1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "../include/proxmark3.h"
14 #include "../include/hitag2.h"
15 #include "../common/crc16.h"
18 #include "mifareutil.h"
20 void LFSetupFPGAForADC(int divisor
, bool lf_field
)
22 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
23 if ( (divisor
== 1) || (divisor
< 0) || (divisor
> 255) )
24 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
25 else if (divisor
== 0)
26 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
28 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
30 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| (lf_field
? FPGA_LF_ADC_READER_FIELD
: 0));
32 // Connect the A/D to the peak-detected low-frequency path.
33 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
35 // Give it a bit of time for the resonant antenna to settle.
38 // Now set up the SSC to get the ADC samples that are now streaming at us.
42 void AcquireRawAdcSamples125k(int divisor
)
44 LFSetupFPGAForADC(divisor
, true);
48 void SnoopLFRawAdcSamples(int divisor
, int trigger_threshold
)
50 LFSetupFPGAForADC(divisor
, false);
51 DoAcquisition125k_threshold(trigger_threshold
);
54 // split into two routines so we can avoid timing issues after sending commands //
55 void DoAcquisition125k_internal(int trigger_threshold
, bool silent
)
57 uint8_t *dest
= mifare_get_bigbufptr();
61 memset(dest
, 0x00, n
);
64 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
65 AT91C_BASE_SSC
->SSC_THR
= 0x43;
68 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
69 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
71 if (trigger_threshold
!= -1 && dest
[i
] < trigger_threshold
)
74 trigger_threshold
= -1;
79 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
80 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
83 void DoAcquisition125k_threshold(int trigger_threshold
) {
84 DoAcquisition125k_internal(trigger_threshold
, true);
86 void DoAcquisition125k() {
87 DoAcquisition125k_internal(-1, true);
90 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
93 /* Make sure the tag is reset */
94 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
95 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
98 int divisor_used
= 95; // 125 KHz
99 // see if 'h' was specified
101 if (command
[strlen((char *) command
) - 1] == 'h')
102 divisor_used
= 88; // 134.8 KHz
104 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
105 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
106 // Give it a bit of time for the resonant antenna to settle.
110 // And a little more time for the tag to fully power up
113 // Now set up the SSC to get the ADC samples that are now streaming at us.
116 // now modulate the reader field
117 while(*command
!= '\0' && *command
!= ' ') {
118 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
120 SpinDelayUs(delay_off
);
121 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
123 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
125 if(*(command
++) == '0')
126 SpinDelayUs(period_0
);
128 SpinDelayUs(period_1
);
130 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
132 SpinDelayUs(delay_off
);
133 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
135 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
138 DoAcquisition125k(-1);
141 /* blank r/w tag data stream
142 ...0000000000000000 01111111
143 1010101010101010101010101010101010101010101010101010101010101010
146 101010101010101[0]000...
148 [5555fe852c5555555555555555fe0000]
152 // some hardcoded initial params
153 // when we read a TI tag we sample the zerocross line at 2Mhz
154 // TI tags modulate a 1 as 16 cycles of 123.2Khz
155 // TI tags modulate a 0 as 16 cycles of 134.2Khz
156 #define FSAMPLE 2000000
157 #define FREQLO 123200
158 #define FREQHI 134200
160 signed char *dest
= (signed char *)BigBuf
;
161 int n
= sizeof(BigBuf
);
162 // int *dest = GraphBuffer;
163 // int n = GraphTraceLen;
165 // 128 bit shift register [shift3:shift2:shift1:shift0]
166 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
168 int i
, cycles
=0, samples
=0;
169 // how many sample points fit in 16 cycles of each frequency
170 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
171 // when to tell if we're close enough to one freq or another
172 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
174 // TI tags charge at 134.2Khz
175 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
176 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
178 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
179 // connects to SSP_DIN and the SSP_DOUT logic level controls
180 // whether we're modulating the antenna (high)
181 // or listening to the antenna (low)
182 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
184 // get TI tag data into the buffer
187 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
