1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "../include/proxmark3.h"
14 #include "../common/crc16.h"
15 #include "../common/lfdemod.h"
18 #include "mifareutil.h"
19 #include "../include/hitag2.h"
21 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
22 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
23 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
24 // T0 = TIMER_CLOCK1 / 125000 = 192
27 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
28 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
30 void LFSetupFPGAForADC(int divisor
, bool lf_field
)
32 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
33 if ( (divisor
== 1) || (divisor
< 0) || (divisor
> 255) )
34 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
35 else if (divisor
== 0)
36 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
38 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
40 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| (lf_field
? FPGA_LF_ADC_READER_FIELD
: 0));
42 // Connect the A/D to the peak-detected low-frequency path.
43 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
45 // Give it a bit of time for the resonant antenna to settle.
48 // Now set up the SSC to get the ADC samples that are now streaming at us.
52 void AcquireRawAdcSamples125k(int divisor
)
54 LFSetupFPGAForADC(divisor
, true);
58 void SnoopLFRawAdcSamples(int divisor
, int trigger_threshold
)
60 LFSetupFPGAForADC(divisor
, false);
61 DoAcquisition125k_threshold(trigger_threshold
);
64 // split into two routines so we can avoid timing issues after sending commands //
65 void DoAcquisition125k_internal(int trigger_threshold
, bool silent
)
67 uint8_t *dest
= get_bigbufptr_recvrespbuf();
69 memset(dest
, 0x00, FREE_BUFFER_SIZE
);
72 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
73 AT91C_BASE_SSC
->SSC_THR
= 0x43;
76 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
77 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
79 if (trigger_threshold
!= -1 && dest
[i
] < trigger_threshold
)
82 trigger_threshold
= -1;
83 if (++i
>= FREE_BUFFER_SIZE
) break;
87 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
88 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
91 void DoAcquisition125k_threshold(int trigger_threshold
) {
92 DoAcquisition125k_internal(trigger_threshold
, true);
94 void DoAcquisition125k() {
95 DoAcquisition125k_internal(-1, true);
98 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
100 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
102 /* Make sure the tag is reset */
103 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
106 int divisor
= 95; // 125 KHz
107 // see if 'h' was specified
108 if (command
[strlen((char *) command
) - 1] == 'h')
109 divisor
= 88; // 134.8 KHz
111 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
112 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
113 // Give it a bit of time for the resonant antenna to settle.
116 // Now set up the SSC to get the ADC samples that are now streaming at us.
119 // now modulate the reader field
120 while(*command
!= '\0' && *command
!= ' ') {
121 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
123 SpinDelayUs(delay_off
);
124 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
126 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
128 if(*(command
++) == '0')
129 SpinDelayUs(period_0
);
131 SpinDelayUs(period_1
);
133 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
135 SpinDelayUs(delay_off
);
136 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
137 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
140 DoAcquisition125k(-1);
143 /* blank r/w tag data stream
144 ...0000000000000000 01111111
145 1010101010101010101010101010101010101010101010101010101010101010
148 101010101010101[0]000...
150 [5555fe852c5555555555555555fe0000]
154 // some hardcoded initial params
155 // when we read a TI tag we sample the zerocross line at 2Mhz
156 // TI tags modulate a 1 as 16 cycles of 123.2Khz
157 // TI tags modulate a 0 as 16 cycles of 134.2Khz
158 #define FSAMPLE 2000000
159 #define FREQLO 123200
160 #define FREQHI 134200
162 signed char *dest
= (signed char *)BigBuf
;
163 int n
= sizeof(BigBuf
);
164 // int *dest = GraphBuffer;
165 // int n = GraphTraceLen;
167 // 128 bit shift register [shift3:shift2:shift1:shift0]
168 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
170 int i
, cycles
=0, samples
=0;
171 // how many sample points fit in 16 cycles of each frequency
172 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
173 // when to tell if we're close enough to one freq or another
174 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
176 // TI tags charge at 134.2Khz
177 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
178 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
180 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
181 // connects to SSP_DIN and the SSP_DOUT logic level controls
182 // whether we're modulating the antenna (high)
183 // or listening to the antenna (low)
184 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
186 // get TI tag data into the buffer
189 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
191 for (i
=0; i
<n
-1; i
++) {
192 // count cycles by looking for lo to hi zero crossings
193 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
195 // after 16 cycles, measure the frequency
198 samples
=i
-samples
; // number of samples in these 16 cycles
200 // TI bits are coming to us lsb first so shift them
201 // right through our 128 bit right shift register
202 shift0
= (shift0
>>1) | (shift1
<< 31);
203 shift1
= (shift1
>>1) | (shift2
<< 31);
204 shift2
= (shift2
>>1) | (shift3
<< 31);
207 // check if the cycles fall close to the number
208 // expected for either the low or high frequency
209 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
210 // low frequency represents a 1
212 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
213 // high frequency represents a 0
215 // probably detected a gay waveform or noise
216 // use this as gaydar or discard shift register and start again
217 shift3
= shift2
= shift1
= shift0
= 0;
221 // for each bit we receive, test if we've detected a valid tag
223 // if we see 17 zeroes followed by 6 ones, we might have a tag
224 // remember the bits are backwards
225 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
226 // if start and end bytes match, we have a tag so break out of the loop
227 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
228 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
236 // if flag is set we have a tag
238 DbpString("Info: No valid tag detected.");
240 // put 64 bit data into shift1 and shift0
241 shift0
= (shift0
>>24) | (shift1
<< 8);
242 shift1
= (shift1
>>24) | (shift2
<< 8);
244 // align 16 bit crc into lower half of shift2
245 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
