]> cvs.zerfleddert.de Git - proxmark3-svn/blob - client/ui.c
Small fixes,
[proxmark3-svn] / client / ui.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2009 Michael Gernoth <michael at gernoth.net>
3 // Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // UI utilities
10 //-----------------------------------------------------------------------------
11
12 #include <stdarg.h>
13 #include <stdlib.h>
14 #include <stdio.h>
15 #include <stdbool.h>
16 #include <time.h>
17 #include <readline/readline.h>
18 #include <pthread.h>
19 #include "loclass/cipherutils.h"
20 #include "ui.h"
21
22 //#include <liquid/liquid.h>
23 #define M_PI 3.14159265358979323846264338327
24
25 double CursorScaleFactor;
26 int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64;
27 int offline;
28 int flushAfterWrite = 0; //buzzy
29 extern pthread_mutex_t print_lock;
30
31 static char *logfilename = "proxmark3.log";
32
33 void PrintAndLog(char *fmt, ...)
34 {
35 char *saved_line;
36 int saved_point;
37 va_list argptr, argptr2;
38 static FILE *logfile = NULL;
39 static int logging=1;
40
41 // lock this section to avoid interlacing prints from different threats
42 pthread_mutex_lock(&print_lock);
43
44 if (logging && !logfile) {
45 logfile=fopen(logfilename, "a");
46 if (!logfile) {
47 fprintf(stderr, "Can't open logfile, logging disabled!\n");
48 logging=0;
49 }
50 }
51
52 int need_hack = (rl_readline_state & RL_STATE_READCMD) > 0;
53
54 if (need_hack) {
55 saved_point = rl_point;
56 saved_line = rl_copy_text(0, rl_end);
57 rl_save_prompt();
58 rl_replace_line("", 0);
59 rl_redisplay();
60 }
61
62 va_start(argptr, fmt);
63 va_copy(argptr2, argptr);
64 vprintf(fmt, argptr);
65 printf(" "); // cleaning prompt
66 va_end(argptr);
67 printf("\n");
68
69 if (need_hack) {
70 rl_restore_prompt();
71 rl_replace_line(saved_line, 0);
72 rl_point = saved_point;
73 rl_redisplay();
74 free(saved_line);
75 }
76
77 if (logging && logfile) {
78 vfprintf(logfile, fmt, argptr2);
79 fprintf(logfile,"\n");
80 fflush(logfile);
81 }
82 va_end(argptr2);
83
84 if (flushAfterWrite == 1) //buzzy
85 {
86 fflush(NULL);
87 }
88 //release lock
89 pthread_mutex_unlock(&print_lock);
90 }
91
92 void SetLogFilename(char *fn)
93 {
94 logfilename = fn;
95 }
96
97 int manchester_decode( int * data, const size_t len, uint8_t * dataout){
98
99 int bitlength = 0;
100 int i, clock, high, low, startindex;
101 low = startindex = 0;
102 high = 1;
103 uint8_t bitStream[len];
104
105 memset(bitStream, 0x00, len);
106
107 /* Detect high and lows */
108 for (i = 0; i < len; i++) {
109 if (data[i] > high)
110 high = data[i];
111 else if (data[i] < low)
112 low = data[i];
113 }
114
115 /* get clock */
116 clock = GetT55x7Clock( data, len, high );
117 startindex = DetectFirstTransition(data, len, high);
118
119 //PrintAndLog(" Clock : %d", clock);
120 //PrintAndLog(" startindex : %d", startindex);
121
122 if (high != 1)
123 bitlength = ManchesterConvertFrom255(data, len, bitStream, high, low, clock, startindex);
124 else
125 bitlength= ManchesterConvertFrom1(data, len, bitStream, clock, startindex);
126
127 //if ( bitlength > 0 )
128 // PrintPaddedManchester(bitStream, bitlength, clock);
129
130 memcpy(dataout, bitStream, bitlength);
131 return bitlength;
132 }
133
134 int GetT55x7Clock( const int * data, const size_t len, int peak ){
135
136 int i,lastpeak,clock;
137 clock = 0xFFFF;
138 lastpeak = 0;
139
140 /* Detect peak if we don't have one */
141 if (!peak) {
142 for (i = 0; i < len; ++i) {
143 if (data[i] > peak) {
144 peak = data[i];
145 }
146 }
147 }
148
149 for (i = 1; i < len; ++i) {
150 /* if this is the beginning of a peak */
151 if ( data[i-1] != data[i] && data[i] == peak) {
152 /* find lowest difference between peaks */
153 if (lastpeak && i - lastpeak < clock)
154 clock = i - lastpeak;
155 lastpeak = i;
156 }
157 }
158 //return clock;
159 //defaults clock to precise values.