189 for (i
=0; i
<n
-1; i
++) {
190 // count cycles by looking for lo to hi zero crossings
191 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
193 // after 16 cycles, measure the frequency
196 samples
=i
-samples
; // number of samples in these 16 cycles
198 // TI bits are coming to us lsb first so shift them
199 // right through our 128 bit right shift register
200 shift0
= (shift0
>>1) | (shift1
<< 31);
201 shift1
= (shift1
>>1) | (shift2
<< 31);
202 shift2
= (shift2
>>1) | (shift3
<< 31);
205 // check if the cycles fall close to the number
206 // expected for either the low or high frequency
207 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
208 // low frequency represents a 1
210 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
211 // high frequency represents a 0
213 // probably detected a gay waveform or noise
214 // use this as gaydar or discard shift register and start again
215 shift3
= shift2
= shift1
= shift0
= 0;
219 // for each bit we receive, test if we've detected a valid tag
221 // if we see 17 zeroes followed by 6 ones, we might have a tag
222 // remember the bits are backwards
223 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
224 // if start and end bytes match, we have a tag so break out of the loop
225 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
226 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
234 // if flag is set we have a tag
236 DbpString("Info: No valid tag detected.");
238 // put 64 bit data into shift1 and shift0
239 shift0
= (shift0
>>24) | (shift1
<< 8);
240 shift1
= (shift1
>>24) | (shift2
<< 8);
242 // align 16 bit crc into lower half of shift2
243 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
245 // if r/w tag, check ident match
246 if ( shift3
&(1<<15) ) {
247 DbpString("Info: TI tag is rewriteable");
248 // only 15 bits compare, last bit of ident is not valid
249 if ( ((shift3
>>16)^shift0
)&0x7fff ) {
250 DbpString("Error: Ident mismatch!");
252 DbpString("Info: TI tag ident is valid");
255 DbpString("Info: TI tag is readonly");
258 // WARNING the order of the bytes in which we calc crc below needs checking
259 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
260 // bytes in reverse or something
264 crc
= update_crc16(crc
, (shift0
)&0xff);
265 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
266 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
267 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
268 crc
= update_crc16(crc
, (shift1
)&0xff);
269 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
270 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
271 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
273 Dbprintf("Info: Tag data: %x%08x, crc=%x",
274 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
275 if (crc
!= (shift2
&0xffff)) {
276 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
278 DbpString("Info: CRC is good");
283 void WriteTIbyte(uint8_t b
)
287 // modulate 8 bits out to the antenna
291 // stop modulating antenna
298 // stop modulating antenna
308 void AcquireTiType(void)
311 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
312 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
313 #define TIBUFLEN 1250
316 memset(BigBuf
,0,sizeof(BigBuf
));
318 // Set up the synchronous serial port
319 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
320 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
322 // steal this pin from the SSP and use it to control the modulation
323 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
324 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
326 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
327 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
329 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
330 // 48/2 = 24 MHz clock must be divided by 12
331 AT91C_BASE_SSC
->SSC_CMR
= 12;
333 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
334 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
335 AT91C_BASE_SSC
->SSC_TCMR
= 0;
336 AT91C_BASE_SSC
->SSC_TFMR
= 0;
343 // Charge TI tag for 50ms.
346 // stop modulating antenna and listen
353 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
354 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
355 i
++; if(i
>= TIBUFLEN
) break;
360 // return stolen pin to SSP
361 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
362 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
364 char *dest
= (char *)BigBuf
;
367 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
368 for (j
=0; j
<32; j
++) {
369 if(BigBuf
[i
] & (1 << j
)) {
378 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
379 // if crc provided, it will be written with the data verbatim (even if bogus)
380 // if not provided a valid crc will be computed from the data and written.
