]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/util.c
updated mfu rdbl and wrbl commands
[proxmark3-svn] / armsrc / util.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Sept 2005
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Utility functions used in many places, not specific to any piece of code.
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "util.h"
13 #include "string.h"
14 #include "apps.h"
15 #include "BigBuf.h"
16
17
18
19 void print_result(char *name, uint8_t *buf, size_t len) {
20 uint8_t *p = buf;
21
22 if ( len % 16 == 0 ) {
23 for(; p-buf < len; p += 16)
24 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
25 name,
26 p-buf,
27 len,
28 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]
29 );
30 }
31 else {
32 for(; p-buf < len; p += 8)
33 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x", name, p-buf, len, p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
34 }
35 }
36
37 size_t nbytes(size_t nbits) {
38 return (nbits >> 3)+((nbits % 8) > 0);
39 }
40
41 uint32_t SwapBits(uint32_t value, int nrbits) {
42 int i;
43 uint32_t newvalue = 0;
44 for(i = 0; i < nrbits; i++) {
45 newvalue ^= ((value >> i) & 1) << (nrbits - 1 - i);
46 }
47 return newvalue;
48 }
49
50 void num_to_bytes(uint64_t n, size_t len, uint8_t* dest)
51 {
52 while (len--) {
53 dest[len] = (uint8_t) n;
54 n >>= 8;
55 }
56 }
57
58 uint64_t bytes_to_num(uint8_t* src, size_t len)
59 {
60 uint64_t num = 0;
61 while (len--)
62 {
63 num = (num << 8) | (*src);
64 src++;
65 }
66 return num;
67 }
68
69 // RotateLeft - Ultralight, Desfire
70 void rol(uint8_t *data, const size_t len){
71 uint8_t first = data[0];
72 for (size_t i = 0; i < len-1; i++) {
73 data[i] = data[i+1];
74 }
75 data[len-1] = first;
76 }
77 void lsl (uint8_t *data, size_t len) {
78 for (size_t n = 0; n < len - 1; n++) {
79 data[n] = (data[n] << 1) | (data[n+1] >> 7);
80 }
81 data[len - 1] <<= 1;
82 }
83
84 int32_t le24toh (uint8_t data[3])
85 {
86 return (data[2] << 16) | (data[1] << 8) | data[0];
87 }
88
89 void LEDsoff()
90 {
91 LED_A_OFF();
92 LED_B_OFF();
93 LED_C_OFF();
94 LED_D_OFF();
95 }
96
97 // LEDs: R(C) O(A) G(B) -- R(D) [1, 2, 4 and 8]
98 void LED(int led, int ms)
99 {
100 if (led & LED_RED)
101 LED_C_ON();
102 if (led & LED_ORANGE)
103 LED_A_ON();
104 if (led & LED_GREEN)
105 LED_B_ON();
106 if (led & LED_RED2)
107 LED_D_ON();
108
109 if (!ms)
110 return;
111
112 SpinDelay(ms);
113
114 if (led & LED_RED)
115 LED_C_OFF();
116 if (led & LED_ORANGE)
117 LED_A_OFF();
118 if (led & LED_GREEN)
119 LED_B_OFF();
120 if (led & LED_RED2)
121 LED_D_OFF();
122 }
123
124
125 // Determine if a button is double clicked, single clicked,
126 // not clicked, or held down (for ms || 1sec)
127 // In general, don't use this function unless you expect a
128 // double click, otherwise it will waste 500ms -- use BUTTON_HELD instead
129 int BUTTON_CLICKED(int ms)
130 {
131 // Up to 500ms in between clicks to mean a double click
132 int ticks = (48000 * (ms ? ms : 1000)) >> 10;
133
134 // If we're not even pressed, forget about it!
135 if (!BUTTON_PRESS())
136 return BUTTON_NO_CLICK;
137
138 // Borrow a PWM unit for my real-time clock
139 AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
140 // 48 MHz / 1024 gives 46.875 kHz
141 AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
142 AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
143 AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
144
145 uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
146
147 int letoff = 0;
148 for(;;)
149 {
150 uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
151
152 // We haven't let off the button yet
153 if (!letoff)
154 {
155 // We just let it off!
156 if (!BUTTON_PRESS())
157 {
158 letoff = 1;
159
160 // reset our timer for 500ms
161 start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
162 ticks = (48000 * (500)) >> 10;
163 }
164
165 // Still haven't let it off
166 else
167 // Have we held down a full second?
168 if (now == (uint16_t)(start + ticks))
169 return BUTTON_HOLD;
170 }
171
172 // We already let off, did we click again?
173 else
174 // Sweet, double click!
175 if (BUTTON_PRESS())
176 return BUTTON_DOUBLE_CLICK;
177
178 // Have we ran out of time to double click?
