3 This program is free software; you can redistribute it and/or
4 modify it under the terms of the GNU General Public License
5 as published by the Free Software Foundation; either version 2
6 of the License, or (at your option) any later version.
8 This program is distributed in the hope that it will be useful,
9 but WITHOUT ANY WARRANTY; without even the implied warranty of
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 GNU General Public License for more details.
13 You should have received a copy of the GNU General Public License
14 along with this program; if not, write to the Free Software
15 Foundation, Inc., 51 Franklin Street, Fifth Floor,
16 Boston, MA 02110-1301, US$
18 Copyright (C) 2008-2008 bla <blapost@gmail.com>
23 #if !defined LOWMEM && defined __GNUC__
24 static uint8_t filterlut
[1 << 20];
25 static void __attribute__((constructor
)) fill_lut()
28 for(i
= 0; i
< 1 << 20; ++i
)
29 filterlut
[i
] = filter(i
);
31 #define filter(x) (filterlut[(x) & 0xfffff])
36 typedef struct bucket
{
41 typedef bucket_t bucket_array_t
[2][0x100];
43 typedef struct bucket_info
{
45 uint32_t *head
, *tail
;
46 } bucket_info
[2][0x100];
51 static void bucket_sort_intersect(uint32_t* const estart
, uint32_t* const estop
,
52 uint32_t* const ostart
, uint32_t* const ostop
,
53 bucket_info_t
*bucket_info
, bucket_array_t bucket
)
64 // init buckets to be empty
65 for (uint32_t i
= 0; i
< 2; i
++) {
66 for (uint32_t j
= 0x00; j
<= 0xff; j
++) {
67 bucket
[i
][j
].bp
= bucket
[i
][j
].head
;
71 // sort the lists into the buckets based on the MSB (contribution bits)
72 for (uint32_t i
= 0; i
< 2; i
++) {
73 for (p1
= start
[i
]; p1
<= stop
[i
]; p1
++) {
74 uint32_t bucket_index
= (*p1
& 0xff000000) >> 24;
75 *(bucket
[i
][bucket_index
].bp
++) = *p1
;
80 // write back intersecting buckets as sorted list.
81 // fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets.
82 uint32_t nonempty_bucket
;
83 for (uint32_t i
= 0; i
< 2; i
++) {
86 for (uint32_t j
= 0x00; j
<= 0xff; j
++) {
87 if (bucket
[0][j
].bp
!= bucket
[0][j
].head
&& bucket
[1][j
].bp
!= bucket
[1][j
].head
) { // non-empty intersecting buckets only
88 bucket_info
->bucket_info
[i
][nonempty_bucket
].head
= p1
;
89 for (p2
= bucket
[i
][j
].head
; p2
< bucket
[i
][j
].bp
; *p1
++ = *p2
++);
90 bucket_info
->bucket_info
[i
][nonempty_bucket
].tail
= p1
- 1;
94 bucket_info
->numbuckets
= nonempty_bucket
;
99 * Binary search for the first occurence of *stop's MSB in sorted [start,stop]
101 static inline uint32_t*
102 binsearch(uint32_t *start
, uint32_t *stop
)
104 uint32_t mid
, val
= *stop
& 0xff000000;
106 if(start
[mid
= (stop
- start
) >> 1] > val
)
114 /** update_contribution
115 * helper, calculates the partial linear feedback contributions and puts in MSB
118 update_contribution(uint32_t *item
, const uint32_t mask1
, const uint32_t mask2
)
120 uint32_t p
= *item
>> 25;
122 p
= p
<< 1 | parity(*item
& mask1
);
123 p
= p
<< 1 | parity(*item
& mask2
);
124 *item
= p
<< 24 | (*item
& 0xffffff);
128 * using a bit of the keystream extend the table of possible lfsr states
131 extend_table(uint32_t *tbl
, uint32_t **end
, int bit
, int m1
, int m2
, uint32_t in
)
135 for(uint32_t *p
= tbl
; p
<= *end
; p
++) {
137 if(filter(*p
) != filter(*p
| 1)) { // replace
138 *p
|= filter(*p
) ^ bit
;
139 update_contribution(p