381 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
383 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
385 crc
= update_crc16(crc
, (idlo
)&0xff);
386 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
387 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
388 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
389 crc
= update_crc16(crc
, (idhi
)&0xff);
390 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
391 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
392 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
394 Dbprintf("Writing to tag: %x%08x, crc=%x",
395 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
397 // TI tags charge at 134.2Khz
398 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
399 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
400 // connects to SSP_DIN and the SSP_DOUT logic level controls
401 // whether we're modulating the antenna (high)
402 // or listening to the antenna (low)
403 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
406 // steal this pin from the SSP and use it to control the modulation
407 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
408 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
410 // writing algorithm:
411 // a high bit consists of a field off for 1ms and field on for 1ms
412 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
413 // initiate a charge time of 50ms (field on) then immediately start writing bits
414 // start by writing 0xBB (keyword) and 0xEB (password)
415 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
416 // finally end with 0x0300 (write frame)
417 // all data is sent lsb firts
418 // finish with 15ms programming time
422 SpinDelay(50); // charge time
424 WriteTIbyte(0xbb); // keyword
425 WriteTIbyte(0xeb); // password
426 WriteTIbyte( (idlo
)&0xff );
427 WriteTIbyte( (idlo
>>8 )&0xff );
428 WriteTIbyte( (idlo
>>16)&0xff );
429 WriteTIbyte( (idlo
>>24)&0xff );
430 WriteTIbyte( (idhi
)&0xff );
431 WriteTIbyte( (idhi
>>8 )&0xff );
432 WriteTIbyte( (idhi
>>16)&0xff );
433 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
434 WriteTIbyte( (crc
)&0xff ); // crc lo
435 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
436 WriteTIbyte(0x00); // write frame lo
437 WriteTIbyte(0x03); // write frame hi
439 SpinDelay(50); // programming time
443 // get TI tag data into the buffer
446 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
447 DbpString("Now use tiread to check");
450 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
453 uint8_t *buff
= (uint8_t *)BigBuf
;
455 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
456 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
457 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
458 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
460 // Give it a bit of time for the resonant antenna to settle.
463 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
464 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
465 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
467 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
468 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
472 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
474 DbpString("Stopped");
491 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
493 DbpString("Stopped");
510 #define DEBUG_FRAME_CONTENTS 1
511 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
515 // compose fc/8 fc/10 waveform
516 static void fc(int c
, int *n
) {
517 uint8_t *dest
= (uint8_t *)BigBuf
;
520 // for when we want an fc8 pattern every 4 logical bits
531 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
533 for (idx
=0; idx
<6; idx
++) {
545 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
547 for (idx
=0; idx
<5; idx
++) {
562 // prepare a waveform pattern in the buffer based on the ID given then
563 // simulate a HID tag until the button is pressed
564 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
568 HID tag bitstream format
569 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
570 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
571 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
572 A fc8 is inserted before every 4 bits
573 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
