1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
14 #include "proxmark3.h"
23 #include "lfsampling.h"
25 #include "mifareutil.h"
32 // Craig Young - 14a stand-alone code
33 #ifdef WITH_ISO14443a_StandAlone
34 #include "iso14443a.h"
35 #include "protocols.h"
38 //=============================================================================
39 // A buffer where we can queue things up to be sent through the FPGA, for
40 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
41 // is the order in which they go out on the wire.
42 //=============================================================================
44 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
45 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
48 struct common_area common_area
__attribute__((section(".commonarea")));
50 void ToSendReset(void)
56 void ToSendStuffBit(int b
) {
59 ToSend
[ToSendMax
] = 0;
64 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
68 if(ToSendMax
>= sizeof(ToSend
)) {
70 DbpString("ToSendStuffBit overflowed!");
74 //=============================================================================
75 // Debug print functions, to go out over USB, to the usual PC-side client.
76 //=============================================================================
78 void DbpStringEx(char *str
, uint32_t cmd
){
79 byte_t len
= strlen(str
);
80 cmd_send(CMD_DEBUG_PRINT_STRING
,len
, cmd
,0,(byte_t
*)str
,len
);
83 void DbpString(char *str
) {
88 void DbpIntegers(int x1
, int x2
, int x3
) {
89 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
92 void DbprintfEx(uint32_t cmd
, const char *fmt
, ...) {
93 // should probably limit size here; oh well, let's just use a big buffer
94 char output_string
[128] = {0x00};
98 kvsprintf(fmt
, output_string
, 10, ap
);
101 DbpStringEx(output_string
, cmd
);
104 void Dbprintf(const char *fmt
, ...) {
105 // should probably limit size here; oh well, let's just use a big buffer
106 char output_string
[128] = {0x00};
110 kvsprintf(fmt
, output_string
, 10, ap
);
113 DbpString(output_string
);
116 // prints HEX & ASCII
117 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
123 l
= (len
>8) ? 8 : len
;
130 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
133 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
135 Dbprintf("%*D",l
,d
," ");
142 //-----------------------------------------------------------------------------
143 // Read an ADC channel and block till it completes, then return the result
144 // in ADC units (0 to 1023). Also a routine to average 32 samples and
146 //-----------------------------------------------------------------------------
147 static int ReadAdc(int ch
)
151 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
152 AT91C_BASE_ADC
->ADC_MR
=
153 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
154 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
155 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
157 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
158 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
159 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
162 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
164 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
166 // Note: with the "historic" values in the comments above, the error was 34% !!!
168 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
170 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
172 while (!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) ;
174 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
178 int AvgAdc(int ch
) // was static - merlok
183 for(i
= 0; i
< 32; ++i
)
186 return (a
+ 15) >> 5;
189 void MeasureAntennaTuning(void) {
190 uint8_t LF_Results
[256];
191 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
192 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
197 * Sweeps the useful LF range of the proxmark from
198 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
199 * read the voltage in the antenna, the result left
200 * in the buffer is a graph which should clearly show
201 * the resonating frequency of your LF antenna
202 * ( hopefully around 95 if it is tuned to 125kHz!)
205 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
206 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
208 for (i
=255; i
>=19; i
--) {
210 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
212 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
213 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
214 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
216 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
217 if(LF_Results
[i
] > peak
) {
219 peak
= LF_Results
[i
];
225 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
228 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
229 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
230 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
232 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
234 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<<16), vHf
, peakf
| (peakv
<<16), LF_Results
, 256);
235 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
240 void MeasureAntennaTuningHf(void) {
241 int vHf
= 0; // in mV
242 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
243 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
244 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
246 while ( !BUTTON_PRESS() ){
248 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
249 //Dbprintf("%d mV",vHf);
250 DbprintfEx(CMD_MEASURE_ANTENNA_TUNING_HF
, "%d mV",vHf
);
252 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
253 DbpString("cancelled");
257 void ReadMem(int addr
) {
258 const uint8_t *data
= ((uint8_t *)addr
);
260 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
261 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
264 /* osimage version information is linked in */
265 extern struct version_information version_information
;
266 /* bootrom version information is pointed to from _bootphase1_version_pointer */
267 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
268 void SendVersion(void)
270 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
271 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
273 /* Try to find the bootrom version information. Expect to find a pointer at
274 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
275 * pointer, then use it.