, m1
, m2
);
141 } else if(filter(*p
) == bit
) { // insert
144 update_contribution(p
, m1
, m2
);
146 update_contribution(p
, m1
, m2
);
156 /** extend_table_simple
157 * using a bit of the keystream extend the table of possible lfsr states
160 extend_table_simple(uint32_t *tbl
, uint32_t **end
, int bit
)
162 for(*tbl
<<= 1; tbl
<= *end
; *++tbl
<<= 1)
163 if(filter(*tbl
) ^ filter(*tbl
| 1)) { // replace
164 *tbl
|= filter(*tbl
) ^ bit
;
165 } else if(filter(*tbl
) == bit
) { // insert
174 * recursively narrow down the search space, 4 bits of keystream at a time
176 static struct Crypto1State
*
177 recover(uint32_t *o_head
, uint32_t *o_tail
, uint32_t oks
,
178 uint32_t *e_head
, uint32_t *e_tail
, uint32_t eks
, int rem
,
179 struct Crypto1State
*sl
, uint32_t in
, bucket_array_t bucket
)
182 bucket_info_t bucket_info
;
185 for(e
= e_head
; e
<= e_tail
; ++e
) {
186 *e
= *e
<< 1 ^ parity(*e
& LF_POLY_EVEN
) ^ !!(in
& 4);
187 for(o
= o_head
; o
<= o_tail
; ++o
, ++sl
) {
189 sl
->odd
= *e
^ parity(*o
& LF_POLY_ODD
);
192 sl
->odd
= sl
->even
= 0;
196 for(uint32_t i
= 0; i
< 4 && rem
--; i
++) {
197 extend_table(o_head
, &o_tail
, (oks
>>= 1) & 1,
198 LF_POLY_EVEN
<< 1 | 1, LF_POLY_ODD
<< 1, 0);
202 extend_table(e_head
, &e_tail
, (eks
>>= 1) & 1,
203 LF_POLY_ODD
, LF_POLY_EVEN
<< 1 | 1, (in
>>= 2) & 3);
208 bucket_sort_intersect(e_head
, e_tail
, o_head
, o_tail
, &bucket_info
, bucket
);
210 for (int i
= bucket_info
.numbuckets
- 1; i
>= 0; i
--) {
211 sl
= recover(bucket_info
.bucket_info
[1][i
].head
, bucket_info
.bucket_info
[1][i
].tail
, oks
,
212 bucket_info
.bucket_info
[0][i
].head
, bucket_info
.bucket_info
[0][i
].tail
, eks
,
213 rem
, sl
, in
, bucket
);
219 * recover the state of the lfsr given 32 bits of the keystream
220 * additionally you can use the in parameter to specify the value
221 * that was fed into the lfsr at the time the keystream was generated
223 struct Crypto1State
* lfsr_recovery32(uint32_t ks2
, uint32_t in
)
225 struct Crypto1State
*statelist
;
226 uint32_t *odd_head
= 0, *odd_tail
= 0, oks
= 0;
227 uint32_t *even_head
= 0, *even_tail
= 0, eks
= 0;
230 // split the keystream into an odd and even part
231 for(i
= 31; i
>= 0; i
-= 2)
232 oks
= oks
<< 1 | BEBIT(ks2
, i
);
233 for(i
= 30; i
>= 0; i
-= 2)
234 eks
= eks
<< 1 | BEBIT(ks2
, i
);
236 odd_head
= odd_tail
= malloc(sizeof(uint32_t) << 21);
237 even_head
= even_tail
= malloc(sizeof(uint32_t) << 21);
238 statelist
= malloc(sizeof(struct Crypto1State
) << 18);
239 if(!odd_tail
-- || !even_tail
-- || !statelist
) {
242 statelist
->odd
= statelist
->even
= 0;
244 // allocate memory for out of place bucket_sort
245 bucket_array_t bucket
;
246 for (uint32_t i
= 0; i
< 2; i
++)
247 for (uint32_t j
= 0; j
<= 0xff; j
++) {
248 bucket
[i
][j
].head
= malloc(sizeof(uint32_t)<<14);
249 if (!bucket
[i
][j
].head
) {
254 // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
255 for(i
= 1 << 20; i
>= 0; --i
) {
256 if(filter(i
) == (oks
& 1))
258 if(filter(i
) == (eks
& 1))
262 // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
263 for(i
= 0; i
< 4; i
++) {
264 extend_table_simple(odd_head
, &odd_tail
, (oks
>>= 1) & 1);
265 extend_table_simple(even_head
, &even_tail
, (eks
>>= 1) & 1);
268 // the statelists now contain all states which could have generated the last 10 Bits of the keystream.