574 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
578 DbpString("Tags can only have 44 bits.");
582 // special start of frame marker containing invalid bit sequences
583 fc(8, &n
); fc(8, &n
); // invalid
584 fc(8, &n
); fc(10, &n
); // logical 0
585 fc(10, &n
); fc(10, &n
); // invalid
586 fc(8, &n
); fc(10, &n
); // logical 0
589 // manchester encode bits 43 to 32
590 for (i
=11; i
>=0; i
--) {
591 if ((i
%4)==3) fc(0,&n
);
593 fc(10, &n
); fc(8, &n
); // low-high transition
595 fc(8, &n
); fc(10, &n
); // high-low transition
600 // manchester encode bits 31 to 0
601 for (i
=31; i
>=0; i
--) {
602 if ((i
%4)==3) fc(0,&n
);
604 fc(10, &n
); fc(8, &n
); // low-high transition
606 fc(8, &n
); fc(10, &n
); // high-low transition
612 SimulateTagLowFrequency(n
, 0, ledcontrol
);
618 size_t fsk_demod(uint8_t * dest
, size_t size
)
620 uint32_t last_transition
= 0;
623 // we don't care about actual value, only if it's more or less than a
624 // threshold essentially we capture zero crossings for later analysis
625 uint8_t threshold_value
= 127;
627 // sync to first lo-hi transition, and threshold
629 //Need to threshold first sample
630 dest
[0] = (dest
[0] < threshold_value
) ? 0 : 1;
633 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
634 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
635 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
636 for(idx
= 1; idx
< size
; idx
++) {
637 // threshold current value
638 dest
[idx
] = (dest
[idx
] < threshold_value
) ? 0 : 1;
640 // Check for 0->1 transition
641 if (dest
[idx
-1] < dest
[idx
]) { // 0 -> 1 transition
643 dest
[numBits
] = (idx
-last_transition
< 9) ? 1 : 0;
644 last_transition
= idx
;
648 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
652 size_t aggregate_bits(uint8_t *dest
,size_t size
, uint8_t h2l_crossing_value
,uint8_t l2h_crossing_value
, uint8_t maxConsequtiveBits
)
654 uint8_t lastval
=dest
[0];
659 for( idx
=1; idx
< size
; idx
++) {
661 if (dest
[idx
]==lastval
) {
665 //if lastval was 1, we have a 1->0 crossing
667 n
=(n
+1) / h2l_crossing_value
;
668 } else {// 0->1 crossing
669 n
=(n
+1) / l2h_crossing_value
;
673 if(n
< maxConsequtiveBits
)
675 memset(dest
+numBits
, dest
[idx
-1] , n
);
685 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it
686 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
688 uint8_t *dest
= (uint8_t *)BigBuf
;
690 size_t size
=0,idx
=0; //, found=0;
691 uint32_t hi2
=0, hi
=0, lo
=0;
693 // Configure to go in 125Khz listen mode
694 LFSetupFPGAForADC(0, true);
696 while(!BUTTON_PRESS()) {
699 if (ledcontrol
) LED_A_ON();
701 DoAcquisition125k_internal(-1,true);
702 size
= sizeof(BigBuf
);
705 size
= fsk_demod(dest
, size
);
707 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
708 // 1->0 : fc/8 in sets of 6
709 // 0->1 : fc/10 in sets of 5
710 size
= aggregate_bits(dest
,size
, 6,5,5);
714 // final loop, go over previously decoded manchester data and decode into usable tag ID
715 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
716 uint8_t frame_marker_mask
[] = {1,1,1,0,0,0};
719 while( idx
+ sizeof(frame_marker_mask
) < size
) {
720 // search for a start of frame marker
721 if ( memcmp(dest
+idx
, frame_marker_mask
, sizeof(frame_marker_mask
)) == 0)
722 { // frame marker found
723 idx
+=sizeof(frame_marker_mask
);
725 while(dest
[idx
] != dest
[idx
+1] && idx
< size
-2)
727 // Keep going until next frame marker (or error)
728 // Shift in a bit. Start by shifting high registers
729 hi2
=(hi2
<<1)|(hi
>>31);
731 //Then, shift in a 0 or one into low
732 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
740 //Dbprintf("Num shifts: %d ", numshifts);
741 // Hopefully, we read a tag and hit upon the next frame marker
742 if(idx
+ sizeof(frame_marker_mask
) < size
)
744 if ( memcmp(dest
+idx
, frame_marker_mask
, sizeof(frame_marker_mask
)) == 0)
747 Dbprintf("TAG ID: %x%08x%08x (%d)",
748 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
751 Dbprintf("TAG ID: %x%08x (%d)",
752 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
769 DbpString("Stopped");
770 if (ledcontrol
) LED_A_OFF();
773 uint32_t bytebits_to_byte(uint8_t* src
, int numbits
)
776 for(int i
= 0 ; i
< numbits
; i
++)
778 num
= (num
<< 1) | (*src
);
