1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
13 #include "../common/usb_cdc.h"
14 #include "../common/cmd.h"
16 #include "../include/proxmark3.h"
25 #include "../include/hitag2.h"
32 #define abs(x) ( ((x)<0) ? -(x) : (x) )
34 //=============================================================================
35 // A buffer where we can queue things up to be sent through the FPGA, for
36 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
37 // is the order in which they go out on the wire.
38 //=============================================================================
40 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
41 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
44 struct common_area common_area
__attribute__((section(".commonarea")));
46 void BufferClear(void)
48 memset(BigBuf
,0,sizeof(BigBuf
));
49 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf
));
52 void ToSendReset(void)
58 void ToSendStuffBit(int b
)
62 ToSend
[ToSendMax
] = 0;
67 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
72 if(ToSendMax
>= sizeof(ToSend
)) {
74 DbpString("ToSendStuffBit overflowed!");
78 //=============================================================================
79 // Debug print functions, to go out over USB, to the usual PC-side client.
80 //=============================================================================
82 void DbpString(char *str
)
84 byte_t len
= strlen(str
);
85 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
89 void DbpIntegers(int x1
, int x2
, int x3
)
91 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
95 void Dbprintf(const char *fmt
, ...) {
96 // should probably limit size here; oh well, let's just use a big buffer
97 char output_string
[128];
101 kvsprintf(fmt
, output_string
, 10, ap
);
104 DbpString(output_string
);
107 // prints HEX & ASCII
108 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
121 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
124 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
126 Dbprintf("%*D",l
,d
," ");
134 //-----------------------------------------------------------------------------
135 // Read an ADC channel and block till it completes, then return the result
136 // in ADC units (0 to 1023). Also a routine to average 32 samples and
138 //-----------------------------------------------------------------------------
139 static int ReadAdc(int ch
)
143 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
144 AT91C_BASE_ADC
->ADC_MR
=
145 ADC_MODE_PRESCALE(32) |
146 ADC_MODE_STARTUP_TIME(16) |
147 ADC_MODE_SAMPLE_HOLD_TIME(8);
148 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
150 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
151 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
153 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
158 int AvgAdc(int ch
) // was static - merlok
163 for(i
= 0; i
< 32; i
++) {
167 return (a
+ 15) >> 5;
170 void MeasureAntennaTuning(void)
172 uint8_t LF_Results
[256];
173 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
174 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
179 * Sweeps the useful LF range of the proxmark from
180 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
181 * read the voltage in the antenna, the result left
182 * in the buffer is a graph which should clearly show
183 * the resonating frequency of your LF antenna
184 * ( hopefully around 95 if it is tuned to 125kHz!)
187 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
188 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
189 for (i
=255; i
>=19; i
--) {
191 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
193 // Vref = 3.3V, and a 10000:240 voltage divider on the input
194 // can measure voltages up to 137500 mV
195 adcval
= ((137500 * AvgAdc(ADC_CHAN_LF
)) >> 10);
196 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
197 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
199 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
200 if(LF_Results
[i
] > peak
) {
202 peak
= LF_Results
[i
];
208 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
211 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
212 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
213 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
215 // Vref = 3300mV, and an 10:1 voltage divider on the input
216 // can measure voltages up to 33000 mV
217 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
219 cmd_send(CMD_MEASURED_ANTENNA_TUNING
,vLf125
|(vLf134
<<16),vHf
,peakf
|(peakv
<<16),LF_Results
,256);
220 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
226 void MeasureAntennaTuningHf(void)
228 int vHf
= 0; // in mV
230 DbpString("Measuring HF antenna, press button to exit");
233 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
234 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
235 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
237 // Vref = 3300mV, and an 10:1 voltage divider on the input
238 // can measure voltages up to 33000 mV
239 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
241 Dbprintf("%d mV",vHf
);
242 if (BUTTON_PRESS()) break;
244 DbpString("cancelled");
248 void SimulateTagHfListen(void)
250 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
255 // We're using this mode just so that I can test it out; the simulated
256 // tag mode would work just as well and be simpler.