269 // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
270 // parameter into account.
272 in
= (in
>> 16 & 0xff) | (in
<< 16) | (in
& 0xff00); // Byte swapping
274 recover(odd_head
, odd_tail
, oks
, even_head
, even_tail
, eks
, 11, statelist
, in
<< 1, bucket
);
279 for (uint32_t i
= 0; i
< 2; i
++)
280 for (uint32_t j
= 0; j
<= 0xff; j
++)
281 free(bucket
[i
][j
].head
);
286 static const uint32_t S1
[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
287 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
288 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
289 static const uint32_t S2
[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
290 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
291 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
292 0x7EC7EE90, 0x7F63F748, 0x79117020};
293 static const uint32_t T1
[] = {
294 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
295 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
296 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
297 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
298 static const uint32_t T2
[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
299 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
300 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
301 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
302 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
303 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
304 static const uint32_t C1
[] = { 0x846B5, 0x4235A, 0x211AD};
305 static const uint32_t C2
[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
306 /** Reverse 64 bits of keystream into possible cipher states
307 * Variation mentioned in the paper. Somewhat optimized version
309 struct Crypto1State
* lfsr_recovery64(uint32_t ks2
, uint32_t ks3
)
311 struct Crypto1State
*statelist
, *sl
;
312 uint8_t oks
[32], eks
[32], hi
[32];
313 uint32_t low
= 0, win
= 0;
314 uint32_t *tail
, table
[1 << 16];
317 sl
= statelist
= malloc(sizeof(struct Crypto1State
) << 4);
320 sl
->odd
= sl
->even
= 0;
322 for(i
= 30; i
>= 0; i
-= 2) {
323 oks
[i
>> 1] = BIT(ks2
, i
^ 24);
324 oks
[16 + (i
>> 1)] = BIT(ks3
, i
^ 24);
326 for(i
= 31; i
>= 0; i
-= 2) {
327 eks
[i
>> 1] = BIT(ks2
, i
^ 24);
328 eks
[16 + (i
>> 1)] = BIT(ks3
, i
^ 24);
331 for(i
= 0xfffff; i
>= 0; --i
) {
332 if (filter(i
) != oks
[0])
336 for(j
= 1; tail
>= table
&& j
< 29; ++j
)
337 extend_table_simple(table
, &tail
, oks
[j
]);
342 for(j
= 0; j
< 19; ++j
)
343 low
= low
<< 1 | parity(i
& S1
[j
]);
344 for(j
= 0; j
< 32; ++j
)
345 hi
[j
] = parity(i
& T1
[j
]);
347 for(; tail
>= table
; --tail
) {
348 for(j
= 0; j
< 3; ++j
) {
350 *tail
|= parity((i
& C1
[j
]) ^ (*tail
& C2
[j
]));
351 if(filter(*tail
) != oks
[29 + j
])
355 for(j
= 0; j
< 19; ++j
)
356 win
= win
<< 1 | parity(*tail
& S2
[j
]);
359 for(j
= 0; j
< 32; ++j
) {
360 win
= win
<< 1 ^ hi
[j
] ^ parity(*tail
& T2
[j
]);
361 if(filter(win
) != eks
[j
])
365 *tail
= *tail
<< 1 | parity(LF_POLY_EVEN
& *tail
);
366 sl
->odd
= *tail
^ parity(LF_POLY_ODD
& win
);
369 sl
->odd
= sl
->even
= 0;
376 /** lfsr_rollback_bit
377 * Rollback the shift register in order to get previous states
379 void lfsr_rollback_bit(struct Crypto1State
*s
, uint32_t in
, int fb
)