785 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
787 uint8_t *dest
= (uint8_t *)BigBuf
;
789 size_t size
=0, idx
=0;
790 uint32_t code
=0, code2
=0;
792 // Configure to go in 125Khz listen mode
793 LFSetupFPGAForADC(0, true);
795 while(!BUTTON_PRESS()) {
799 if (ledcontrol
) LED_A_ON();
801 DoAcquisition125k_internal(-1,true);
802 size
= sizeof(BigBuf
);
805 size
= fsk_demod(dest
, size
);
807 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
808 // 1->0 : fc/8 in sets of 7
809 // 0->1 : fc/10 in sets of 6
810 size
= aggregate_bits(dest
, size
, 7,6,13);
815 uint8_t mask
[] = {0,0,0,0,0,0,0,0,0,1};
816 for( idx
=0; idx
< size
- 64; idx
++) {
818 if ( memcmp(dest
+ idx
, mask
, sizeof(mask
)) ) continue;
820 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7]);
821 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+8], dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15]);
822 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+16],dest
[idx
+17],dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23]);
823 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+24],dest
[idx
+25],dest
[idx
+26],dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31]);
824 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35],dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39]);
825 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44],dest
[idx
+45],dest
[idx
+46],dest
[idx
+47]);
826 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53],dest
[idx
+54],dest
[idx
+55]);
827 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
829 code
= bytebits_to_byte(dest
+idx
,32);
830 code2
= bytebits_to_byte(dest
+idx
+32,32);
832 short version
= bytebits_to_byte(dest
+idx
+14,4);
833 char unknown
= bytebits_to_byte(dest
+idx
+19,8) ;
834 uint16_t number
= bytebits_to_byte(dest
+idx
+36,9);
836 Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version
,unknown
,number
,code
,code2
);
837 if (ledcontrol
) LED_D_OFF();
839 // if we're only looking for one tag
847 DbpString("Stopped");
848 if (ledcontrol
) LED_A_OFF();
851 /*------------------------------
852 * T5555/T5557/T5567 routines
853 *------------------------------
856 /* T55x7 configuration register definitions */
857 #define T55x7_POR_DELAY 0x00000001
858 #define T55x7_ST_TERMINATOR 0x00000008
859 #define T55x7_PWD 0x00000010
860 #define T55x7_MAXBLOCK_SHIFT 5
861 #define T55x7_AOR 0x00000200
862 #define T55x7_PSKCF_RF_2 0
863 #define T55x7_PSKCF_RF_4 0x00000400
864 #define T55x7_PSKCF_RF_8 0x00000800
865 #define T55x7_MODULATION_DIRECT 0
866 #define T55x7_MODULATION_PSK1 0x00001000
867 #define T55x7_MODULATION_PSK2 0x00002000
868 #define T55x7_MODULATION_PSK3 0x00003000
869 #define T55x7_MODULATION_FSK1 0x00004000
870 #define T55x7_MODULATION_FSK2 0x00005000
871 #define T55x7_MODULATION_FSK1a 0x00006000
872 #define T55x7_MODULATION_FSK2a 0x00007000
873 #define T55x7_MODULATION_MANCHESTER 0x00008000
874 #define T55x7_MODULATION_BIPHASE 0x00010000
875 #define T55x7_BITRATE_RF_8 0
876 #define T55x7_BITRATE_RF_16 0x00040000
877 #define T55x7_BITRATE_RF_32 0x00080000
878 #define T55x7_BITRATE_RF_40 0x000C0000
879 #define T55x7_BITRATE_RF_50 0x00100000
880 #define T55x7_BITRATE_RF_64 0x00140000
881 #define T55x7_BITRATE_RF_100 0x00180000
882 #define T55x7_BITRATE_RF_128 0x001C0000
884 /* T5555 (Q5) configuration register definitions */
885 #define T5555_ST_TERMINATOR 0x00000001
886 #define T5555_MAXBLOCK_SHIFT 0x00000001
887 #define T5555_MODULATION_MANCHESTER 0
888 #define T5555_MODULATION_PSK1 0x00000010
889 #define T5555_MODULATION_PSK2 0x00000020
890 #define T5555_MODULATION_PSK3 0x00000030
891 #define T5555_MODULATION_FSK1 0x00000040
892 #define T5555_MODULATION_FSK2 0x00000050
893 #define T5555_MODULATION_BIPHASE 0x00000060
894 #define T5555_MODULATION_DIRECT 0x00000070
895 #define T5555_INVERT_OUTPUT 0x00000080
896 #define T5555_PSK_RF_2 0
897 #define T5555_PSK_RF_4 0x00000100
898 #define T5555_PSK_RF_8 0x00000200
899 #define T5555_USE_PWD 0x00000400
900 #define T5555_USE_AOR 0x00000800
901 #define T5555_BITRATE_SHIFT 12
902 #define T5555_FAST_WRITE 0x00004000
903 #define T5555_PAGE_SELECT 0x00008000
906 * Relevant times in microsecond
907 * To compensate antenna falling times shorten the write times
908 * and enlarge the gap ones.