277 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
279 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
280 strcat(VersionString
, "bootrom version information appears invalid\n");
282 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
283 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
286 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
287 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
289 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
290 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
292 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
293 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
295 // Send Chip ID and used flash memory
296 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
297 uint32_t compressed_data_section_size
= common_area
.arg1
;
298 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
301 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
302 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
303 void printUSBSpeed(void)
305 Dbprintf("USB Speed:");
306 Dbprintf(" Sending USB packets to client...");
308 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
309 uint8_t *test_data
= BigBuf_get_addr();
312 uint32_t start_time
= end_time
= GetTickCount();
313 uint32_t bytes_transferred
= 0;
316 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
317 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
318 end_time
= GetTickCount();
319 bytes_transferred
+= USB_CMD_DATA_SIZE
;
323 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
324 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
325 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
326 1000 * bytes_transferred
/ (end_time
- start_time
));
331 * Prints runtime information about the PM3.
333 void SendStatus(void) {
334 BigBuf_print_status();
336 printConfig(); //LF Sampling config
339 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
340 Dbprintf(" ToSendMax..........%d", ToSendMax
);
341 Dbprintf(" ToSendBit..........%d", ToSendBit
);
342 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE
);
344 cmd_send(CMD_ACK
,1,0,0,0,0);
347 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
350 void StandAloneMode()
352 DbpString("Stand-alone mode! No PC necessary.");
353 // Oooh pretty -- notify user we're in elite samy mode now
355 LED(LED_ORANGE
, 200);
357 LED(LED_ORANGE
, 200);
359 LED(LED_ORANGE
, 200);
361 LED(LED_ORANGE
, 200);
366 #ifdef WITH_ISO14443a_StandAlone
367 void StandAloneMode14a()
370 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
373 int playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
374 int cardRead
[OPTS
] = {0};
375 uint8_t readUID
[10] = {0};
376 uint32_t uid_1st
[OPTS
]={0};
377 uint32_t uid_2nd
[OPTS
]={0};
378 uint32_t uid_tmp1
= 0;
379 uint32_t uid_tmp2
= 0;
380 iso14a_card_select_t hi14a_card
[OPTS
];
382 uint8_t params
= (MAGIC_SINGLE
| MAGIC_DATAIN
);
384 LED(selected
+ 1, 0);
392 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
396 LED(selected
+ 1, 0);
400 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
401 /* need this delay to prevent catching some weird data */
403 /* Code for reading from 14a tag */
404 uint8_t uid
[10] = {0};
406 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
411 if (BUTTON_PRESS()) {
412 if (cardRead
[selected
]) {
413 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
416 else if (cardRead
[(selected
+1)%OPTS
]) {
417 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
418 selected
= (selected
+1)%OPTS
;
419 break; // playing = 1;
422 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
426 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0))
430 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
431 memcpy(readUID
,uid
,10*sizeof(uint8_t));
432 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
433 // Set UID byte order
434 for (int i
=0; i
<4; i
++)
436 dst
= (uint8_t *)&uid_tmp2
;
437 for (int i
=0; i
<4; i
++)
439 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
440 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
444 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
445 uid_1st
[selected
] = (uid_tmp1
)>>8;
446 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
449 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
450 uid_1st
[selected
] = uid_tmp1
;
451 uid_2nd
[selected
] = uid_tmp2
;
457 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
458 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
461 LED(LED_ORANGE
, 200);
463 LED(LED_ORANGE
, 200);
466 LED(selected
+ 1, 0);
468 // Next state is replay:
471 cardRead
[selected
] = 1;
473 /* MF Classic UID clone */
474 else if (iGotoClone
==1)
478 LED(selected
+ 1, 0);
479 LED(LED_ORANGE
, 250);
482 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
484 // wait for button to be released
485 // Delay cloning until card is in place
486 while(BUTTON_PRESS())
489 Dbprintf("Starting clone. [Bank: %u]", selected
);
490 // need this delay to prevent catching some weird data
492 // Begin clone function here:
493 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
494 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
495 memcpy(c.d.asBytes, data, 16);