257 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
258 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
260 // We need to listen to the high-frequency, peak-detected path.
261 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
267 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
268 AT91C_BASE_SSC
->SSC_THR
= 0xff;
270 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
271 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
285 if(i
>= FREE_BUFFER_SIZE
) {
291 DbpString("simulate tag (now type bitsamples)");
294 void ReadMem(int addr
)
296 const uint8_t *data
= ((uint8_t *)addr
);
298 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
299 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
302 /* osimage version information is linked in */
303 extern struct version_information version_information
;
304 /* bootrom version information is pointed to from _bootphase1_version_pointer */
305 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
;
306 void SendVersion(void)
308 char temp
[512]; /* Limited data payload in USB packets */
309 DbpString("Prox/RFID mark3 RFID instrument");
311 /* Try to find the bootrom version information. Expect to find a pointer at
312 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
313 * pointer, then use it.
315 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
316 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
317 DbpString("bootrom version information appears invalid");
319 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
323 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
326 FpgaGatherVersion(temp
, sizeof(temp
));
329 cmd_send(CMD_ACK
,*(AT91C_DBGU_CIDR
),0,0,NULL
,0);
333 // samy's sniff and repeat routine
336 DbpString("Stand-alone mode! No PC necessary.");
337 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
339 // 3 possible options? no just 2 for now
342 int high
[OPTS
], low
[OPTS
];
344 // Oooh pretty -- notify user we're in elite samy mode now
346 LED(LED_ORANGE
, 200);
348 LED(LED_ORANGE
, 200);
350 LED(LED_ORANGE
, 200);
352 LED(LED_ORANGE
, 200);
359 // Turn on selected LED
360 LED(selected
+ 1, 0);
367 // Was our button held down or pressed?
368 int button_pressed
= BUTTON_HELD(1000);
371 // Button was held for a second, begin recording
372 if (button_pressed
> 0 && cardRead
== 0)
375 LED(selected
+ 1, 0);
379 DbpString("Starting recording");
381 // wait for button to be released
382 while(BUTTON_PRESS())
385 /* need this delay to prevent catching some weird data */
388 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
389 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
392 LED(selected
+ 1, 0);
393 // Finished recording
395 // If we were previously playing, set playing off
396 // so next button push begins playing what we recorded
403 else if (button_pressed
> 0 && cardRead
== 1)
406 LED(selected
+ 1, 0);
410 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
412 // wait for button to be released
413 while(BUTTON_PRESS())
416 /* need this delay to prevent catching some weird data */
419 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
420 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
423 LED(selected
+ 1, 0);
424 // Finished recording
426 // If we were previously playing, set playing off
427 // so next button push begins playing what we recorded
434 // Change where to record (or begin playing)
435 else if (button_pressed
)
437 // Next option if we were previously playing
439 selected
= (selected
+ 1) % OPTS
;
443 LED(selected
+ 1, 0);
445 // Begin transmitting
449 DbpString("Playing");
450 // wait for button to be released
451 while(BUTTON_PRESS())
453 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
454 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
455 DbpString("Done playing");
456 if (BUTTON_HELD(1000) > 0)
458 DbpString("Exiting");
463 /* We pressed a button so ignore it here with a delay */
466 // when done, we're done playing, move to next option
467 selected
= (selected
+ 1) % OPTS
;
470 LED(selected
+ 1, 0);
473 while(BUTTON_PRESS())