910 #define START_GAP 30*8 // 10 - 50fc 250
911 #define WRITE_GAP 20*8 // 8 - 30fc
912 #define WRITE_0 24*8 // 16 - 31fc 24fc 192
913 #define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550
915 // VALUES TAKEN FROM EM4x function: SendForward
916 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
917 // WRITE_GAP = 128; (16*8)
918 // WRITE_1 = 256 32*8; (32*8)
920 // These timings work for 4469/4269/4305 (with the 55*8 above)
921 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
923 #define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
925 // Write one bit to card
926 void T55xxWriteBit(int bit
)
928 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
929 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
930 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
932 SpinDelayUs(WRITE_0
);
934 SpinDelayUs(WRITE_1
);
935 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
936 SpinDelayUs(WRITE_GAP
);
939 // Write one card block in page 0, no lock
940 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
944 // Set up FPGA, 125kHz
945 // Wait for config.. (192+8190xPOW)x8 == 67ms
946 LFSetupFPGAForADC(0, true);
948 // Now start writting
949 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
950 SpinDelayUs(START_GAP
);
954 T55xxWriteBit(0); //Page 0
957 for (i
= 0x80000000; i
!= 0; i
>>= 1)
958 T55xxWriteBit(Pwd
& i
);
964 for (i
= 0x80000000; i
!= 0; i
>>= 1)
965 T55xxWriteBit(Data
& i
);
968 for (i
= 0x04; i
!= 0; i
>>= 1)
969 T55xxWriteBit(Block
& i
);
971 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
972 // so wait a little more)
973 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
974 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
976 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
979 // Read one card block in page 0
980 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
982 uint8_t *dest
= mifare_get_bigbufptr();
983 uint16_t bufferlength
= T55xx_SAMPLES_SIZE
;
986 // Clear destination buffer before sending the command 0x80 = average.
987 memset(dest
, 0x80, bufferlength
);
989 // Set up FPGA, 125kHz
990 // Wait for config.. (192+8190xPOW)x8 == 67ms
991 LFSetupFPGAForADC(0, true);
993 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
994 SpinDelayUs(START_GAP
);
998 T55xxWriteBit(0); //Page 0
1001 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1002 T55xxWriteBit(Pwd
& i
);
1007 for (i
= 0x04; i
!= 0; i
>>= 1)
1008 T55xxWriteBit(Block
& i
);
1010 // Turn field on to read the response
1013 // Now do the acquisition
1016 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1017 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1020 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1021 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1024 if (i
> bufferlength
) break;
1028 cmd_send(CMD_ACK
,0,0,0,0,0);
1029 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1033 // Read card traceability data (page 1)
1034 void T55xxReadTrace(void){
1035 uint8_t *dest
= mifare_get_bigbufptr();
1036 uint16_t bufferlength
= T55xx_SAMPLES_SIZE
;
1039 // Clear destination buffer before sending the command 0x80 = average
1040 memset(dest
, 0x80, bufferlength
);
1042 LFSetupFPGAForADC(0, true);
1044 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1045 SpinDelayUs(START_GAP
);
1049 T55xxWriteBit(1); //Page 1
1051 // Turn field on to read the response
1054 // Now do the acquisition
1056 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1057 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1060 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1061 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1065 if (i
>= bufferlength
) break;
1069 cmd_send(CMD_ACK
,0,0,0,0,0);
1070 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1074 void TurnReadLFOn(){
1075 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1076 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1077 // Give it a bit of time for the resonant antenna to settle.
1082 /*-------------- Cloning routines -----------*/
1083 // Copy HID id to card and setup block 0 config
1084 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1086 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1090 // Ensure no more than 84 bits supplied
1092 DbpString("Tags can only have 84 bits.");
1095 // Build the 6 data blocks for supplied 84bit ID
1097 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1098 for (int i
=0;i
<4;i
++) {
1099 if (hi2
& (1<<(19-i
)))
1100 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1102 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1106 for (int i
=0;i
<16;i
++) {
1107 if (hi2
& (1<<(15-i
)))
1108 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1110 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1114 for (int i
=0;i
<16;i
++) {
1115 if (hi
& (1<<(31-i
)))
1116 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1118 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1122 for (int i