498 Block read is similar:
499 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
500 We need to imitate that call with blockNo 0 to set a uid.
502 The get and set commands are handled in this file:
503 // Work with "magic Chinese" card
504 case CMD_MIFARE_CSETBLOCK:
505 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
507 case CMD_MIFARE_CGETBLOCK:
508 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
511 mfCSetUID provides example logic for UID set workflow:
512 -Read block0 from card in field with MifareCGetBlock()
513 -Configure new values without replacing reserved bytes
514 memcpy(block0, uid, 4); // Copy UID bytes from byte array
516 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
517 Bytes 5-7 are reserved SAK and ATQA for mifare classic
518 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
520 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
521 // arg0 = Flags, arg1=blockNo
522 MifareCGetBlock(params
, 0, oldBlock0
);
523 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
524 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
528 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
529 memcpy(newBlock0
,oldBlock0
,16);
530 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
532 newBlock0
[0] = uid_1st
[selected
]>>24;
533 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
534 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
535 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
536 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
538 // arg0 = workFlags, arg1 = blockNo, datain
539 MifareCSetBlock(params
, 0, newBlock0
);
540 MifareCGetBlock(params
, 0, testBlock0
);
542 if (memcmp(testBlock0
, newBlock0
, 16)==0) {
543 DbpString("Cloned successfull!");
544 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
547 selected
= (selected
+ 1) % OPTS
;
549 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
554 LED(selected
+ 1, 0);
556 // Change where to record (or begin playing)
557 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
560 LED(selected
+ 1, 0);
562 // Begin transmitting
566 DbpString("Playing");
569 int button_action
= BUTTON_HELD(1000);
570 if (button_action
== 0) { // No button action, proceed with sim
571 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
572 uint8_t flags
= ( uid_2nd
[selected
] > 0x00 ) ? FLAG_7B_UID_IN_DATA
: FLAG_4B_UID_IN_DATA
;
573 num_to_bytes(uid_1st
[selected
], 3, data
);
574 num_to_bytes(uid_2nd
[selected
], 4, data
);
576 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
577 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
578 DbpString("Mifare Classic");
579 SimulateIso14443aTag(1, flags
, data
); // Mifare Classic
581 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
582 DbpString("Mifare Ultralight");
583 SimulateIso14443aTag(2, flags
, data
); // Mifare Ultralight
585 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
586 DbpString("Mifare DESFire");
587 SimulateIso14443aTag(3, flags
, data
); // Mifare DESFire
590 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
591 SimulateIso14443aTag(1, flags
, data
);
594 else if (button_action
== BUTTON_SINGLE_CLICK
) {
595 selected
= (selected
+ 1) % OPTS
;
596 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
600 else if (button_action
== BUTTON_HOLD
) {
601 Dbprintf("Playtime over. Begin cloning...");
608 /* We pressed a button so ignore it here with a delay */
611 LED(selected
+ 1, 0);
614 while(BUTTON_PRESS())
620 // samy's sniff and repeat routine
624 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
626 int high
[OPTS
], low
[OPTS
];
631 // Turn on selected LED
632 LED(selected
+ 1, 0);
638 // Was our button held down or pressed?
