1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
30 #define abs(x) ( ((x)<0) ? -(x) : (x) )
32 //=============================================================================
33 // A buffer where we can queue things up to be sent through the FPGA, for
34 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
35 // is the order in which they go out on the wire.
36 //=============================================================================
38 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
39 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
42 struct common_area common_area
__attribute__((section(".commonarea")));
44 void BufferClear(void)
46 memset(BigBuf
,0,sizeof(BigBuf
));
47 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf
));
50 void ToSendReset(void)
56 void ToSendStuffBit(int b
)
60 ToSend
[ToSendMax
] = 0;
65 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
70 if(ToSendMax
>= sizeof(ToSend
)) {
72 DbpString("ToSendStuffBit overflowed!");
76 //=============================================================================
77 // Debug print functions, to go out over USB, to the usual PC-side client.
78 //=============================================================================
80 void DbpString(char *str
)
82 byte_t len
= strlen(str
);
83 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
87 void DbpIntegers(int x1
, int x2
, int x3
)
89 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
93 void Dbprintf(const char *fmt
, ...) {
94 // should probably limit size here; oh well, let's just use a big buffer
95 char output_string
[128];
99 kvsprintf(fmt
, output_string
, 10, ap
);
102 DbpString(output_string
);
105 // prints HEX & ASCII
106 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
119 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
122 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
124 Dbprintf("%*D",l
,d
," ");
132 //-----------------------------------------------------------------------------
133 // Read an ADC channel and block till it completes, then return the result
134 // in ADC units (0 to 1023). Also a routine to average 32 samples and
136 //-----------------------------------------------------------------------------
137 static int ReadAdc(int ch
)
141 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
142 AT91C_BASE_ADC
->ADC_MR
=
143 ADC_MODE_PRESCALE(32) |
144 ADC_MODE_STARTUP_TIME(16) |
145 ADC_MODE_SAMPLE_HOLD_TIME(8);
146 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
148 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
149 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
151 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
156 int AvgAdc(int ch
) // was static - merlok
161 for(i
= 0; i
< 32; i
++) {
165 return (a
+ 15) >> 5;
168 void MeasureAntennaTuning(void)
170 uint8_t LF_Results
[256];
171 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
172 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
177 * Sweeps the useful LF range of the proxmark from
178 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
179 * read the voltage in the antenna, the result left
180 * in the buffer is a graph which should clearly show
181 * the resonating frequency of your LF antenna
182 * ( hopefully around 95 if it is tuned to 125kHz!)
185 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
186 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
187 for (i
=255; i
>=19; i
--) {
189 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
191 // Vref = 3.3V, and a 10000:240 voltage divider on the input
192 // can measure voltages up to 137500 mV
193 adcval
= ((137500 * AvgAdc(ADC_CHAN_LF
)) >> 10);
194 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
195 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
197 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
198 if(LF_Results
[i
] > peak
) {
200 peak
= LF_Results
[i
];
206 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
209 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
210 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
211 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
213 // Vref = 3300mV, and an 10:1 voltage divider on the input
214 // can measure voltages up to 33000 mV
215 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
217 cmd_send(CMD_MEASURED_ANTENNA_TUNING
,vLf125
|(vLf134
<<16),vHf
,peakf
|(peakv
<<16),LF_Results
,256);
218 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
224 void MeasureAntennaTuningHf(void)
226 int vHf
= 0; // in mV
228 DbpString("Measuring HF antenna, press button to exit");
231 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
232 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
233 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
235 // Vref = 3300mV, and an 10:1 voltage divider on the input
236 // can measure voltages up to 33000 mV
237 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
239 Dbprintf("%d mV",vHf
);
240 if (BUTTON_PRESS()) break;
242 DbpString("cancelled");
246 void SimulateTagHfListen(void)
248 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
253 // We're using this mode just so that I can test it out; the simulated
254 // tag mode would work just as well and be simpler.
255 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
256 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
258 // We need to listen to the high-frequency, peak-detected path.
259 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
265 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
266 AT91C_BASE_SSC
->SSC_THR
= 0xff;
268 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
269 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
283 if(i
>= FREE_BUFFER_SIZE
) {
289 DbpString("simulate tag (now type bitsamples)");
292 void ReadMem(int addr
)
294 const uint8_t *data
= ((uint8_t *)addr
);
296 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
297 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
300 /* osimage version information is linked in */
301 extern struct version_information version_information
;
302 /* bootrom version information is pointed to from _bootphase1_version_pointer */
303 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
;
304 void SendVersion(void)
306 char temp
[512]; /* Limited data payload in USB packets */
307 DbpString("Prox/RFID mark3 RFID instrument");
309 /* Try to find the bootrom version information. Expect to find a pointer at
310 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
311 * pointer, then use it.