=0;i
<16;i
++) {
1123 if (hi
& (1<<(15-i
)))
1124 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1126 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1130 for (int i
=0;i
<16;i
++) {
1131 if (lo
& (1<<(31-i
)))
1132 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1134 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1138 for (int i
=0;i
<16;i
++) {
1139 if (lo
& (1<<(15-i
)))
1140 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1142 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1146 // Ensure no more than 44 bits supplied
1148 DbpString("Tags can only have 44 bits.");
1152 // Build the 3 data blocks for supplied 44bit ID
1155 data1
= 0x1D000000; // load preamble
1157 for (int i
=0;i
<12;i
++) {
1158 if (hi
& (1<<(11-i
)))
1159 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1161 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1165 for (int i
=0;i
<16;i
++) {
1166 if (lo
& (1<<(31-i
)))
1167 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1169 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1173 for (int i
=0;i
<16;i
++) {
1174 if (lo
& (1<<(15-i
)))
1175 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1177 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1182 // Program the data blocks for supplied ID
1183 // and the block 0 for HID format
1184 T55xxWriteBlock(data1
,1,0,0);
1185 T55xxWriteBlock(data2
,2,0,0);
1186 T55xxWriteBlock(data3
,3,0,0);
1188 if (longFMT
) { // if long format there are 6 blocks
1189 T55xxWriteBlock(data4
,4,0,0);
1190 T55xxWriteBlock(data5
,5,0,0);
1191 T55xxWriteBlock(data6
,6,0,0);
1194 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1195 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1196 T55x7_MODULATION_FSK2a
|
1197 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1205 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1207 int data1
=0, data2
=0; //up to six blocks for long format
1209 data1
= hi
; // load preamble
1213 // Program the data blocks for supplied ID
1214 // and the block 0 for HID format
1215 T55xxWriteBlock(data1
,1,0,0);
1216 T55xxWriteBlock(data2
,2,0,0);
1219 T55xxWriteBlock(0x00147040,0,0,0);
1225 // Define 9bit header for EM410x tags
1226 #define EM410X_HEADER 0x1FF
1227 #define EM410X_ID_LENGTH 40
1229 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1232 uint64_t id
= EM410X_HEADER
;
1233 uint64_t rev_id
= 0; // reversed ID
1234 int c_parity
[4]; // column parity
1235 int r_parity
= 0; // row parity
1238 // Reverse ID bits given as parameter (for simpler operations)
1239 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1241 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1244 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1249 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1250 id_bit
= rev_id
& 1;
1253 // Don't write row parity bit at start of parsing
1255 id
= (id
<< 1) | r_parity
;
1256 // Start counting parity for new row
1263 // First elements in column?
1265 // Fill out first elements
1266 c_parity
[i
] = id_bit
;
1268 // Count column parity
1269 c_parity
[i
% 4] ^= id_bit
;
1272 id
= (id
<< 1) | id_bit
;
1276 // Insert parity bit of last row
1277 id
= (id
<< 1) | r_parity
;
1279 // Fill out column parity at the end of tag
1280 for (i
= 0; i
< 4; ++i
)
1281 id
= (id
<< 1) | c_parity
[i
];
1286 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1290 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1291 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1293 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1295 // Clock rate is stored in bits 8-15 of the card value
1296 clock
= (card
& 0xFF00) >> 8;
1297 Dbprintf("Clock rate: %d", clock
);
1301 clock
= T55x7_BITRATE_RF_32
;
1304 clock
= T55x7_BITRATE_RF_16
;
1307 // A value of 0 is assumed to be 64 for backwards-compatibility
1310 clock
= T55x7_BITRATE_RF_64
;
1313 Dbprintf("Invalid clock rate: %d", clock
);
1317 // Writing configuration for T55x7 tag
1318 T55xxWriteBlock(clock
|
1319 T55x7_MODULATION_MANCHESTER
|
1320 2 << T55x7_MAXBLOCK_SHIFT
,
1324 // Writing configuration for T5555(Q5) tag
1325 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1326 T5555_MODULATION_MANCHESTER
|
1327 2 << T5555_MAXBLOCK_SHIFT
,
1331 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1332 (uint32_t)(id
>> 32), (uint32_t)id
);
1335 // Clone Indala 64-bit tag by UID to T55x7
1336 void CopyIndala64toT55x7(int hi
, int lo
)
1338 //Program the 2 data blocks for supplied 64bit UID
1339 // and the block 0 for Indala64 format
1340 T55xxWriteBlock(hi
,1,0,0);
1341 T55xxWriteBlock(lo
,2,0,0);
1342 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1343 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1344 T55x7_MODULATION_PSK1
|
1345 2 << T55x7_MAXBLOCK_SHIFT
,
1347 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1348 // T5567WriteBlock(0x603E1042,0);
1353 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1355 //Program the 7 data blocks for supplied 224bit UID