482 Listen and detect an external reader. Determine the best location
486 Inside the ListenReaderField() function, there is two mode.
487 By default, when you call the function, you will enter mode 1.
488 If you press the PM3 button one time, you will enter mode 2.
489 If you press the PM3 button a second time, you will exit the function.
491 DESCRIPTION OF MODE 1:
492 This mode just listens for an external reader field and lights up green
493 for HF and/or red for LF. This is the original mode of the detectreader
496 DESCRIPTION OF MODE 2:
497 This mode will visually represent, using the LEDs, the actual strength of the
498 current compared to the maximum current detected. Basically, once you know
499 what kind of external reader is present, it will help you spot the best location to place
500 your antenna. You will probably not get some good results if there is a LF and a HF reader
501 at the same place! :-)
505 static const char LIGHT_SCHEME
[] = {
506 0x0, /* ---- | No field detected */
507 0x1, /* X--- | 14% of maximum current detected */
508 0x2, /* -X-- | 29% of maximum current detected */
509 0x4, /* --X- | 43% of maximum current detected */
510 0x8, /* ---X | 57% of maximum current detected */
511 0xC, /* --XX | 71% of maximum current detected */
512 0xE, /* -XXX | 86% of maximum current detected */
513 0xF, /* XXXX | 100% of maximum current detected */
515 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
517 void ListenReaderField(int limit
)
519 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_count
= 0, lf_max
;
520 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_count
= 0, hf_max
;
521 int mode
=1, display_val
, display_max
, i
;
528 lf_av
=lf_max
=ReadAdc(ADC_CHAN_LF
);
530 if(limit
!= HF_ONLY
) {
531 Dbprintf("LF 125/134 Baseline: %d", lf_av
);
535 hf_av
=hf_max
=ReadAdc(ADC_CHAN_HF
);
537 if (limit
!= LF_ONLY
) {
538 Dbprintf("HF 13.56 Baseline: %d", hf_av
);
543 if (BUTTON_PRESS()) {
548 DbpString("Signal Strength Mode");
552 DbpString("Stopped");
560 if (limit
!= HF_ONLY
) {
562 if (abs(lf_av
- lf_baseline
) > 10) LED_D_ON();
567 lf_av_new
= ReadAdc(ADC_CHAN_LF
);
568 // see if there's a significant change
569 if(abs(lf_av
- lf_av_new
) > 10) {
570 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av
, lf_av_new
, lf_count
);
578 if (limit
!= LF_ONLY
) {
580 if (abs(hf_av
- hf_baseline
) > 10) LED_B_ON();
585 hf_av_new
= ReadAdc(ADC_CHAN_HF
);
586 // see if there's a significant change
587 if(abs(hf_av
- hf_av_new
) > 10) {
588 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av
, hf_av_new
, hf_count
);
597 if (limit
== LF_ONLY
) {
599 display_max
= lf_max
;
600 } else if (limit
== HF_ONLY
) {
602 display_max
= hf_max
;
603 } else { /* Pick one at random */
604 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
606 display_max
= hf_max
;
609 display_max
= lf_max
;
612 for (i
=0; i
<LIGHT_LEN
; i
++) {
613 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
614 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
615 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
616 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
617 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
625 void UsbPacketReceived(uint8_t *packet
, int len
)
627 UsbCommand
*c
= (UsbCommand
*)packet
;
629 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
633 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
634 AcquireRawAdcSamples125k(c
->arg
[0]);
635 cmd_send(CMD_ACK
,0,0,0,0,0);
637 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
638 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
640 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
641 SnoopLFRawAdcSamples(c
->arg
[0], c
->arg
[1]);
642 cmd_send(CMD_ACK
,0,0,0,0,0);
644 case CMD_HID_DEMOD_FSK
:
645 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
647 case CMD_HID_SIM_TAG
:
648 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
650 case CMD_HID_CLONE_TAG
:
651 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
653 case CMD_IO_DEMOD_FSK
:
654 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
656 case CMD_IO_CLONE_TAG
:
657 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
659 case CMD_EM410X_DEMOD
:
660 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
662 case CMD_EM410X_WRITE_TAG
:
663 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
665 case CMD_READ_TI_TYPE
:
668 case CMD_WRITE_TI_TYPE
:
669 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