313 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
314 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
315 DbpString("bootrom version information appears invalid");
317 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
321 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
324 FpgaGatherVersion(temp
, sizeof(temp
));
327 cmd_send(CMD_ACK
,*(AT91C_DBGU_CIDR
),0,0,NULL
,0);
331 // samy's sniff and repeat routine
334 DbpString("Stand-alone mode! No PC necessary.");
335 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
337 // 3 possible options? no just 2 for now
340 int high
[OPTS
], low
[OPTS
];
342 // Oooh pretty -- notify user we're in elite samy mode now
344 LED(LED_ORANGE
, 200);
346 LED(LED_ORANGE
, 200);
348 LED(LED_ORANGE
, 200);
350 LED(LED_ORANGE
, 200);
357 // Turn on selected LED
358 LED(selected
+ 1, 0);
365 // Was our button held down or pressed?
366 int button_pressed
= BUTTON_HELD(1000);
369 // Button was held for a second, begin recording
370 if (button_pressed
> 0 && cardRead
== 0)
373 LED(selected
+ 1, 0);
377 DbpString("Starting recording");
379 // wait for button to be released
380 while(BUTTON_PRESS())
383 /* need this delay to prevent catching some weird data */
386 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
387 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
390 LED(selected
+ 1, 0);
391 // Finished recording
393 // If we were previously playing, set playing off
394 // so next button push begins playing what we recorded
401 else if (button_pressed
> 0 && cardRead
== 1)
404 LED(selected
+ 1, 0);
408 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
410 // wait for button to be released
411 while(BUTTON_PRESS())
414 /* need this delay to prevent catching some weird data */
417 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
418 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
421 LED(selected
+ 1, 0);
422 // Finished recording
424 // If we were previously playing, set playing off
425 // so next button push begins playing what we recorded
432 // Change where to record (or begin playing)
433 else if (button_pressed
)
435 // Next option if we were previously playing
437 selected
= (selected
+ 1) % OPTS
;
441 LED(selected
+ 1, 0);
443 // Begin transmitting
447 DbpString("Playing");
448 // wait for button to be released
449 while(BUTTON_PRESS())
451 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
452 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
453 DbpString("Done playing");
454 if (BUTTON_HELD(1000) > 0)
456 DbpString("Exiting");
461 /* We pressed a button so ignore it here with a delay */
464 // when done, we're done playing, move to next option
465 selected
= (selected
+ 1) % OPTS
;
468 LED(selected
+ 1, 0);
471 while(BUTTON_PRESS())
480 Listen and detect an external reader. Determine the best location
484 Inside the ListenReaderField() function, there is two mode.
485 By default, when you call the function, you will enter mode 1.
486 If you press the PM3 button one time, you will enter mode 2.
487 If you press the PM3 button a second time, you will exit the function.
489 DESCRIPTION OF MODE 1:
490 This mode just listens for an external reader field and lights up green
491 for HF and/or red for LF. This is the original mode of the detectreader
494 DESCRIPTION OF MODE 2:
495 This mode will visually represent, using the LEDs, the actual strength of the
496 current compared to the maximum current detected. Basically, once you know
497 what kind of external reader is present, it will help you spot the best location to place
498 your antenna. You will probably not get some good results if there is a LF and a HF reader
499 at the same place! :-)
503 static const char LIGHT_SCHEME
[] = {
504 0x0, /* ---- | No field detected */
505 0x1, /* X--- | 14% of maximum current detected */
506 0x2, /* -X-- | 29% of maximum current detected */
507 0x4, /* --X- | 43% of maximum current detected */
508 0x8, /* ---X | 57% of maximum current detected */
509 0xC, /* --XX | 71% of maximum current detected */
510 0xE, /* -XXX | 86% of maximum current detected */
511 0xF, /* XXXX | 100% of maximum current detected */
513 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
515 void ListenReaderField(int limit
)
517 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_count
= 0, lf_max
;
518 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_count
= 0, hf_max
;
519 int mode
=1, display_val
, display_max
, i
;
526 lf_av
=lf_max
=ReadAdc(ADC_CHAN_LF
);
528 if(limit
!= HF_ONLY
) {
529 Dbprintf("LF 125/134 Baseline: %d", lf_av
);
533 hf_av
=hf_max
=ReadAdc(ADC_CHAN_HF
);
535 if (limit
!= LF_ONLY
) {
536 Dbprintf("HF 13.56 Baseline: %d", hf_av
);
541 if (BUTTON_PRESS()) {
546 DbpString("Signal Strength Mode");
550 DbpString("Stopped");
558 if (limit
!= HF_ONLY
) {
560 if (abs(lf_av
- lf_baseline
) > 10) LED_D_ON();
565 lf_av_new
= ReadAdc(ADC_CHAN_LF
);
566 // see if there's a significant change
567 if(abs(lf_av
- lf_av_new
) > 10) {
568 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av
, lf_av_new
, lf_count
);