247 // if r/w tag, check ident match
248 if ( shift3
&(1<<15) ) {
249 DbpString("Info: TI tag is rewriteable");
250 // only 15 bits compare, last bit of ident is not valid
251 if ( ((shift3
>>16)^shift0
)&0x7fff ) {
252 DbpString("Error: Ident mismatch!");
254 DbpString("Info: TI tag ident is valid");
257 DbpString("Info: TI tag is readonly");
260 // WARNING the order of the bytes in which we calc crc below needs checking
261 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
262 // bytes in reverse or something
266 crc
= update_crc16(crc
, (shift0
)&0xff);
267 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
268 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
269 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
270 crc
= update_crc16(crc
, (shift1
)&0xff);
271 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
272 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
273 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
275 Dbprintf("Info: Tag data: %x%08x, crc=%x",
276 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
277 if (crc
!= (shift2
&0xffff)) {
278 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
280 DbpString("Info: CRC is good");
285 void WriteTIbyte(uint8_t b
)
289 // modulate 8 bits out to the antenna
293 // stop modulating antenna
300 // stop modulating antenna
310 void AcquireTiType(void)
313 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
314 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
315 #define TIBUFLEN 1250
318 memset(BigBuf
,0,sizeof(BigBuf
));
320 // Set up the synchronous serial port
321 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
322 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
324 // steal this pin from the SSP and use it to control the modulation
325 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
326 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
328 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
329 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
331 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
332 // 48/2 = 24 MHz clock must be divided by 12
333 AT91C_BASE_SSC
->SSC_CMR
= 12;
335 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
336 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
337 AT91C_BASE_SSC
->SSC_TCMR
= 0;
338 AT91C_BASE_SSC
->SSC_TFMR
= 0;
345 // Charge TI tag for 50ms.
348 // stop modulating antenna and listen
355 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
356 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
357 i
++; if(i
>= TIBUFLEN
) break;
362 // return stolen pin to SSP
363 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
364 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
366 char *dest
= (char *)BigBuf
;
369 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
370 for (j
=0; j
<32; j
++) {
371 if(BigBuf
[i
] & (1 << j
)) {
380 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
381 // if crc provided, it will be written with the data verbatim (even if bogus)
382 // if not provided a valid crc will be computed from the data and written.
383 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
385 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
387 crc
= update_crc16(crc
, (idlo
)&0xff);
388 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
389 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
390 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
391 crc
= update_crc16(crc
, (idhi
)&0xff);
392 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
393 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
394 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
396 Dbprintf("Writing to tag: %x%08x, crc=%x",
397 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
399 // TI tags charge at 134.2Khz
400 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
401 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
402 // connects to SSP_DIN and the SSP_DOUT logic level controls
403 // whether we're modulating the antenna (high)
404 // or listening to the antenna (low)
405 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
408 // steal this pin from the SSP and use it to control the modulation
409 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
410 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
412 // writing algorithm:
413 // a high bit consists of a field off for 1ms and field on for 1ms
414 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
415 // initiate a charge time of 50ms (field on) then immediately start writing bits
416 // start by writing 0xBB (keyword) and 0xEB (password)
417 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
418 // finally end with 0x0300 (write frame)
419 // all data is sent lsb firts
420 // finish with 15ms programming time
424 SpinDelay(50); // charge time
426 WriteTIbyte(0xbb); // keyword
427 WriteTIbyte(0xeb); // password
428 WriteTIbyte( (idlo
)&0xff );
429 WriteTIbyte( (idlo
>>8 )&0xff );
430 WriteTIbyte( (idlo
>>16)&0xff );
431 WriteTIbyte( (idlo
>>24)&0xff );
432 WriteTIbyte( (idhi
)&0xff );
433 WriteTIbyte( (idhi
>>8 )&0xff );
434 WriteTIbyte( (idhi
>>16)&0xff );
435 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
436 WriteTIbyte( (crc
)&0xff ); // crc lo
437 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
438 WriteTIbyte(0x00); // write frame lo
439 WriteTIbyte(0x03); // write frame hi
441 SpinDelay(50); // programming time
445 // get TI tag data into the buffer
448 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
449 DbpString("Now use tiread to check");
454 // PIO_CODR = Clear Output Data Register
455 // PIO_SODR = Set Output Data Register
456 //#define LOW(x) AT91C_BASE_PIOA->PIO_CODR = (x)
457 //#define HIGH(x) AT91C_BASE_PIOA->PIO_SODR = (x)
458 void SimulateTagLowFrequency( uint16_t period
, uint32_t gap
, uint8_t ledcontrol
)
466 uint8_t *buf
= (uint8_t *)BigBuf
;
468 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
469 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
| FPGA_LF_EDGE_DETECT_READER_FIELD
);
470 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
471 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
474 // Configure output pin that is connected to the FPGA (for modulating)
475 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
476 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
480 // Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
481 AT91C_BASE_PMC
->PMC_PCER
= (1 << AT91C_ID_TC0
);
483 // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames
484 AT91C_BASE_PMC
->PMC_PCER
= (1 << AT91C_ID_TC1
);
485 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_SSC_FRAME
;
487 // Disable timer during configuration
488 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKDIS
;
490 // Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
491 // external trigger rising edge, load RA on rising edge of TIOA.