390 out
^= LF_POLY_EVEN
& (s
->even
>>= 1);
391 out
^= LF_POLY_ODD
& s
->odd
;
393 out
^= filter(s
->odd
) & !!fb
;
395 s
->even
|= parity(out
) << 23;
397 /** lfsr_rollback_byte
398 * Rollback the shift register in order to get previous states
400 void lfsr_rollback_byte(struct Crypto1State
*s
, uint32_t in
, int fb
)
403 for (i
= 7; i
>= 0; --i
)
404 lfsr_rollback_bit(s
, BEBIT(in
, i
), fb
);
406 /** lfsr_rollback_word
407 * Rollback the shift register in order to get previous states
409 void lfsr_rollback_word(struct Crypto1State
*s
, uint32_t in
, int fb
)
412 for (i
= 31; i
>= 0; --i
)
413 lfsr_rollback_bit(s
, BEBIT(in
, i
), fb
);
417 * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
419 static uint16_t *dist
= 0;
420 int nonce_distance(uint32_t from
, uint32_t to
)
424 dist
= malloc(2 << 16);
427 for (x
= i
= 1; i
; ++i
) {
428 dist
[(x
& 0xff) << 8 | x
>> 8] = i
;
429 x
= x
>> 1 | (x
^ x
>> 2 ^ x
>> 3 ^ x
>> 5) << 15;
432 return (65535 + dist
[to
>> 16] - dist
[from
>> 16]) % 65535;
436 static uint32_t fastfwd
[2][8] = {
437 { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
438 { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
443 * Is an exported helper function from the common prefix attack
444 * Described in the "dark side" paper. It returns an -1 terminated array
445 * of possible partial(21 bit) secret state.
446 * The required keystream(ks) needs to contain the keystream that was used to
447 * encrypt the NACK which is observed when varying only the 4 last bits of Nr
448 * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
450 uint32_t *lfsr_prefix_ks(uint8_t ks
[8], int isodd
)
452 uint32_t *candidates
= malloc(4 << 21);
459 size
= (1 << 21) - 1;
460 for(i
= 0; i
<= size
; ++i
)
463 for(c
= 0; c
< 8; ++c
)
464 for(i
= 0;i
<= size
; ++i
) {
465 entry
= candidates
[i
] ^ fastfwd
[isodd
][c
];
467 if(filter(entry
>> 1) == BIT(ks
[c
], isodd
))
468 if(filter(entry
) == BIT(ks
[c
], isodd
+ 2))
471 candidates
[i
--] = candidates
[size
--];
474 candidates
[size
+ 1] = -1;
480 * helper function which eliminates possible secret states using parity bits
482 static struct Crypto1State
*
483 brute_top(uint32_t prefix
, uint32_t rresp
, unsigned char parities
[8][8],
484 uint32_t odd
, uint32_t even
, struct Crypto1State
* sl
, uint8_t no_chk
)
486 struct Crypto1State s
;
487 uint32_t ks1
, nr
, ks2
, rr
, ks3
, good
, c
;
489 for(c
= 0; c
< 8; ++c
) {
490 s
.odd
= odd
^ fastfwd
[1][c
];
491 s
.even
= even
^ fastfwd
[0][c
];
493 lfsr_rollback_bit(&s
, 0, 0);
494 lfsr_rollback_bit(&s
, 0, 0);
495 lfsr_rollback_bit(&s
, 0, 0);
497 lfsr_rollback_word(&s
, 0, 0);
498 lfsr_rollback_word(&s
, prefix
| c
<< 5, 1);
506 ks1
= crypto1_word(&s
, prefix
| c
<< 5, 1);
507 ks2
= crypto1_word(&s
,0,0);
508 ks3
= crypto1_word(&s
, 0,0);
509 nr
= ks1
^ (prefix
| c
<< 5);
513 good
&= parity(nr
& 0x000000ff) ^ parities
[c
][3] ^ BIT(ks2
, 24);
514 good
&= parity(rr
& 0xff000000) ^ parities
[c
][4] ^ BIT(ks2
, 16);
515 good
&= parity(rr
& 0x00ff0000) ^ parities
[c
][5] ^ BIT(ks2
, 8);
516 good
&= parity(rr
& 0x0000ff00) ^ parities
[c
][6] ^ BIT(ks2
, 0);
517 good
&= parity(rr
& 0x000000ff) ^ parities
[c
][7] ^ BIT(ks3
, 24);
527 /** lfsr_common_prefix
528 * Implentation of the common prefix attack.