671 case CMD_SIMULATE_TAG_125K
:
672 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 0);
673 //SimulateTagLowFrequencyA(c->arg[0], c->arg[1]);
675 case CMD_LF_SIMULATE_BIDIR
:
676 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
678 case CMD_INDALA_CLONE_TAG
:
679 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
681 case CMD_INDALA_CLONE_TAG_L
:
682 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
684 case CMD_T55XX_READ_BLOCK
:
685 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
687 case CMD_T55XX_WRITE_BLOCK
:
688 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
690 case CMD_T55XX_READ_TRACE
:
693 case CMD_PCF7931_READ
:
695 cmd_send(CMD_ACK
,0,0,0,0,0);
697 case CMD_EM4X_READ_WORD
:
698 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
700 case CMD_EM4X_WRITE_WORD
:
701 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
706 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
707 SnoopHitag(c
->arg
[0]);
709 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
710 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
712 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
713 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
718 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
719 AcquireRawAdcSamplesIso15693();
721 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
722 RecordRawAdcSamplesIso15693();
725 case CMD_ISO_15693_COMMAND
:
726 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
729 case CMD_ISO_15693_FIND_AFI
:
730 BruteforceIso15693Afi(c
->arg
[0]);
733 case CMD_ISO_15693_DEBUG
:
734 SetDebugIso15693(c
->arg
[0]);
737 case CMD_READER_ISO_15693
:
738 ReaderIso15693(c
->arg
[0]);
740 case CMD_SIMTAG_ISO_15693
:
741 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
746 case CMD_SIMULATE_TAG_LEGIC_RF
:
747 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
750 case CMD_WRITER_LEGIC_RF
:
751 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
754 case CMD_READER_LEGIC_RF
:
755 LegicRfReader(c
->arg
[0], c
->arg
[1]);
759 #ifdef WITH_ISO14443b
760 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
761 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
763 case CMD_READ_SRI512_TAG
:
764 ReadSTMemoryIso14443(0x0F);
766 case CMD_READ_SRIX4K_TAG
:
767 ReadSTMemoryIso14443(0x7F);
769 case CMD_SNOOP_ISO_14443
:
772 case CMD_SIMULATE_TAG_ISO_14443
:
773 SimulateIso14443Tag();
775 case CMD_ISO_14443B_COMMAND
:
776 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
780 #ifdef WITH_ISO14443a
781 case CMD_SNOOP_ISO_14443a
:
782 SnoopIso14443a(c
->arg
[0]);
784 case CMD_READER_ISO_14443a
:
787 case CMD_SIMULATE_TAG_ISO_14443a
:
788 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
791 case CMD_EPA_PACE_COLLECT_NONCE
:
792 EPA_PACE_Collect_Nonce(c
);
799 case CMD_READER_MIFARE
:
800 ReaderMifare(c
->arg
[0]);
802 case CMD_MIFARE_READBL
:
803 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
805 case CMD_MIFAREU_READBL
:
806 MifareUReadBlock(c
->arg
[0],c
->d
.asBytes
);
808 case CMD_MIFAREUC_AUTH1
:
809 MifareUC_Auth1(c
->arg
[0],c
->d
.asBytes
);
811 case CMD_MIFAREUC_AUTH2
:
812 MifareUC_Auth2(c
->arg
[0],c
->d
.asBytes
);
814 case CMD_MIFAREU_READCARD
:
815 MifareUReadCard(c
->arg
[0],c
->arg
[1],c
->d
.asBytes
);
817 case CMD_MIFAREUC_READCARD
:
818 MifareUReadCard(c
->arg
[0],c
->arg
[1],c
->d
.asBytes
);
820 case CMD_MIFARE_READSC
:
821 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
823 case CMD_MIFARE_WRITEBL
:
824 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
826 case CMD_MIFAREU_WRITEBL_COMPAT
:
827 MifareUWriteBlock(c
->arg
[0], c
->d
.asBytes
);
829 case CMD_MIFAREU_WRITEBL
:
830 MifareUWriteBlock_Special(c
->arg
[0], c
->d
.asBytes
);
832 case CMD_MIFARE_NESTED
:
833 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
835 case CMD_MIFARE_CHKKEYS
:
836 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
838 case CMD_SIMULATE_MIFARE_CARD
:
839 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
843 case CMD_MIFARE_SET_DBGMODE
:
844 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
846 case CMD_MIFARE_EML_MEMCLR
:
847 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
849 case CMD_MIFARE_EML_MEMSET
:
850 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
852 case CMD_MIFARE_EML_MEMGET
:
853 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
855 case CMD_MIFARE_EML_CARDLOAD
:
856 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