492 AT91C_BASE_TC1
->TC_CMR
= AT91C_TC_CLKS_TIMER_DIV1_CLOCK
| AT91C_TC_ETRGEDG_RISING
| AT91C_TC_ABETRG
| AT91C_TC_LDRA_RISING
;
494 // Enable and reset counter
495 //AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
496 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
;
498 while(!BUTTON_PRESS()) {
501 // Receive frame, watch for at most T0*EOF periods
502 while (AT91C_BASE_TC1
->TC_CV
< T0
* 55) {
504 // Check if rising edge in modulation is detected
505 if(AT91C_BASE_TC1
->TC_SR
& AT91C_TC_LDRAS
) {
506 // Retrieve the new timing values
507 //int ra = (AT91C_BASE_TC1->TC_RA/T0) + overflow;
508 //Dbprintf("Timing value - %d %d", ra, overflow);
511 // Reset timer every frame, we have to capture the last edge for timing
512 AT91C_BASE_TC0
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
;
520 // Disable timer 1 with external trigger to avoid triggers during our own modulation
521 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKDIS
;
523 // Wait for HITAG_T_WAIT_1 carrier periods after the last reader bit,
524 // not that since the clock counts since the rising edge, but T_Wait1 is
525 // with respect to the falling edge, we need to wait actually (T_Wait1 - T_Low)
526 // periods. The gap time T_Low varies (4..10). All timer values are in
528 while(AT91C_BASE_TC0
->TC_CV
< T0
* 16 );
530 // datat kommer in som 1 bit för varje position i arrayn
531 for(i
= 0; i
< period
; ++i
) {
533 // Reset clock for the next bit
534 AT91C_BASE_TC0
->TC_CCR
= AT91C_TC_SWTRG
;
541 while(AT91C_BASE_TC0
->TC_CV
< T0
* 1 );
546 // Enable and reset external trigger in timer for capturing future frames
547 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
;
553 // Save the timer overflow, will be 0 when frame was received
554 //overflow += (AT91C_BASE_TC1->TC_CV/T0);
556 // Reset the timer to restart while-loop that receives frames
557 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_SWTRG
;
562 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKDIS
;
563 AT91C_BASE_TC0
->TC_CCR
= AT91C_TC_CLKDIS
;
564 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
566 DbpString("Sim Stopped");
570 void SimulateTagLowFrequencyA(int len
, int gap
)
572 //Dbprintf("LEN %d || Gap %d",len, gap);
574 uint8_t *buf
= (uint8_t *)BigBuf
;
576 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
577 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
578 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
| FPGA_LF_EDGE_DETECT_TOGGLE_MODE
); // new izsh toggle mode!
580 // Connect the A/D to the peak-detected low-frequency path.
581 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
583 // Now set up the SSC to get the ADC samples that are now streaming at us.
587 AT91C_BASE_SSC
->SSC_THR
= 0x00;
590 while(!BUTTON_PRESS()) {
592 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
595 AT91C_BASE_SSC
->SSC_THR
= 0x43;
597 AT91C_BASE_SSC
->SSC_THR
= 0x00;
606 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
607 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
612 DbpString("lf simulate stopped");
613 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
616 #define DEBUG_FRAME_CONTENTS 1
617 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
621 // compose fc/8 fc/10 waveform
622 static void fc(int c
, uint16_t *n
) {
623 uint8_t *dest
= (uint8_t *)BigBuf
;
626 // for when we want an fc8 pattern every 4 logical bits
637 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
639 for (idx
=0; idx
<6; idx
++) {
651 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
653 for (idx
=0; idx
<5; idx
++) {
668 // prepare a waveform pattern in the buffer based on the ID given then
669 // simulate a HID tag until the button is pressed
670 void CmdHIDsimTAG(int hi
, int lo
, uint8_t ledcontrol
)
674 HID tag bitstream format
675 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
676 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
677 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
678 A fc8 is inserted before every 4 bits
679 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
680 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
684 DbpString("Tags can only have 44 bits.");
688 // special start of frame marker containing invalid bit sequences
689 fc(8, &n
); fc(8, &n
); // invalid
690 fc(8, &n
); fc(10, &n
); // logical 0
691 fc(10, &n
); fc(10, &n
); // invalid
692 fc(8, &n
); fc(10, &n
); // logical 0
695 // manchester encode bits 43 to 32
696 for (i
=11; i
>=0; i
--) {
697 if ((i
%4)==3) fc(0,&n
);
699 fc(10, &n
); fc(8, &n
); // low-high transition
701 fc(8, &n
); fc(10, &n
); // high-low transition
706 // manchester encode bits 31 to 0
707 for (i
=31; i
>=0; i
--) {
708 if ((i
%4)==3) fc(0,&n
);
710 fc(10, &n
); fc(8, &n
); // low-high transition
712 fc(8, &n
); fc(10, &n
); // high-low transition
719 SimulateTagLowFrequency(n
, 0, ledcontrol
);
725 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
726 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
728 uint8_t *dest
= get_bigbufptr_recvrespbuf();
730 size_t size
=0; //, found=0;
731 uint32_t hi2
=0, hi
=0, lo
=0;
733 // Configure to go in 125Khz listen mode
734 LFSetupFPGAForADC(0, true);
736 while(!BUTTON_PRESS()) {
739 if (ledcontrol
) LED_A_ON();
741 DoAcquisition125k_internal(-1,true);
742 size