160 switch(clock){
161 case 8:
162 case 16:
163 case 32:
164 case 40:
165 case 50:
166 case 64:
167 case 100:
168 case 128:
169 return clock;
170 break;
171 default: break;
172 }
173
174 //PrintAndLog(" Found Clock : %d - trying to adjust", clock);
175
176 // When detected clock is 31 or 33 then then return
177 int clockmod = clock%8;
178 if ( clockmod == 7 )
179 clock += 1;
180 else if ( clockmod == 1 )
181 clock -= 1;
182
183 return clock;
184 }
185
186 int DetectFirstTransition(const int * data, const size_t len, int threshold){
187
188 int i =0;
189 /* now look for the first threshold */
190 for (; i < len; ++i) {
191 if (data[i] == threshold) {
192 break;
193 }
194 }
195 return i;
196 }
197
198 int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int high, int low, int clock, int startIndex){
199
200 int i, j, z, hithigh, hitlow, bitIndex, startType;
201 i = 0;
202 bitIndex = 0;
203
204 int isDamp = 0;
205 int damplimit = (int)((high / 2) * 0.3);
206 int dampHi = (high/2)+damplimit;
207 int dampLow = (high/2)-damplimit;
208 int firstST = 0;
209
210 // i = clock frame of data
211 for (; i < (int)(len / clock); i++)
212 {
213 hithigh = 0;
214 hitlow = 0;
215 startType = -1;
216 z = startIndex + (i*clock);
217 isDamp = 0;
218
219 /* Find out if we hit both high and low peaks */
220 for (j = 0; j < clock; j++)
221 {
222 if (data[z+j] == high){
223 hithigh = 1;
224 if ( startType == -1)
225 startType = 1;
226 }
227
228 if (data[z+j] == low ){
229 hitlow = 1;
230 if ( startType == -1)
231 startType = 0;
232 }
233
234 if (hithigh && hitlow)
235 break;
236 }
237
238 // No high value found, are we in a dampening field?
239 if ( !hithigh ) {
240 //PrintAndLog(" # Entering damp test at index : %d (%d)", z+j, j);
241 for (j = 0; j < clock; j++)
242 {
243 if (
244 (data[z+j] <= dampHi && data[z+j] >= dampLow)
245 ){
246 isDamp++;
247 }
248 }
249 }
250
251 /* Manchester Switching..
252 0: High -> Low
253 1: Low -> High
254 */
255 if (startType == 0)
256 dataout[bitIndex++] = 1;
257 else if (startType == 1)
258 dataout[bitIndex++] = 0;
259 else
260 dataout[bitIndex++] = 2;
261
262 if ( isDamp > clock/2 ) {
263 firstST++;
264 }
265
266 if ( firstST == 4)
267 break;
268 }
269 return bitIndex;
270 }
271
272 int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout, int clock, int startIndex){
273
274 PrintAndLog(" Path B");
275
276 int i,j, bitindex, lc, tolerance, warnings;
277 warnings = 0;
278 int upperlimit = len*2/clock+8;
279 i = startIndex;
280 j = 0;
281 tolerance = clock/4;
282 uint8_t decodedArr[len];
283
284 /* Detect duration between 2 successive transitions */
285 for (bitindex = 1; i < len; i++) {
286
287 if (data[i-1] != data[i]) {
288 lc = i - startIndex;
289 startIndex = i;
290
291 // Error check: if bitindex becomes too large, we do not
292 // have a Manchester encoded bitstream or the clock is really wrong!