576 if (limit
!= LF_ONLY
) {
578 if (abs(hf_av
- hf_baseline
) > 10) LED_B_ON();
583 hf_av_new
= ReadAdc(ADC_CHAN_HF
);
584 // see if there's a significant change
585 if(abs(hf_av
- hf_av_new
) > 10) {
586 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av
, hf_av_new
, hf_count
);
595 if (limit
== LF_ONLY
) {
597 display_max
= lf_max
;
598 } else if (limit
== HF_ONLY
) {
600 display_max
= hf_max
;
601 } else { /* Pick one at random */
602 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
604 display_max
= hf_max
;
607 display_max
= lf_max
;
610 for (i
=0; i
<LIGHT_LEN
; i
++) {
611 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
612 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
613 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
614 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
615 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
623 void UsbPacketReceived(uint8_t *packet
, int len
)
625 UsbCommand
*c
= (UsbCommand
*)packet
;
627 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
631 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
632 AcquireRawAdcSamples125k(c
->arg
[0]);
633 cmd_send(CMD_ACK
,0,0,0,0,0);
635 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
636 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
638 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
639 SnoopLFRawAdcSamples(c
->arg
[0], c
->arg
[1]);
640 cmd_send(CMD_ACK
,0,0,0,0,0);
642 case CMD_HID_DEMOD_FSK
:
643 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
645 case CMD_HID_SIM_TAG
:
646 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
648 case CMD_HID_CLONE_TAG
:
649 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
651 case CMD_IO_DEMOD_FSK
:
652 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
654 case CMD_IO_CLONE_TAG
:
655 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
657 case CMD_EM410X_DEMOD
:
658 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
660 case CMD_EM410X_WRITE_TAG
:
661 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
663 case CMD_READ_TI_TYPE
:
666 case CMD_WRITE_TI_TYPE
:
667 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
669 case CMD_SIMULATE_TAG_125K
:
670 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
672 case CMD_LF_SIMULATE_BIDIR
:
673 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
675 case CMD_INDALA_CLONE_TAG
:
676 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
678 case CMD_INDALA_CLONE_TAG_L
:
679 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
681 case CMD_T55XX_READ_BLOCK
:
682 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
684 case CMD_T55XX_WRITE_BLOCK
:
685 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
687 case CMD_T55XX_READ_TRACE
:
690 case CMD_PCF7931_READ
:
692 cmd_send(CMD_ACK
,0,0,0,0,0);
694 case CMD_EM4X_READ_WORD
:
695 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
697 case CMD_EM4X_WRITE_WORD
:
698 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
703 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
704 SnoopHitag(c
->arg
[0]);
706 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
707 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
709 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
710 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
715 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
716 AcquireRawAdcSamplesIso15693();
718 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
719 RecordRawAdcSamplesIso15693();
722 case CMD_ISO_15693_COMMAND
:
723 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
726 case CMD_ISO_15693_FIND_AFI
:
727 BruteforceIso15693Afi(c
->arg
[0]);
730 case CMD_ISO_15693_DEBUG
:
731 SetDebugIso15693(c
->arg
[0]);
734 case CMD_READER_ISO_15693
:
735 ReaderIso15693(c
->arg
[0]);
737 case CMD_SIMTAG_ISO_15693
:
738 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
743 case CMD_SIMULATE_TAG_LEGIC_RF
:
744 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
747 case CMD_WRITER_LEGIC_RF
:
748 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
751 case CMD_READER_LEGIC_RF
:
752 LegicRfReader(c
->arg
[0], c
->arg
[1]);
756 #ifdef WITH_ISO14443b
757 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
758 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
760 case CMD_READ_SRI512_TAG
:
761 ReadSTMemoryIso14443(0x0F);
763 case CMD_READ_SRIX4K_TAG
:
764 ReadSTMemoryIso14443(0x7F);
766 case CMD_SNOOP_ISO_14443
:
769 case CMD_SIMULATE_TAG_ISO_14443
:
770 SimulateIso14443Tag();
772 case CMD_ISO_14443B_COMMAND
:
773 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
777 #ifdef WITH_ISO14443a
778 case CMD_SNOOP_ISO_14443a
:
779 SnoopIso14443a(c
->arg
[0]);
781 case CMD_READER_ISO_14443a
:
784 case CMD_SIMULATE_TAG_ISO_14443a
:
785 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
788 case CMD_EPA_PACE_COLLECT_NONCE
:
789 EPA_PACE_Collect_Nonce(c
);
792 case CMD_READER_MIFARE
:
793 ReaderMifare(c
->arg
[0]);
795 case CMD_MIFARE_READBL
:
796 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
798 case CMD_MIFAREU_READBL
:
799 MifareUReadBlock(c
->arg