= sizeof(BigBuf
);
743 if (size
< 2000) continue;
746 int bitLen
= HIDdemodFSK(dest
,size
,&hi2
,&hi
,&lo
);
750 if (bitLen
>0 && lo
>0){
751 // final loop, go over previously decoded manchester data and decode into usable tag ID
752 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
753 if (hi2
!= 0){ //extra large HID tags
754 Dbprintf("TAG ID: %x%08x%08x (%d)",
755 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
756 }else { //standard HID tags <38 bits
757 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
760 uint32_t cardnum
= 0;
761 if (((hi
>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
763 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
765 while(lo2
>1){ //find last bit set to 1 (format len bit)
773 cardnum
= (lo
>>1)&0xFFFF;
777 cardnum
= (lo
>>1)&0x7FFFF;
778 fc
= ((hi
&0xF)<<12)|(lo
>>20);
781 cardnum
= (lo
>>1)&0xFFFF;
782 fc
= ((hi
&1)<<15)|(lo
>>17);
785 cardnum
= (lo
>>1)&0xFFFFF;
786 fc
= ((hi
&1)<<11)|(lo
>>21);
789 else { //if bit 38 is not set then 37 bit format is used
794 cardnum
= (lo
>>1)&0x7FFFF;
795 fc
= ((hi
&0xF)<<12)|(lo
>>20);
798 //Dbprintf("TAG ID: %x%08x (%d)",
799 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
800 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
801 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF,
802 (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
);
805 if (ledcontrol
) LED_A_OFF();
814 DbpString("Stopped");
815 if (ledcontrol
) LED_A_OFF();
818 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
820 uint8_t *dest
= (uint8_t *)BigBuf
;
822 size_t size
=0; //, found=0;
824 int clk
=0, invert
=0, errCnt
=0;
826 // Configure to go in 125Khz listen mode
827 LFSetupFPGAForADC(95, true);
829 while(!BUTTON_PRESS()) {
832 if (ledcontrol
) LED_A_ON();
834 DoAcquisition125k_internal(-1,true);
835 size
= sizeof(BigBuf
);
836 if (size
< 2000) continue;
838 //int askmandemod(uint8_t *BinStream,uint32_t *BitLen,int *clk, int *invert);
840 //Dbprintf("DEBUG: Buffer got");
841 errCnt
= askmandemod(dest
,&bitLen
,&clk
,&invert
); //HIDdemodFSK(dest,size,&hi2,&hi,&lo);
842 //Dbprintf("DEBUG: ASK Got");
846 lo
= Em410xDecode(dest
,bitLen
);
847 //Dbprintf("DEBUG: EM GOT");
850 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",(uint32_t)(lo
>>32),(uint32_t)lo
,(uint32_t)(lo
&0xFFFF),(uint32_t)((lo
>>16LL) & 0xFF),(uint32_t)(lo
& 0xFFFFFF));
853 if (ledcontrol
) LED_A_OFF();
857 //Dbprintf("DEBUG: No Tag");
867 DbpString("Stopped");
868 if (ledcontrol
) LED_A_OFF();
871 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
873 uint8_t *dest
= (uint8_t *)BigBuf
;
876 uint32_t code
=0, code2
=0;
878 uint8_t facilitycode
=0;
880 // Configure to go in 125Khz listen mode
881 LFSetupFPGAForADC(0, true);
883 while(!BUTTON_PRESS()) {
887 if (ledcontrol
) LED_A_ON();
889 DoAcquisition125k_internal(-1,true);
890 size
= sizeof(BigBuf
);
891 //make sure buffer has data
892 if (size
< 2000) continue;
893 //fskdemod and get start index
895 idx
= IOdemodFSK(dest
,size
);
900 //0 10 20 30 40 50 60
902 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
903 //-----------------------------------------------------------------------------
904 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
906 //XSF(version)facility:codeone+codetwo
908 if(findone
){ //only print binary if we are doing one
909 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
910 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
911 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
912 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
913 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
914 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
915 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
917 code
= bytebits_to_byte(dest
+idx
,32);
918 code2
= bytebits_to_byte(dest
+idx
+32,32);
919 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
920 facilitycode
= bytebits_to_byte(dest
+idx
+18,8) ;
921 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
923 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version
,facilitycode
,number
,code
,code2
);
924 // if we're only looking for one tag
926 if (ledcontrol
) LED_A_OFF();
930 version
=facilitycode
=0;
936 DbpString("Stopped");
937 if (ledcontrol
) LED_A_OFF();
940 /*------------------------------
941 * T5555/T5557/T5567 routines
942 *------------------------------
945 /* T55x7 configuration register definitions */
946 #define T55x7_POR_DELAY 0x00000001
947 #define T55x7_ST_TERMINATOR 0x00000008
948 #define T55x7_PWD 0x00000010
949 #define T55x7_MAXBLOCK_SHIFT 5
950 #define T55x7_AOR 0x00000200
951 #define T55x7_PSKCF_RF_2 0
952 #define T55x7_PSKCF_RF_4 0x00000400
953 #define T55x7_PSKCF_RF_8 0x00000800
954 #define T55x7_MODULATION_DIRECT 0
955 #define T55x7_MODULATION_PSK1 0x00001000
956 #define T55x7_MODULATION_PSK2 0x00002000
957 #define T55x7_MODULATION_PSK3 0x00003000
958 #define T55x7_MODULATION_FSK1 0x00004000
959 #define T55x7_MODULATION_FSK2 0x00005000
960 #define T55x7_MODULATION_FSK1a 0x00006000
961 #define T55x7_MODULATION_FSK2a 0x00007000
962 #define T55x7_MODULATION_MANCHESTER 0x00008000
963 #define T55x7_MODULATION_BIPHASE 0x00010000
964 #define T55x7_BITRATE_RF_8 0
965 #define T55x7_BITRATE_RF_16 0x00040000
966 #define T55x7_BITRATE_RF_32 0x00080000