639 int button_pressed
= BUTTON_HELD(1000);
642 // Button was held for a second, begin recording
643 if (button_pressed
> 0 && cardRead
== 0)
646 LED(selected
+ 1, 0);
650 DbpString("Starting recording");
652 // wait for button to be released
653 while(BUTTON_PRESS())
656 /* need this delay to prevent catching some weird data */
659 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
660 Dbprintf("Recorded %x %x %08x", selected
, high
[selected
], low
[selected
]);
663 LED(selected
+ 1, 0);
664 // Finished recording
665 // If we were previously playing, set playing off
666 // so next button push begins playing what we recorded
670 else if (button_pressed
> 0 && cardRead
== 1) {
672 LED(selected
+ 1, 0);
676 Dbprintf("Cloning %x %x %08x", selected
, high
[selected
], low
[selected
]);
678 // wait for button to be released
679 while(BUTTON_PRESS())
682 /* need this delay to prevent catching some weird data */
685 CopyHIDtoT55x7(0, high
[selected
], low
[selected
], 0);
686 Dbprintf("Cloned %x %x %08x", selected
, high
[selected
], low
[selected
]);
689 LED(selected
+ 1, 0);
690 // Finished recording
692 // If we were previously playing, set playing off
693 // so next button push begins playing what we recorded
698 // Change where to record (or begin playing)
699 else if (button_pressed
) {
700 // Next option if we were previously playing
702 selected
= (selected
+ 1) % OPTS
;
706 LED(selected
+ 1, 0);
708 // Begin transmitting
712 DbpString("Playing");
713 // wait for button to be released
714 while(BUTTON_PRESS())
717 Dbprintf("%x %x %08x", selected
, high
[selected
], low
[selected
]);
718 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
719 DbpString("Done playing");
721 if (BUTTON_HELD(1000) > 0) {
722 DbpString("Exiting");
727 /* We pressed a button so ignore it here with a delay */
730 // when done, we're done playing, move to next option
731 selected
= (selected
+ 1) % OPTS
;
734 LED(selected
+ 1, 0);
737 while(BUTTON_PRESS())
746 Listen and detect an external reader. Determine the best location
750 Inside the ListenReaderField() function, there is two mode.
751 By default, when you call the function, you will enter mode 1.
752 If you press the PM3 button one time, you will enter mode 2.
753 If you press the PM3 button a second time, you will exit the function.
755 DESCRIPTION OF MODE 1:
756 This mode just listens for an external reader field and lights up green
757 for HF and/or red for LF. This is the original mode of the detectreader
760 DESCRIPTION OF MODE 2:
761 This mode will visually represent, using the LEDs, the actual strength of the
762 current compared to the maximum current detected. Basically, once you know
763 what kind of external reader is present, it will help you spot the best location to place
764 your antenna. You will probably not get some good results if there is a LF and a HF reader
765 at the same place! :-)
769 static const char LIGHT_SCHEME
[] = {
770 0x0, /* ---- | No field detected */
771 0x1, /* X--- | 14% of maximum current detected */
772 0x2, /* -X-- | 29% of maximum current detected */
773 0x4, /* --X- | 43% of maximum current detected */
774 0x8, /* ---X | 57% of maximum current detected */
775 0xC, /* --XX | 71% of maximum current detected */
776 0xE, /* -XXX | 86% of maximum current detected */
777 0xF, /* XXXX | 100% of maximum current detected */
779 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
781 void ListenReaderField(int limit
) {
784 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
786 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
787 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
788 int mode
=1, display_val
, display_max
, i
;
790 // switch off FPGA - we don't want to measure our own signal
791 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
792 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
796 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
798 if(limit
!= HF_ONLY
) {
799 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
803 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
805 if (limit
!= LF_ONLY
) {
806 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
811 if (BUTTON_PRESS()) {
816 DbpString("Signal Strength Mode");
820 DbpString("Stopped");
828 if (limit
!= HF_ONLY
) {
830 if (ABS(lf_av
- lf_baseline
) > REPORT_CHANGE
)
836 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
837 // see if there's a significant change
838 if(ABS(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
839 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
846 if (limit
!= LF_ONLY
) {
848 if (ABS(hf_av