179 else
180 if (now == (uint16_t)(start + ticks))
181 // At least we did a single click
182 return BUTTON_SINGLE_CLICK;
183
184 WDT_HIT();
185 }
186
187 // We should never get here
188 return BUTTON_ERROR;
189 }
190
191 // Determine if a button is held down
192 int BUTTON_HELD(int ms)
193 {
194 // If button is held for one second
195 int ticks = (48000 * (ms ? ms : 1000)) >> 10;
196
197 // If we're not even pressed, forget about it!
198 if (!BUTTON_PRESS())
199 return BUTTON_NO_CLICK;
200
201 // Borrow a PWM unit for my real-time clock
202 AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
203 // 48 MHz / 1024 gives 46.875 kHz
204 AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
205 AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
206 AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
207
208 uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
209
210 for(;;)
211 {
212 uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
213
214 // As soon as our button let go, we didn't hold long enough
215 if (!BUTTON_PRESS())
216 return BUTTON_SINGLE_CLICK;
217
218 // Have we waited the full second?
219 else
220 if (now == (uint16_t)(start + ticks))
221 return BUTTON_HOLD;
222
223 WDT_HIT();
224 }
225
226 // We should never get here
227 return BUTTON_ERROR;
228 }
229
230 // attempt at high resolution microsecond timer
231 // beware: timer counts in 21.3uS increments (1024/48Mhz)
232 void SpinDelayUs(int us)
233 {
234 int ticks = (48*us) >> 10;
235
236 // Borrow a PWM unit for my real-time clock
237 AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
238 // 48 MHz / 1024 gives 46.875 kHz
239 AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
240 AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
241 AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
242
243 uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
244
245 for(;;) {
246 uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
247 if (now == (uint16_t)(start + ticks))
248 return;
249
250 WDT_HIT();
251 }
252 }
253
254 void SpinDelay(int ms)
255 {
256 // convert to uS and call microsecond delay function
257 SpinDelayUs(ms*1000);
258 }
259
260 /* Similar to FpgaGatherVersion this formats stored version information
261 * into a string representation. It takes a pointer to the struct version_information,
262 * verifies the magic properties, then stores a formatted string, prefixed by
263 * prefix in dst.
264 */
265 void FormatVersionInformation(char *dst, int len, const char *prefix, void *version_information)
266 {
267 struct version_information *v = (struct version_information*)version_information;
268 dst[0] = 0;
269 strncat(dst, prefix, len-1);
270 if(v->magic != VERSION_INFORMATION_MAGIC) {
271 strncat(dst, "Missing/Invalid version information", len - strlen(dst) - 1);
272 return;
273 }
274 if(v->versionversion != 1) {
275 strncat(dst, "Version information not understood", len - strlen(dst) - 1);
276 return;
277 }
278 if(!v->present) {
279 strncat(dst, "Version information not available", len - strlen(dst) - 1);
280 return;
281 }
282
283 strncat(dst, v->gitversion, len - strlen(dst) - 1);
284 if(v->clean == 0) {
285 strncat(dst, "-unclean", len - strlen(dst) - 1);
286 } else if(v->clean == 2) {
287 strncat(dst, "-suspect", len - strlen(dst) - 1);
288 }
289
290 strncat(dst, " ", len - strlen(dst) - 1);
291 strncat(dst, v->buildtime, len - strlen(dst) - 1);
292 }
293
294 // -------------------------------------------------------------------------
295 // timer lib
296 // -------------------------------------------------------------------------
297 // test procedure:
298 //
299 // ti = GetTickCount();
300 // SpinDelay(1000);
301 // ti = GetTickCount() - ti;
302 // Dbprintf("timer(1s): %d t=%d", ti, GetTickCount());
303
304 void StartTickCount()
305 {
306 // must be 0x40, but on my cpu - included divider is optimal
307 // 0x20 - 1 ms / bit
308 // 0x40 - 2 ms / bit
309
310 AT91C_BASE_RTTC->RTTC_RTMR = AT91C_RTTC_RTTRST + 0x001D; // was 0x003B
311 }
312
313 /*
314 * Get the current count.