967 #define T55x7_BITRATE_RF_40 0x000C0000
968 #define T55x7_BITRATE_RF_50 0x00100000
969 #define T55x7_BITRATE_RF_64 0x00140000
970 #define T55x7_BITRATE_RF_100 0x00180000
971 #define T55x7_BITRATE_RF_128 0x001C0000
973 /* T5555 (Q5) configuration register definitions */
974 #define T5555_ST_TERMINATOR 0x00000001
975 #define T5555_MAXBLOCK_SHIFT 0x00000001
976 #define T5555_MODULATION_MANCHESTER 0
977 #define T5555_MODULATION_PSK1 0x00000010
978 #define T5555_MODULATION_PSK2 0x00000020
979 #define T5555_MODULATION_PSK3 0x00000030
980 #define T5555_MODULATION_FSK1 0x00000040
981 #define T5555_MODULATION_FSK2 0x00000050
982 #define T5555_MODULATION_BIPHASE 0x00000060
983 #define T5555_MODULATION_DIRECT 0x00000070
984 #define T5555_INVERT_OUTPUT 0x00000080
985 #define T5555_PSK_RF_2 0
986 #define T5555_PSK_RF_4 0x00000100
987 #define T5555_PSK_RF_8 0x00000200
988 #define T5555_USE_PWD 0x00000400
989 #define T5555_USE_AOR 0x00000800
990 #define T5555_BITRATE_SHIFT 12
991 #define T5555_FAST_WRITE 0x00004000
992 #define T5555_PAGE_SELECT 0x00008000
995 * Relevant times in microsecond
996 * To compensate antenna falling times shorten the write times
997 * and enlarge the gap ones.
999 #define START_GAP 30*8 // 10 - 50fc 250
1000 #define WRITE_GAP 20*8 // 8 - 30fc
1001 #define WRITE_0 24*8 // 16 - 31fc 24fc 192
1002 #define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550
1004 // VALUES TAKEN FROM EM4x function: SendForward
1005 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1006 // WRITE_GAP = 128; (16*8)
1007 // WRITE_1 = 256 32*8; (32*8)
1009 // These timings work for 4469/4269/4305 (with the 55*8 above)
1010 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1012 #define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
1014 // Write one bit to card
1015 void T55xxWriteBit(int bit
)
1017 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1018 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1019 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1021 SpinDelayUs(WRITE_0
);
1023 SpinDelayUs(WRITE_1
);
1024 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1025 SpinDelayUs(WRITE_GAP
);
1028 // Write one card block in page 0, no lock
1029 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1033 // Set up FPGA, 125kHz
1034 // Wait for config.. (192+8190xPOW)x8 == 67ms
1035 LFSetupFPGAForADC(0, true);
1037 // Now start writting
1038 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1039 SpinDelayUs(START_GAP
);
1043 T55xxWriteBit(0); //Page 0
1046 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1047 T55xxWriteBit(Pwd
& i
);
1053 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1054 T55xxWriteBit(Data
& i
);
1057 for (i
= 0x04; i
!= 0; i
>>= 1)
1058 T55xxWriteBit(Block
& i
);
1060 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1061 // so wait a little more)
1062 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1063 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1065 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1068 // Read one card block in page 0
1069 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1071 uint8_t *dest
= get_bigbufptr_recvrespbuf();
1072 uint16_t bufferlength
= T55xx_SAMPLES_SIZE
;
1075 // Clear destination buffer before sending the command 0x80 = average.
1076 memset(dest
, 0x80, bufferlength
);
1078 // Set up FPGA, 125kHz
1079 // Wait for config.. (192+8190xPOW)x8 == 67ms
1080 LFSetupFPGAForADC(0, true);
1082 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1083 SpinDelayUs(START_GAP
);
1087 T55xxWriteBit(0); //Page 0
1090 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1091 T55xxWriteBit(Pwd
& i
);
1096 for (i
= 0x04; i
!= 0; i
>>= 1)
1097 T55xxWriteBit(Block
& i
);
1099 // Turn field on to read the response
1102 // Now do the acquisition
1105 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1106 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1107 //AT91C_BASE_SSC->SSC_THR = 0xff;
1110 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1111 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1114 if (i
>= bufferlength
) break;
1118 cmd_send(CMD_ACK
,0,0,0,0,0);
1119 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1123 // Read card traceability data (page 1)
1124 void T55xxReadTrace(void){
1125 uint8_t *dest
= get_bigbufptr_recvrespbuf();
1126 uint16_t bufferlength
= T55xx_SAMPLES_SIZE
;
1129 // Clear destination buffer before sending the command 0x80 = average
1130 memset(dest
, 0x80, bufferlength
);
1132 LFSetupFPGAForADC(0, true);
1134 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1135 SpinDelayUs(START_GAP
);
1139 T55xxWriteBit(1); //Page 1
1141 // Turn field on to read the response
1144 // Now do the acquisition
1146 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1147 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1150 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1151 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1155 if (i
>= bufferlength
) break;
1159 cmd_send(CMD_ACK
,0,0,0,0,0);
1160 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1164 void TurnReadLFOn(){
1165 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1166 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1167 // Give it a bit of time for the resonant antenna to settle.