529 * Requires the 28 bit constant prefix used as reader nonce (pfx)
530 * The reader response used (rr)
531 * The keystream used to encrypt the observed NACK's (ks)
532 * The parity bits (par)
533 * It returns a zero terminated list of possible cipher states after the
534 * tag nonce was fed in
536 struct Crypto1State
* lfsr_common_prefix(uint32_t pfx
, uint32_t rr
, uint8_t ks
[8], uint8_t par
[8][8], uint8_t no_par
)
538 struct Crypto1State
*statelist
, *s
;
539 uint32_t *odd
, *even
, *o
, *e
, top
;
541 odd
= lfsr_prefix_ks(ks
, 1);
542 even
= lfsr_prefix_ks(ks
, 0);
544 statelist
= malloc((sizeof *statelist
) << 21); //how large should be?
545 if(!statelist
|| !odd
|| !even
)
554 for(o
= odd
; *o
!= -1; ++o
)
555 for(e
= even
; *e
!= -1; ++e
)
556 for(top
= 0; top
< 64; ++top
) {
557 *o
= (*o
& 0x1fffff) | (top
<< 21);
558 *e
= (*e
& 0x1fffff) | (top
>> 3) << 21;
559 s
= brute_top(pfx
, rr
, par
, *o
, *e
, s
, no_par
);
562 s
->odd
= s
->even
= -1;
563 //printf("state count = %d\n",s-statelist);
572 struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8], uint8_t no_par, uint32_t nt, uint32_t uid)
574 long long int amount = 0;
575 struct Crypto1State *statelist, *s;
576 uint32_t *odd, *even, *o, *e, top;
578 odd = lfsr_prefix_ks(ks, 1);
579 even = lfsr_prefix_ks(ks, 0);
581 s = statelist = malloc((sizeof *statelist) << 20);
582 if(!s || !odd || !even) {
589 char filename[50] = "archivo.txt";
590 sprintf(filename, "logs/%x.txt", nt);
591 PrintAndLog("Name: %s\n", filename);
592 FILE *file = fopen(filename,"w+");
594 s->odd = s->even = 0;
597 PrintAndLog("Failed to create file");
600 PrintAndLog("Creating file... ");
601 uint32_t xored = uid^nt;
604 for(o = odd; *o + 1; ++o)
605 for(e = even; *e + 1; ++e)
606 for(top = 0; top < 64; ++top) {
608 *e += (!(top & 7) + 1) << 21;
611 if(lastOdd != statelist->odd){
612 // Here I create a temporal crypto1 state,
613 // where I load the odd and even state and work with it,
614 // in order not to interfere with regular mechanism, This is what I save to file
615 struct Crypto1State *state;
616 lastOdd = state->odd = statelist->odd; state->even = statelist->even;
617 lfsr_rollback_word(state,xored,0);
618 fprintf(file,"%x %x \n",state->odd,state->even);
621 //s = check_pfx_parity(pfx, rr, par, *o, *e, s); //This is not useful at all when attacking chineese cards
622 s = brute_top(pfx, rr, par, *o, *e, s, no_par);
625 PrintAndLog("File created, amount %u\n",amount);
627 s->odd = s->even = 0;