- hf_baseline
) > REPORT_CHANGE
)
854 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
855 // see if there's a significant change
856 if(ABS(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
857 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
865 if (limit
== LF_ONLY
) {
867 display_max
= lf_max
;
868 } else if (limit
== HF_ONLY
) {
870 display_max
= hf_max
;
871 } else { /* Pick one at random */
872 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
874 display_max
= hf_max
;
877 display_max
= lf_max
;
880 for (i
=0; i
<LIGHT_LEN
; i
++) {
881 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
882 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
883 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
884 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
885 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
893 void UsbPacketReceived(uint8_t *packet
, int len
)
895 UsbCommand
*c
= (UsbCommand
*)packet
;
897 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
901 case CMD_SET_LF_SAMPLING_CONFIG
:
902 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
904 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
905 cmd_send(CMD_ACK
, SampleLF(c
->arg
[0]),0,0,0,0);
907 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
908 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
910 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
911 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
913 case CMD_HID_DEMOD_FSK
:
914 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
916 case CMD_HID_SIM_TAG
:
917 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
919 case CMD_FSK_SIM_TAG
:
920 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
922 case CMD_ASK_SIM_TAG
:
923 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
925 case CMD_PSK_SIM_TAG
:
926 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
928 case CMD_HID_CLONE_TAG
:
929 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
931 case CMD_IO_DEMOD_FSK
:
932 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
934 case CMD_IO_CLONE_TAG
:
935 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
937 case CMD_EM410X_DEMOD
:
938 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
940 case CMD_EM410X_WRITE_TAG
:
941 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
943 case CMD_READ_TI_TYPE
:
946 case CMD_WRITE_TI_TYPE
:
947 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
949 case CMD_SIMULATE_TAG_125K
:
951 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
954 case CMD_LF_SIMULATE_BIDIR
:
955 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
957 case CMD_INDALA_CLONE_TAG
:
958 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
960 case CMD_INDALA_CLONE_TAG_L
:
961 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
963 case CMD_T55XX_READ_BLOCK
:
964 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
966 case CMD_T55XX_WRITE_BLOCK
:
967 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
969 case CMD_T55XX_WAKEUP
:
970 T55xxWakeUp(c
->arg
[0]);
972 case CMD_T55XX_RESET_READ
:
975 case CMD_PCF7931_READ
:
978 case CMD_PCF7931_WRITE
:
979 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
981 case CMD_EM4X_READ_WORD
:
982 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
984 case CMD_EM4X_WRITE_WORD
:
985 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
987 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
988 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
990 case CMD_VIKING_CLONE_TAG
:
991 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
996 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
997 SnoopHitag(c
->arg
[0]);
999 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1000 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1002 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1003 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1005 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1006 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1008 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1009 check_challenges((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1011 case CMD_READ_HITAG_S
://Reader for only Hitag S tags, args = key or challenge
1012 ReadHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1014 case CMD_WR_HITAG_S
://writer for Hitag tags args=data to write,page and key or challenge
1015 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1019 #ifdef WITH_ISO15693
1020 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1021 AcquireRawAdcSamplesIso15693();
1023 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1024 RecordRawAdcSamplesIso15693();