1172 /*-------------- Cloning routines -----------*/
1173 // Copy HID id to card and setup block 0 config
1174 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1176 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1180 // Ensure no more than 84 bits supplied
1182 DbpString("Tags can only have 84 bits.");
1185 // Build the 6 data blocks for supplied 84bit ID
1187 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1188 for (int i
=0;i
<4;i
++) {
1189 if (hi2
& (1<<(19-i
)))
1190 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1192 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1196 for (int i
=0;i
<16;i
++) {
1197 if (hi2
& (1<<(15-i
)))
1198 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1200 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1204 for (int i
=0;i
<16;i
++) {
1205 if (hi
& (1<<(31-i
)))
1206 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1208 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1212 for (int i
=0;i
<16;i
++) {
1213 if (hi
& (1<<(15-i
)))
1214 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1216 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1220 for (int i
=0;i
<16;i
++) {
1221 if (lo
& (1<<(31-i
)))
1222 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1224 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1228 for (int i
=0;i
<16;i
++) {
1229 if (lo
& (1<<(15-i
)))
1230 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1232 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1236 // Ensure no more than 44 bits supplied
1238 DbpString("Tags can only have 44 bits.");
1242 // Build the 3 data blocks for supplied 44bit ID
1245 data1
= 0x1D000000; // load preamble
1247 for (int i
=0;i
<12;i
++) {
1248 if (hi
& (1<<(11-i
)))
1249 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1251 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1255 for (int i
=0;i
<16;i
++) {
1256 if (lo
& (1<<(31-i
)))
1257 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1259 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1263 for (int i
=0;i
<16;i
++) {
1264 if (lo
& (1<<(15-i
)))
1265 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1267 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1272 // Program the data blocks for supplied ID
1273 // and the block 0 for HID format
1274 T55xxWriteBlock(data1
,1,0,0);
1275 T55xxWriteBlock(data2
,2,0,0);
1276 T55xxWriteBlock(data3
,3,0,0);
1278 if (longFMT
) { // if long format there are 6 blocks
1279 T55xxWriteBlock(data4
,4,0,0);
1280 T55xxWriteBlock(data5
,5,0,0);
1281 T55xxWriteBlock(data6
,6,0,0);
1284 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1285 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1286 T55x7_MODULATION_FSK2a
|
1287 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1295 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1297 int data1
=0, data2
=0; //up to six blocks for long format
1299 data1
= hi
; // load preamble
1303 // Program the data blocks for supplied ID
1304 // and the block 0 for HID format
1305 T55xxWriteBlock(data1
,1,0,0);
1306 T55xxWriteBlock(data2
,2,0,0);
1309 T55xxWriteBlock(0x00147040,0,0,0);
1315 // Define 9bit header for EM410x tags
1316 #define EM410X_HEADER 0x1FF
1317 #define EM410X_ID_LENGTH 40
1319 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1322 uint64_t id
= EM410X_HEADER
;
1323 uint64_t rev_id
= 0; // reversed ID
1324 int c_parity
[4]; // column parity
1325 int r_parity
= 0; // row parity
1328 // Reverse ID bits given as parameter (for simpler operations)
1329 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1331 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1334 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1339 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1340 id_bit
= rev_id
& 1;
1343 // Don't write row parity bit at start of parsing
1345 id
= (id
<< 1) | r_parity
;
1346 // Start counting parity for new row
1353 // First elements in column?
