to use replay function.
1876 //3. Create Write method
1878 void IClass_iso14443A_write(uint8_t arg0, uint8_t blockNo, uint8_t *data, uint8_t *MAC) {
1879 uint8_t act_all[] = { 0x0a };
1880 uint8_t identify[] = { 0x0c };
1881 uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1882 uint8_t readcheck_cc[]= { 0x88, 0x02 };
1883 uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1884 uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
1885 uint8_t write[] = { 0x87, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1889 uint8_t* resp = (((uint8_t *)BigBuf) + 3560);
1891 // Reset trace buffer
1892 memset(trace, 0x44, RECV_CMD_OFFSET);
1897 // Start from off (no field generated)
1898 // Signal field is off with the appropriate LED
1900 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1903 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1905 // Now give it time to spin up.
1906 // Signal field is on with the appropriate LED
1907 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1912 for(int i=0;i<1;i++) {
1914 if(traceLen > TRACE_SIZE) {
1915 DbpString("Trace full");
1919 if (BUTTON_PRESS()) break;
1922 ReaderTransmitIClass(act_all, 1);
1924 if(ReaderReceiveIClass(resp)) {
1925 ReaderTransmitIClass(identify, 1);
1926 if(ReaderReceiveIClass(resp) == 10) {
1928 memcpy(&select[1],resp,8);
1929 ReaderTransmitIClass(select, sizeof(select));
1931 if(ReaderReceiveIClass(resp) == 10) {
1932 Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
1933 resp[0], resp[1], resp[2],
1934 resp[3], resp[4], resp[5],
1938 Dbprintf("Readcheck on Sector 2");
1939 ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
1940 if(ReaderReceiveIClass(resp) == 8) {
1941 Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x",
1942 resp[0], resp[1], resp[2],
1943 resp[3], resp[4], resp[5],
1946 Dbprintf("Authenticate");
1947 //for now replay captured auth (as cc not updated)
1948 memcpy(check+5,MAC,4);
1949 Dbprintf(" AA: %02x %02x %02x %02x",
1950 check[5], check[6], check[7],check[8]);
1951 ReaderTransmitIClass(check, sizeof(check));
1952 if(ReaderReceiveIClass(resp) == 4) {
1953 Dbprintf(" AR: %02x %02x %02x %02x",
1954 resp[0], resp[1], resp[2],resp[3]);
1956 Dbprintf("Error: Authentication Fail!");
1959 Dbprintf("Write Block");
1961 //read configuration for max block number
1964 uint8_t *blockno=&read[1];
1965 crc = iclass_crc16((char *)blockno,1);
1967 read[3] = crc & 0xff;
1968 while(!read_success){
1969 ReaderTransmitIClass(read, sizeof(read));
1970 if(ReaderReceiveIClass(resp) == 10) {
1973 memory.k16= (mem & 0x80);
1974 memory.book= (mem & 0x20);
1975 memory.k2= (mem & 0x8);
1976 memory.lockauth= (mem & 0x2);
1977 memory.keyaccess= (mem & 0x1);
1986 memcpy(write+1,blockNo,1);
1987 memcpy(write+2,data,8);
1988 memcpy(write+10,mac,4);
1989 while(!send_success){
1990 ReaderTransmitIClass(write, sizeof(write));
1991 if(ReaderReceiveIClass(resp) == 10) {