1027 case CMD_ISO_15693_COMMAND
:
1028 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1031 case CMD_ISO_15693_FIND_AFI
:
1032 BruteforceIso15693Afi(c
->arg
[0]);
1035 case CMD_ISO_15693_DEBUG
:
1036 SetDebugIso15693(c
->arg
[0]);
1039 case CMD_READER_ISO_15693
:
1040 ReaderIso15693(c
->arg
[0]);
1042 case CMD_SIMTAG_ISO_15693
:
1043 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1048 case CMD_SIMULATE_TAG_LEGIC_RF
:
1049 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1052 case CMD_WRITER_LEGIC_RF
:
1053 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1056 case CMD_READER_LEGIC_RF
:
1057 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1061 #ifdef WITH_ISO14443b
1062 case CMD_READ_SRI512_TAG
:
1063 ReadSTMemoryIso14443b(0x0F);
1065 case CMD_READ_SRIX4K_TAG
:
1066 ReadSTMemoryIso14443b(0x7F);
1068 case CMD_SNOOP_ISO_14443B
:
1071 case CMD_SIMULATE_TAG_ISO_14443B
:
1072 SimulateIso14443bTag();
1074 case CMD_ISO_14443B_COMMAND
:
1075 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1079 #ifdef WITH_ISO14443a
1080 case CMD_SNOOP_ISO_14443a
:
1081 SniffIso14443a(c
->arg
[0]);
1083 case CMD_READER_ISO_14443a
:
1086 case CMD_SIMULATE_TAG_ISO_14443a
:
1087 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1090 case CMD_EPA_PACE_COLLECT_NONCE
:
1091 EPA_PACE_Collect_Nonce(c
);
1093 case CMD_EPA_PACE_REPLAY
:
1097 case CMD_READER_MIFARE
:
1098 ReaderMifare(c
->arg
[0], c
->arg
[1]);
1100 case CMD_MIFARE_READBL
:
1101 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1103 case CMD_MIFAREU_READBL
:
1104 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1106 case CMD_MIFAREUC_AUTH
:
1107 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1109 case CMD_MIFAREU_READCARD
:
1110 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1112 case CMD_MIFAREUC_SETPWD
:
1113 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1115 case CMD_MIFARE_READSC
:
1116 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1118 case CMD_MIFARE_WRITEBL
:
1119 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1121 //case CMD_MIFAREU_WRITEBL_COMPAT:
1122 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1124 case CMD_MIFAREU_WRITEBL
:
1125 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1127 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1128 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1130 case CMD_MIFARE_NESTED
:
1131 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1133 case CMD_MIFARE_CHKKEYS
:
1134 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1136 case CMD_SIMULATE_MIFARE_CARD
:
1137 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1141 case CMD_MIFARE_SET_DBGMODE
:
1142 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1144 case CMD_MIFARE_EML_MEMCLR
:
1145 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1147 case CMD_MIFARE_EML_MEMSET
:
1148 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1150 case CMD_MIFARE_EML_MEMGET
:
1151 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1153 case CMD_MIFARE_EML_CARDLOAD
:
1154 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1157 // Work with "magic Chinese" card
1158 case CMD_MIFARE_CSETBLOCK
:
1159 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1161 case CMD_MIFARE_CGETBLOCK
:
1162 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1164 case CMD_MIFARE_CIDENT
:
1169 case CMD_MIFARE_SNIFFER
:
1170 SniffMifare(c
->arg
[0]);
1174 case CMD_MIFARE_DESFIRE_READBL
: break;
1175 case CMD_MIFARE_DESFIRE_WRITEBL
: break;
1176 case CMD_MIFARE_DESFIRE_AUTH1
:
1177 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1179 case CMD_MIFARE_DESFIRE_AUTH2
:
1180 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1182 case CMD_MIFARE_DES_READER
:
1183 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1185 case CMD_MIFARE_DESFIRE_INFO
:
1186 MifareDesfireGetInformation();
1188 case CMD_MIFARE_DESFIRE
:
1189 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1192 case CMD_MIFARE_COLLECT_NONCES
:
1196 case CMD_EMV_TRANSACTION
:
1199 case CMD_EMV_GET_RANDOM_NUM
:
1202 case CMD_EMV_LOAD_VALUE
:
1203 EMVloadvalue(c
->arg
[0], c
->d
.asBytes
);
1205 case CMD_EMV_DUMP_CARD
:
1209 // Makes use of ISO14443a FPGA Firmware
1210 case CMD_SNOOP_ICLASS
:
1213 case CMD_SIMULATE_TAG_ICLASS
:
1214 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1216 case CMD_READER_ICLASS
:
1217 ReaderIClass(c
->arg
[0]);
1219 case CMD_READER_ICLASS_REPLAY
:
1220 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1222 case CMD_ICLASS_EML_MEMSET
:
1223 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1225 case CMD_ICLASS_WRITEBLOCK
:
1226 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1228 case CMD_ICLASS_READCHECK
: // auth step 1
1229 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1231 case CMD_ICLASS_READBLOCK
:
1232 iClass_ReadBlk(c
->arg
[0]);
1234 case CMD_ICLASS_AUTHENTICATION
: //check
1235 iClass_Authentication(c
->d
.asBytes
);
1237 case CMD_ICLASS_DUMP
:
1238 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1240 case CMD_ICLASS_CLONE
:
1241 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1245 case CMD_HF_SNIFFER
:
1246 HfSnoop(c
->arg
[0], c
->arg
[1]);
1250 case CMD_BUFF_CLEAR
:
1254 case CMD_MEASURE_ANTENNA_TUNING
:
1255 MeasureAntennaTuning();
1258 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1259 MeasureAntennaTuningHf();
1262 case CMD_LISTEN_READER_FIELD
:
1263 ListenReaderField(c
->arg
[0]);
1266 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1267 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1269 LED_D_OFF(); // LED D indicates field ON or OFF
1272 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
: {
1274 uint8_t *BigBuf
= BigBuf_get_addr();
1276 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1277 len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1278 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1280 // Trigger a finish downloading signal with an ACK frame
1281 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1285 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1286 uint8_t *b
= BigBuf_get_addr();
1287 memcpy( b
+ c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1288 cmd_send(CMD_ACK
,0,0,0,0,0);
1291 case CMD_DOWNLOAD_EML_BIGBUF
: {
1293 uint8_t *cardmem
= BigBuf_get_EM_addr();
1295 for(size_t i
=0; i
< c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1296 len
= MIN((c
->arg
[1] - i
), USB_CMD_DATA_SIZE
);
1297 cmd_send(CMD_DOWNLOADED_EML_BIGBUF
, i
, len
, CARD_MEMORY_SIZE
, cardmem
+ c
->arg
[0] + i
, len
);
1299 // Trigger a finish downloading signal with an ACK frame
1300 cmd_send(CMD_ACK
, 1, 0, CARD_MEMORY_SIZE
, 0, 0);
1308 case CMD_SET_LF_DIVISOR
:
1309 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1310 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1313 case CMD_SET_ADC_MUX
:
1315 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1316 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1317 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1318 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1329 cmd_send(CMD_ACK
,0,0,0,0,0);
1339 case CMD_SETUP_WRITE
:
1340 case CMD_FINISH_WRITE
:
1341 case CMD_HARDWARE_RESET
:
1344 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1346 // We're going to reset, and the bootrom will take control.
1350 case CMD_START_FLASH
:
1351 if(common_area
.flags
.bootrom_present
) {
1352 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1355 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1359 case CMD_DEVICE_INFO
: {
1360 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1361 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1362 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1366 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1371 void __attribute__((noreturn
)) AppMain(void)
1375 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1376 /* Initialize common area */
1377 memset(&common_area
, 0, sizeof(common_area
));
1378 common_area
.magic
= COMMON_AREA_MAGIC
;
1379 common_area
.version
= 1;
1381 common_area
.flags
.osimage_present
= 1;
1391 // The FPGA gets its clock from us from PCK0 output, so set that up.
1392 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1393 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1394 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1395 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1396 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1397 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1398 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1401 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1403 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1405 // Load the FPGA image, which we have stored in our flash.
1406 // (the HF version by default)
1407 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1415 byte_t rx
[sizeof(UsbCommand
)];
1420 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1422 UsbPacketReceived(rx
,rx_len
);
1427 #ifndef WITH_ISO14443a_StandAlone
1428 if (BUTTON_HELD(1000) > 0)
1432 #ifdef WITH_ISO14443a
1433 #ifdef WITH_ISO14443a_StandAlone
1434 if (BUTTON_HELD(1000) > 0)
1435 StandAloneMode14a();