1355 // Fill out first elements
1356 c_parity
[i
] = id_bit
;
1358 // Count column parity
1359 c_parity
[i
% 4] ^= id_bit
;
1362 id
= (id
<< 1) | id_bit
;
1366 // Insert parity bit of last row
1367 id
= (id
<< 1) | r_parity
;
1369 // Fill out column parity at the end of tag
1370 for (i
= 0; i
< 4; ++i
)
1371 id
= (id
<< 1) | c_parity
[i
];
1376 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1380 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1381 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1383 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1385 // Clock rate is stored in bits 8-15 of the card value
1386 clock
= (card
& 0xFF00) >> 8;
1387 Dbprintf("Clock rate: %d", clock
);
1391 clock
= T55x7_BITRATE_RF_32
;
1394 clock
= T55x7_BITRATE_RF_16
;
1397 // A value of 0 is assumed to be 64 for backwards-compatibility
1400 clock
= T55x7_BITRATE_RF_64
;
1403 Dbprintf("Invalid clock rate: %d", clock
);
1407 // Writing configuration for T55x7 tag
1408 T55xxWriteBlock(clock
|
1409 T55x7_MODULATION_MANCHESTER
|
1410 2 << T55x7_MAXBLOCK_SHIFT
,
1414 // Writing configuration for T5555(Q5) tag
1415 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1416 T5555_MODULATION_MANCHESTER
|
1417 2 << T5555_MAXBLOCK_SHIFT
,
1421 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1422 (uint32_t)(id
>> 32), (uint32_t)id
);
1425 // Clone Indala 64-bit tag by UID to T55x7
1426 void CopyIndala64toT55x7(int hi
, int lo
)
1428 //Program the 2 data blocks for supplied 64bit UID
1429 // and the block 0 for Indala64 format
1430 T55xxWriteBlock(hi
,1,0,0);
1431 T55xxWriteBlock(lo
,2,0,0);
1432 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1433 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1434 T55x7_MODULATION_PSK1
|
1435 2 << T55x7_MAXBLOCK_SHIFT
,
1437 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1438 // T5567WriteBlock(0x603E1042,0);
1443 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1445 //Program the 7 data blocks for supplied 224bit UID
1446 // and the block 0 for Indala224 format
1447 T55xxWriteBlock(uid1
,1,0,0);
1448 T55xxWriteBlock(uid2
,2,0,0);
1449 T55xxWriteBlock(uid3
,3,0,0);
1450 T55xxWriteBlock(uid4
,4,0,0);
1451 T55xxWriteBlock(uid5
,5,0,0);
1452 T55xxWriteBlock(uid6
,6,0,0);
1453 T55xxWriteBlock(uid7
,7,0,0);
1454 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1455 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1456 T55x7_MODULATION_PSK1
|
1457 7 << T55x7_MAXBLOCK_SHIFT
,
1459 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1460 // T5567WriteBlock(0x603E10E2,0);
1466 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1467 #define max(x,y) ( x<y ? y:x)
1469 int DemodPCF7931(uint8_t **outBlocks
) {
1470 uint8_t BitStream
[256];
1471 uint8_t Blocks
[8][16];
1472 uint8_t *GraphBuffer
= (uint8_t *)BigBuf
;
1473 int GraphTraceLen
= sizeof(BigBuf
);
1474 int i
, j
, lastval
, bitidx
, half_switch
;
1476 int tolerance
= clock
/ 8;
1477 int pmc
, block_done
;
1478 int lc
, warnings
= 0;
1480 int lmin
=128, lmax
=128;
1483 AcquireRawAdcSamples125k(0);
1490 /* Find first local max/min */
1491 if(GraphBuffer
[1] > GraphBuffer
[0]) {
1492 while(i
< GraphTraceLen
) {
1493 if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
)
1500 while(i
< GraphTraceLen
) {
1501 if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
)
1513 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1515 if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir
== 0 && GraphBuffer
[i
] < lmin
))
1520 // Switch depending on lc length:
1521 // Tolerance is 1/8 of clock rate (arbitrary)
1522 if (abs(lc
-clock
/4) < tolerance
) {
1524 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1526 i
+= (128+127+16+32+33+16)-1;
1534 } else if (abs(lc
-clock
/2) < tolerance
) {
1536 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1538 i
+= (128+127+16+32+33)-1;
1543 else if(half_switch
== 1) {
1544 BitStream
[bitidx
++] = 0;
1549 } else if (abs(lc
-clock
) < tolerance
) {
1551 BitStream
[bitidx
++] = 1;
1557 Dbprintf("Error: too many detection errors, aborting.");
1562 if(block_done
== 1) {
1564 for(j
=0; j
<16; j
++) {
1565 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1566 64*BitStream
[j
*8+6]+
1567 32*BitStream
[j
*8+5]+
1568 16*BitStream
[j
*8+4]+
1580 if(i
< GraphTraceLen
)
1582 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0;
1589 if(num_blocks
== 4) break;
1591 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1595 int IsBlock0PCF7931(uint8_t *Block
) {
1596 // Assume RFU means 0 :)
1597 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1599 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1604 int IsBlock1PCF7931(uint8_t *Block
) {
1605 // Assume RFU means 0 :)
1606 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1607 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1614 void ReadPCF7931() {
1615 uint8_t Blocks
[8][17];
1616 uint8_t tmpBlocks
[4][16];
1617 int i
, j
, ind
, ind2
, n
;
1624 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1627 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1628 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1631 if(error
==10 && num_blocks
== 0) {
1632 Dbprintf("Error, no tag or bad tag");
1635 else if (tries
==20 || error
==10) {
1636 Dbprintf("Error reading the tag");
1637 Dbprintf("Here is the partial content");
1642 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1643 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1644 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1646 for(i
=0; i
<n
; i
++) {
1647 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1649 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1653 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1654 Blocks
[0][ALLOC
] = 1;
1655 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1656 Blocks
[1][ALLOC
] = 1;
1657 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1659 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1661 // Handle following blocks
1662 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1665 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1666 Blocks
[ind2
][ALLOC
] = 1;
1674 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1675 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1676 for(j
=0; j
<max_blocks
; j
++) {
1677 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1678 // Found an identical block
1679 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1682 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1683 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1684 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1685 Blocks
[ind2
][ALLOC
] = 1;
1687 if(num_blocks
== max_blocks
) goto end
;
1690 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1691 if(ind2
> max_blocks
)
1693 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1694 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1695 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1696 Blocks