859 // Work with "magic Chinese" card
860 case CMD_MIFARE_CSETBLOCK
:
861 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
863 case CMD_MIFARE_CGETBLOCK
:
864 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
866 case CMD_MIFARE_CIDENT
:
871 case CMD_MIFARE_SNIFFER
:
872 SniffMifare(c
->arg
[0]);
876 case CMD_MIFARE_DESFIRE_READBL
:
878 case CMD_MIFARE_DESFIRE_WRITEBL
:
880 case CMD_MIFARE_DESFIRE_AUTH1
:
881 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
883 case CMD_MIFARE_DESFIRE_AUTH2
:
884 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
886 // case CMD_MIFARE_DES_READER:
887 // ReaderMifareDES(c->arg[0], c->arg[1], c->d.asBytes);
889 case CMD_MIFARE_DESFIRE_INFO
:
890 MifareDesfireGetInformation();
892 case CMD_MIFARE_DESFIRE
:
893 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
899 // Makes use of ISO14443a FPGA Firmware
900 case CMD_SNOOP_ICLASS
:
903 case CMD_SIMULATE_TAG_ICLASS
:
904 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
906 case CMD_READER_ICLASS
:
907 ReaderIClass(c
->arg
[0]);
909 case CMD_READER_ICLASS_REPLAY
:
910 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
914 case CMD_SIMULATE_TAG_HF_LISTEN
:
915 SimulateTagHfListen();
922 case CMD_MEASURE_ANTENNA_TUNING
:
923 MeasureAntennaTuning();
926 case CMD_MEASURE_ANTENNA_TUNING_HF
:
927 MeasureAntennaTuningHf();
930 case CMD_LISTEN_READER_FIELD
:
931 ListenReaderField(c
->arg
[0]);
934 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
935 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
937 LED_D_OFF(); // LED D indicates field ON or OFF
940 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
943 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
944 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
945 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,0,((byte_t
*)BigBuf
)+c
->arg
[0]+i
,len
);
947 // Trigger a finish downloading signal with an ACK frame
948 cmd_send(CMD_ACK
,0,0,0,0,0);
952 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
953 uint8_t *b
= (uint8_t *)BigBuf
;
954 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
955 cmd_send(CMD_ACK
,0,0,0,0,0);
962 case CMD_SET_LF_DIVISOR
:
963 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
964 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
967 case CMD_SET_ADC_MUX
:
969 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
970 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
971 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
972 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
988 case CMD_SETUP_WRITE
:
989 case CMD_FINISH_WRITE
:
990 case CMD_HARDWARE_RESET
:
994 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
996 // We're going to reset, and the bootrom will take control.
1000 case CMD_START_FLASH
:
1001 if(common_area
.flags
.bootrom_present
) {
1002 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1005 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1009 case CMD_DEVICE_INFO
: {
1010 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1011 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1012 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1016 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1021 void __attribute__((noreturn
)) AppMain(void)
1025 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1026 /* Initialize common area */
1027 memset(&common_area
, 0, sizeof(common_area
));
1028 common_area
.magic
= COMMON_AREA_MAGIC
;
1029 common_area
.version
= 1;
1031 common_area
.flags
.osimage_present
= 1;
1041 // The FPGA gets its clock from us from PCK0 output, so set that up.
1042 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1043 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1044 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1045 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1046 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1047 AT91C_PMC_PRES_CLK_4
;
1048 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1051 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1053 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1055 // Load the FPGA image, which we have stored in our flash.
1056 // (the HF version by default)
1057 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1065 byte_t rx
[sizeof(UsbCommand
)];
1070 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1072 UsbPacketReceived(rx
,rx_len
);
1078 if (BUTTON_HELD(1000) > 0)