[0],c
->d
.asBytes
);
801 case CMD_MIFAREU_READCARD
:
802 MifareUReadCard(c
->arg
[0],c
->d
.asBytes
);
804 case CMD_MIFARE_READSC
:
805 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
807 case CMD_MIFARE_WRITEBL
:
808 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
810 case CMD_MIFAREU_WRITEBL_COMPAT
:
811 MifareUWriteBlock(c
->arg
[0], c
->d
.asBytes
);
813 case CMD_MIFAREU_WRITEBL
:
814 MifareUWriteBlock_Special(c
->arg
[0], c
->d
.asBytes
);
816 case CMD_MIFARE_NESTED
:
817 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
819 case CMD_MIFARE_CHKKEYS
:
820 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
822 case CMD_SIMULATE_MIFARE_CARD
:
823 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
827 case CMD_MIFARE_SET_DBGMODE
:
828 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
830 case CMD_MIFARE_EML_MEMCLR
:
831 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
833 case CMD_MIFARE_EML_MEMSET
:
834 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
836 case CMD_MIFARE_EML_MEMGET
:
837 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
839 case CMD_MIFARE_EML_CARDLOAD
:
840 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
843 // Work with "magic Chinese" card
844 case CMD_MIFARE_CSETBLOCK
:
845 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
847 case CMD_MIFARE_CGETBLOCK
:
848 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
850 case CMD_MIFARE_CIDENT
:
855 case CMD_MIFARE_SNIFFER
:
856 SniffMifare(c
->arg
[0]);
861 // Makes use of ISO14443a FPGA Firmware
862 case CMD_SNOOP_ICLASS
:
865 case CMD_SIMULATE_TAG_ICLASS
:
866 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
868 case CMD_READER_ICLASS
:
869 ReaderIClass(c
->arg
[0]);
871 case CMD_READER_ICLASS_REPLAY
:
872 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
876 case CMD_SIMULATE_TAG_HF_LISTEN
:
877 SimulateTagHfListen();
884 case CMD_MEASURE_ANTENNA_TUNING
:
885 MeasureAntennaTuning();
888 case CMD_MEASURE_ANTENNA_TUNING_HF
:
889 MeasureAntennaTuningHf();
892 case CMD_LISTEN_READER_FIELD
:
893 ListenReaderField(c
->arg
[0]);
896 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
897 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
899 LED_D_OFF(); // LED D indicates field ON or OFF
902 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
905 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
906 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
907 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,0,((byte_t
*)BigBuf
)+c
->arg
[0]+i
,len
);
909 // Trigger a finish downloading signal with an ACK frame
910 cmd_send(CMD_ACK
,0,0,0,0,0);
914 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
915 uint8_t *b
= (uint8_t *)BigBuf
;
916 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
917 cmd_send(CMD_ACK
,0,0,0,0,0);
924 case CMD_SET_LF_DIVISOR
:
925 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
926 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
929 case CMD_SET_ADC_MUX
:
931 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
932 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
933 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
934 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
950 case CMD_SETUP_WRITE
:
951 case CMD_FINISH_WRITE
:
952 case CMD_HARDWARE_RESET
:
956 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
958 // We're going to reset, and the bootrom will take control.
962 case CMD_START_FLASH
:
963 if(common_area
.flags
.bootrom_present
) {
964 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
967 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
971 case CMD_DEVICE_INFO
: {
972 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
973 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
974 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
978 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
983 void __attribute__((noreturn
)) AppMain(void)
987 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
988 /* Initialize common area */
989 memset(&common_area
, 0, sizeof(common_area
));
990 common_area
.magic
= COMMON_AREA_MAGIC
;
991 common_area
.version
= 1;
993 common_area
.flags
.osimage_present
= 1;
1003 // The FPGA gets its clock from us from PCK0 output, so set that up.
1004 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1005 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1006 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1007 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1008 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1009 AT91C_PMC_PRES_CLK_4
;
1010 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1013 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1015 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1017 // Load the FPGA image, which we have stored in our flash.
1018 // (the HF version by default)
1019 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1027 byte_t rx
[sizeof(UsbCommand
)];
1032 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1034 UsbPacketReceived(rx
,rx_len
);
1040 if (BUTTON_HELD(1000) > 0)