315 */
316 uint32_t RAMFUNC GetTickCount(){
317 return AT91C_BASE_RTTC->RTTC_RTVR;// was * 2;
318 }
319
320 // -------------------------------------------------------------------------
321 // microseconds timer
322 // -------------------------------------------------------------------------
323 void StartCountUS()
324 {
325 AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
326 // AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC1XC1S_TIOA0;
327 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
328
329 // fast clock
330 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
331 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
332 AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
333 AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
334 AT91C_BASE_TC0->TC_RA = 1;
335 AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
336
337 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // timer disable
338 AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // from timer 0
339
340 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN;
341 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN;
342 AT91C_BASE_TCB->TCB_BCR = 1;
343 }
344
345 uint32_t RAMFUNC GetCountUS(){
346 return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV / 15) * 10);
347 }
348
349 static uint32_t GlobalUsCounter = 0;
350
351 uint32_t RAMFUNC GetDeltaCountUS(){
352 uint32_t g_cnt = GetCountUS();
353 uint32_t g_res = g_cnt - GlobalUsCounter;
354 GlobalUsCounter = g_cnt;
355 return g_res;
356 }
357
358
359 // -------------------------------------------------------------------------
360 // Timer for iso14443 commands. Uses ssp_clk from FPGA
361 // -------------------------------------------------------------------------
362 void StartCountSspClk()
363 {
364 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1) | (1 << AT91C_ID_TC2); // Enable Clock to all timers
365 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_TIOA1 // XC0 Clock = TIOA1
366 | AT91C_TCB_TC1XC1S_NONE // XC1 Clock = none
367 | AT91C_TCB_TC2XC2S_TIOA0; // XC2 Clock = TIOA0
368
369 // configure TC1 to create a short pulse on TIOA1 when a rising edge on TIOB1 (= ssp_clk from FPGA) occurs:
370 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // disable TC1
371 AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK // TC1 Clock = MCK(48MHz)/2 = 24MHz
372 | AT91C_TC_CPCSTOP // Stop clock on RC compare
373 | AT91C_TC_EEVTEDG_RISING // Trigger on rising edge of Event
374 | AT91C_TC_EEVT_TIOB // Event-Source: TIOB1 (= ssp_clk from FPGA = 13,56MHz/16)
375 | AT91C_TC_ENETRG // Enable external trigger event
376 | AT91C_TC_WAVESEL_UP // Upmode without automatic trigger on RC compare
377 | AT91C_TC_WAVE // Waveform Mode
378 | AT91C_TC_AEEVT_SET // Set TIOA1 on external event
379 | AT91C_TC_ACPC_CLEAR; // Clear TIOA1 on RC Compare
380 AT91C_BASE_TC1->TC_RC = 0x04; // RC Compare value = 0x04
381
382 // use TC0 to count TIOA1 pulses
383 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // disable TC0
384 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_XC0 // TC0 clock = XC0 clock = TIOA1
385 | AT91C_TC_WAVE // Waveform Mode
386 | AT91C_TC_WAVESEL_UP // just count
387 | AT91C_TC_ACPA_CLEAR // Clear TIOA0 on RA Compare
388 | AT91C_TC_ACPC_SET; // Set TIOA0 on RC Compare
389 AT91C_BASE_TC0->TC_RA = 1; // RA Compare value = 1; pulse width to TC2
390 AT91C_BASE_TC0->TC_RC = 0; // RC Compare value = 0; increment TC2 on overflow
391
392 // use TC2 to count TIOA0 pulses (giving us a 32bit counter (TC0/TC2) clocked by ssp_clk)
393 AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKDIS; // disable TC2
394 AT91C_BASE_TC2->TC_CMR = AT91C_TC_CLKS_XC2 // TC2 clock = XC2 clock = TIOA0
395 | AT91C_TC_WAVE // Waveform Mode
396 | AT91C_TC_WAVESEL_UP; // just count
397
398 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN; // enable TC0
399 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN; // enable TC1
400 AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN; // enable TC2
401
402 //
403 // synchronize the counter with the ssp_frame signal. Note: FPGA must be in any iso14446 mode, otherwise the frame signal would not be present
404 //
405 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // wait for ssp_frame to go high (start of frame)
406 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low
407 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high
408 // note: up to now two ssp_clk rising edges have passed since the rising edge of ssp_frame
409 // it is now safe to assert a sync signal. This sets all timers to 0 on next active clock edge
410 AT91C_BASE_TCB->TCB_BCR = 1; // assert Sync (set all timers to 0 on next active clock edge)
411 // at the next (3rd) ssp_clk rising edge, TC1 will be reset (and not generate a clock signal to TC0)
412 // at the next (4th) ssp_clk rising edge, TC0 (the low word of our counter) will be reset. From now on,
413 // whenever the last three bits of our counter go 0, we can be sure to be in the middle of a frame transfer.
414 // (just started with the transfer of the 4th Bit).
415 // The high word of the counter (TC2) will not reset until the low word (TC0) overflows. Therefore need to wait quite some time before
416 // we can use the counter.
417 while (AT91C_BASE_TC0->TC_CV < 0xFFF0);
418 }
419
420
421 uint32_t RAMFUNC GetCountSspClk(){
422 uint32_t tmp_count;
423 tmp_count = (AT91C_BASE_TC2->TC_CV << 16) | AT91C_BASE_TC0->TC_CV;
424 if ((tmp_count & 0x0000ffff) == 0) { //small chance that we may have missed an increment in TC2
425 return (AT91C_BASE_TC2->TC_CV << 16);
426 }
427 else {
428 return tmp_count;
429 }
430 }
431
Impressum, Datenschutz