[ind2
][ALLOC
] = 1;
1698 if(num_blocks
== max_blocks
) goto end
;
1707 if (BUTTON_PRESS()) return;
1708 } while (num_blocks
!= max_blocks
);
1710 Dbprintf("-----------------------------------------");
1711 Dbprintf("Memory content:");
1712 Dbprintf("-----------------------------------------");
1713 for(i
=0; i
<max_blocks
; i
++) {
1714 if(Blocks
[i
][ALLOC
]==1)
1715 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1716 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1717 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1719 Dbprintf("<missing block %d>", i
);
1721 Dbprintf("-----------------------------------------");
1727 //-----------------------------------
1728 // EM4469 / EM4305 routines
1729 //-----------------------------------
1730 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1731 #define FWD_CMD_WRITE 0xA
1732 #define FWD_CMD_READ 0x9
1733 #define FWD_CMD_DISABLE 0x5
1736 uint8_t forwardLink_data
[64]; //array of forwarded bits
1737 uint8_t * forward_ptr
; //ptr for forward message preparation
1738 uint8_t fwd_bit_sz
; //forwardlink bit counter
1739 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1741 //====================================================================
1742 // prepares command bits
1744 //====================================================================
1745 //--------------------------------------------------------------------
1746 uint8_t Prepare_Cmd( uint8_t cmd
) {
1747 //--------------------------------------------------------------------
1749 *forward_ptr
++ = 0; //start bit
1750 *forward_ptr
++ = 0; //second pause for 4050 code
1752 *forward_ptr
++ = cmd
;
1754 *forward_ptr
++ = cmd
;
1756 *forward_ptr
++ = cmd
;
1758 *forward_ptr
++ = cmd
;
1760 return 6; //return number of emited bits
1763 //====================================================================
1764 // prepares address bits
1766 //====================================================================
1768 //--------------------------------------------------------------------
1769 uint8_t Prepare_Addr( uint8_t addr
) {
1770 //--------------------------------------------------------------------
1772 register uint8_t line_parity
;
1777 *forward_ptr
++ = addr
;
1778 line_parity
^= addr
;
1782 *forward_ptr
++ = (line_parity
& 1);
1784 return 7; //return number of emited bits
1787 //====================================================================
1788 // prepares data bits intreleaved with parity bits
1790 //====================================================================
1792 //--------------------------------------------------------------------
1793 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1794 //--------------------------------------------------------------------
1796 register uint8_t line_parity
;
1797 register uint8_t column_parity
;
1798 register uint8_t i
, j
;
1799 register uint16_t data
;
1804 for(i
=0; i
<4; i
++) {
1806 for(j
=0; j
<8; j
++) {
1807 line_parity
^= data
;
1808 column_parity
^= (data
& 1) << j
;
1809 *forward_ptr
++ = data
;
1812 *forward_ptr
++ = line_parity
;
1817 for(j
=0; j
<8; j
++) {
1818 *forward_ptr
++ = column_parity
;
1819 column_parity
>>= 1;
1823 return 45; //return number of emited bits
1826 //====================================================================
1827 // Forward Link send function
1828 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1829 // fwd_bit_count set with number of bits to be sent
1830 //====================================================================
1831 void SendForward(uint8_t fwd_bit_count
) {
1833 fwd_write_ptr
= forwardLink_data
;
1834 fwd_bit_sz
= fwd_bit_count
;
1839 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1840 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1841 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1843 // Give it a bit of time for the resonant antenna to settle.
1844 // And for the tag to fully power up
1847 // force 1st mod pulse (start gap must be longer for 4305)
1848 fwd_bit_sz
--; //prepare next bit modulation
1850 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1851 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1852 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1853 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1854 SpinDelayUs(16*8); //16 cycles on (8us each)
1856 // now start writting
1857 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1858 if(((*fwd_write_ptr
++) & 1) == 1)
1859 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1861 //These timings work for 4469/4269/4305 (with the 55*8 above)
1862 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1863 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1864 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1865 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1866 SpinDelayUs(9*8); //16 cycles on (8us each)
1872 void EM4xLogin(uint32_t Password
) {
1874 uint8_t fwd_bit_count
;
1876 forward_ptr
= forwardLink_data
;
1877 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1878 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1880 SendForward(fwd_bit_count
);
1882 //Wait for command to complete
1887 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1889 uint8_t *dest
= get_bigbufptr_recvrespbuf();
1890 uint16_t bufferlength
= 12000;
1893 // Clear destination buffer before sending the command 0x80 = average.
1894 memset(dest
, 0x80, bufferlength
);
1896 uint8_t fwd_bit_count
;
1898 //If password mode do login
1899 if (PwdMode
== 1) EM4xLogin(Pwd
);
1901 forward_ptr
= forwardLink_data
;
1902 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1903 fwd_bit_count
+= Prepare_Addr( Address
);
1905 // Connect the A/D to the peak-detected low-frequency path.
1906 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1907 // Now set up the SSC to get the ADC samples that are now streaming at us.
1910 SendForward(fwd_bit_count
);
1912 // // Turn field on to read the response
1915 // Now do the acquisition
1918 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1919 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1921 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1922 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1924 if (i
>= bufferlength
) break;
1928 cmd_send(CMD_ACK
,0,0,0,0,0);
1929 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1933 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1935 uint8_t fwd_bit_count
;
1937 //If password mode do login
1938 if (PwdMode
== 1) EM4xLogin(Pwd
);
1940 forward_ptr
= forwardLink_data
;
1941 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1942 fwd_bit_count
+= Prepare_Addr( Address
);
1943 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1945 SendForward(fwd_bit_count
);
1947 //Wait for write to complete
1949 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off