293 if (bitindex > upperlimit ) {
294 PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
295 return 0;
296 }
297 // Then switch depending on lc length:
298 // Tolerance is 1/4 of clock rate (arbitrary)
299 if (abs((lc-clock)/2) < tolerance) {
300 // Short pulse : either "1" or "0"
301 decodedArr[bitindex++] = data[i-1];
302 } else if (abs(lc-clock) < tolerance) {
303 // Long pulse: either "11" or "00"
304 decodedArr[bitindex++] = data[i-1];
305 decodedArr[bitindex++] = data[i-1];
306 } else {
307 ++warnings;
308 PrintAndLog("Warning: Manchester decode error for pulse width detection.");
309 if (warnings > 10) {
310 PrintAndLog("Error: too many detection errors, aborting.");
311 return 0;
312 }
313 }
314 }
315 }
316
317 /*
318 * We have a decodedArr of "01" ("1") or "10" ("0")
319 * parse it into final decoded dataout
320 */
321 for (i = 0; i < bitindex; i += 2) {
322
323 if ((decodedArr[i] == 0) && (decodedArr[i+1] == 1)) {
324 dataout[j++] = 1;
325 } else if ((decodedArr[i] == 1) && (decodedArr[i+1] == 0)) {
326 dataout[j++] = 0;
327 } else {
328 i++;
329 warnings++;
330 PrintAndLog("Unsynchronized, resync...");
331 PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)");
332
333 if (warnings > 10) {
334 PrintAndLog("Error: too many decode errors, aborting.");
335 return 0;
336 }
337 }
338 }
339
340 PrintAndLog("%s", sprint_hex(dataout, j));
341 return j;
342 }
343
344 void ManchesterDiffDecodedString(const uint8_t* bitstream, size_t len, uint8_t invert){
345 /*
346 * We have a bitstream of "01" ("1") or "10" ("0")
347 * parse it into final decoded bitstream
348 */
349 int i, j, warnings;
350 uint8_t decodedArr[(len/2)+1];
351
352 j = warnings = 0;
353
354 uint8_t lastbit = 0;
355
356 for (i = 0; i < len; i += 2) {
357
358 uint8_t first = bitstream[i];
359 uint8_t second = bitstream[i+1];
360
361 if ( first == second ) {
362 ++i;
363 ++warnings;
364 if (warnings > 10) {
365 PrintAndLog("Error: too many decode errors, aborting.");
366 return;
367 }
368 }
369 else if ( lastbit != first ) {
370 decodedArr[j++] = 0 ^ invert;
371 }
372 else {
373 decodedArr[j++] = 1 ^ invert;
374 }
375 lastbit = second;
376 }
377
378 PrintAndLog("%s", sprint_hex(decodedArr, j));
379 }
380
381 void PrintPaddedManchester( uint8_t* bitStream, size_t len, size_t blocksize){
382
383 PrintAndLog(" Manchester decoded : %d bits", len);
384
385 uint8_t mod = len % blocksize;
386 uint8_t div = len / blocksize;
387 int i;
388
389 // Now output the bitstream to the scrollback by line of 16 bits
390 for (i = 0; i < div*blocksize; i+=blocksize) {
391 PrintAndLog(" %s", sprint_bin(bitStream+i,blocksize) );
392 }
393
394 if ( mod > 0 )
395 PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );
396 }
397
398 void iceFsk(int * data, const size_t len){
399
400 //34359738 == 125khz (2^32 / 125) =
401
402 // parameters
403 float phase_offset = 0.00f; // carrier phase offset
404 float frequency_offset = 0.30f; // carrier frequency offset
405 float wn = 0.01f; // pll bandwidth
406 float zeta = 0.707f; // pll damping factor
407 float K = 1000; // pll loop gain
408 size_t n = len; // number of samples
409
410 // generate loop filter parameters (active PI design)
411 float t1 = K/(wn*wn); // tau_1
412 float t2 = 2*zeta/wn; // tau_2
413
414 // feed-forward coefficients (numerator)
415 float b0 = (4*K/t1)*(1.+t2/2.0f);
416 float b1 = (8*K/t1);
417 float b2 = (4*K/t1)*(1.-t2/2.0f);
418
419 // feed-back coefficients (denominator)
420 // a0 = 1.0 is implied
421 float a1 = -2.0f;
422 float a2 = 1.0f;
423
424 // filter buffer
425 float v0=0.0f, v1=0.0f, v2=0.0f;
426
427 // initialize states
428 float phi = phase_offset; // input signal's initial phase
429 float phi_hat = 0.0f; // PLL's initial phase
430
431 unsigned int i;
432 float complex x,y;
433 float complex output[n];
434
435 for (i=0; i<n; i++) {
436 // INPUT SIGNAL
437 x = data[i];
438 phi += frequency_offset;
439
440 // generate complex sinusoid
441 y = cosf(phi_hat) + _Complex_I*sinf(phi_hat);
442
443 output[i] = y;
444
445 // compute error estimate
446 float delta_phi = cargf( x * conjf(y) );
447
448
449 // print results to standard output
450 printf(" %6u %12.8f %12.8f %12.8f %12.8f %12.8f\n",
451 i,
452 crealf(x), cimagf(x),
453 crealf(y), cimagf(y),
454 delta_phi);
455
456 // push result through loop filter, updating phase estimate
457
458 // advance buffer
459 v2 = v1; // shift center register to upper register
460 v1 = v0; // shift lower register to center register
461
462 // compute new lower register
463 v0 = delta_phi - v1*a1 - v2*a2;
464
465 // compute new output
466 phi_hat = v0*b0 + v1*b1 + v2*b2;
467
468 }
469
470 for (i=0; i<len; ++i){
471 data[i] = (int)crealf(output[i]);
472 }
473 }
474
475 /* Sliding DFT
476 Smooths out
477 */
478 void iceFsk2(int * data, const size_t len){
479
480 int i, j;
481 int output[len];
482
483 // for (i=0; i<len-5; ++i){
484 // for ( j=1; j <=5; ++j) {
485 // output[i] += data[i*j];
486 // }
487 // output[i] /= 5;
488 // }
489 int rest = 127;
490 int tmp =0;
491 for (i=0; i<len; ++i){
492 if ( data[i] < 127)
493 output[i] = 0;
494 else {
495 tmp = (100 * (data[i]-rest)) / rest;
496 output[i] = (tmp > 60)? 100:0;
497 }
498 }
499
500 for (j=0; j<len; ++j)
501 data[j] = output[j];
502 }
503
504 void iceFsk3(int * data, const size_t len){
505
506 int i,j;
507 int output[len];
508 float fc = 0.1125f; // center frequency
509
510 // create very simple low-pass filter to remove images (2nd-order Butterworth)
511 float complex iir_buf[3] = {0,0,0};
512 float b[3] = {0.003621681514929, 0.007243363029857, 0.003621681514929};
513 float a[3] = {1.000000000000000, -1.822694925196308, 0.837181651256023};
514
515 // process entire input file one sample at a time
516 float sample = 0; // input sample read from file
517 float complex x_prime = 1.0f; // save sample for estimating frequency
518 float complex x;
519
520 for (i=0; i<len; ++i) {
521
522 sample = data[i];
523
524 // remove DC offset and mix to complex baseband
525 x = (sample - 127.5f) * cexpf( _Complex_I * 2 * M_PI * fc * i );
526
527 // apply low-pass filter, removing spectral image (IIR using direct-form II)
528 iir_buf[2] = iir_buf[1];
529 iir_buf[1] = iir_buf[0];
530 iir_buf[0] = x - a[1]*iir_buf[1] - a[2]*iir_buf[2];
531 x = b[0]*iir_buf[0] +
532 b[1]*iir_buf[1] +
533 b[2]*iir_buf[2];
534
535 // compute instantaneous frequency by looking at phase difference
536 // between adjacent samples
537 float freq = cargf(x*conjf(x_prime));
538 x_prime = x; // retain this sample for next iteration
539
540 output[i] =(freq > 0)? 10 : -10;
541 }
542
543 // show data
544 for (j=0; j<len; ++j)
545 data[j] = output[j];
546
547 CmdLtrim("30");
548
549 // zero crossings.
550 for (j=0; j<len; ++j){
551 if ( data[j] == 10) break;
552 }
553 int startOne =j;
554
555 for (;j<len; ++j){
556 if ( data[j] == -10 ) break;
557 }
558 int stopOne = j-1;
559
560 int fieldlen = stopOne-startOne;
561 printf("FIELD Length: %d \n", fieldlen);
562
563
564 // FSK sequence start == 000111
565 int startPos = 0;
566 for (i =0; i<len; ++i){
567 int dec = 0;
568 for ( j = 0; j < 6*fieldlen; ++j){
569 dec += data[i + j];
570 }
571 if (dec == 0) {
572 startPos = i;
573 break;
574 }
575 }
576
577 printf("000111 position: %d \n", startPos);
578
579 startPos += 6*fieldlen+1;
580
581 printf("BINARY\n");
582 printf("R/40 : ");
583 for (i =startPos ; i < len; i += 40){
584 if ( data[i] > 0 )
585 printf("1");
586 else
587 printf("0");
588 }
589 printf("\n");
590
591 printf("R/50 : ");
592 for (i =startPos ; i < len; i += 50){
593 if ( data[i] > 0 )
594 printf("1");
595 else
596 printf("0");
597 }
598 printf("\n");
599
600 }
601
602 float complex cexpf (float complex Z)
603 {
604 float complex Res;
605 double rho = exp (__real__ Z);
606 __real__ Res = rho * cosf(__imag__ Z);
607 __imag__ Res = rho * sinf(__imag__ Z);
608 return Res;
609 }
Impressum, Datenschutz