1356 // and the block 0 for Indala224 format
1357 T55xxWriteBlock(uid1
,1,0,0);
1358 T55xxWriteBlock(uid2
,2,0,0);
1359 T55xxWriteBlock(uid3
,3,0,0);
1360 T55xxWriteBlock(uid4
,4,0,0);
1361 T55xxWriteBlock(uid5
,5,0,0);
1362 T55xxWriteBlock(uid6
,6,0,0);
1363 T55xxWriteBlock(uid7
,7,0,0);
1364 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1365 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1366 T55x7_MODULATION_PSK1
|
1367 7 << T55x7_MAXBLOCK_SHIFT
,
1369 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1370 // T5567WriteBlock(0x603E10E2,0);
1376 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1377 #define max(x,y) ( x<y ? y:x)
1379 int DemodPCF7931(uint8_t **outBlocks
) {
1380 uint8_t BitStream
[256];
1381 uint8_t Blocks
[8][16];
1382 uint8_t *GraphBuffer
= (uint8_t *)BigBuf
;
1383 int GraphTraceLen
= sizeof(BigBuf
);
1384 int i
, j
, lastval
, bitidx
, half_switch
;
1386 int tolerance
= clock
/ 8;
1387 int pmc
, block_done
;
1388 int lc
, warnings
= 0;
1390 int lmin
=128, lmax
=128;
1393 AcquireRawAdcSamples125k(0);
1400 /* Find first local max/min */
1401 if(GraphBuffer
[1] > GraphBuffer
[0]) {
1402 while(i
< GraphTraceLen
) {
1403 if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
)
1410 while(i
< GraphTraceLen
) {
1411 if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
)
1423 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1425 if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir
== 0 && GraphBuffer
[i
] < lmin
))
1430 // Switch depending on lc length:
1431 // Tolerance is 1/8 of clock rate (arbitrary)
1432 if (abs(lc
-clock
/4) < tolerance
) {
1434 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1436 i
+= (128+127+16+32+33+16)-1;
1444 } else if (abs(lc
-clock
/2) < tolerance
) {
1446 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1448 i
+= (128+127+16+32+33)-1;
1453 else if(half_switch
== 1) {
1454 BitStream
[bitidx
++] = 0;
1459 } else if (abs(lc
-clock
) < tolerance
) {
1461 BitStream
[bitidx
++] = 1;
1467 Dbprintf("Error: too many detection errors, aborting.");
1472 if(block_done
== 1) {
1474 for(j
=0; j
<16; j
++) {
1475 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1476 64*BitStream
[j
*8+6]+
1477 32*BitStream
[j
*8+5]+
1478 16*BitStream
[j
*8+4]+
1490 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0;
1496 if(num_blocks
== 4) break;
1498 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1502 int IsBlock0PCF7931(uint8_t *Block
) {
1503 // Assume RFU means 0 :)
1504 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1506 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1511 int IsBlock1PCF7931(uint8_t *Block
) {
1512 // Assume RFU means 0 :)
1513 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1514 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1521 void ReadPCF7931() {
1522 uint8_t Blocks
[8][17];
1523 uint8_t tmpBlocks
[4][16];
1524 int i
, j
, ind
, ind2
, n
;
1531 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1534 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1535 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1538 if(error
==10 && num_blocks
== 0) {
1539 Dbprintf("Error, no tag or bad tag");
1542 else if (tries
==20 || error
==10) {
1543 Dbprintf("Error reading the tag");
1544 Dbprintf("Here is the partial content");
1549 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1550 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1551 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1553 for(i
=0; i
<n
; i
++) {
1554 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1556 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1560 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1561 Blocks
[0][ALLOC
] = 1;
1562 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1563 Blocks
[1][ALLOC
] = 1;
1564 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1566 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1568 // Handle following blocks
1569 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1572 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1573 Blocks
[ind2
][ALLOC
] = 1;
1581 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1582 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1583 for(j
=0; j
<max_blocks
; j
++) {
1584 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1585 // Found an identical block
1586 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1589 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1590 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1591 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1592 Blocks
[ind2
][ALLOC
] = 1;
1594 if(num_blocks
== max_blocks
) goto end
;
1597 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1598 if(ind2
> max_blocks
)
1600 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1601 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1602 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1603 Blocks
[ind2
][ALLOC
] = 1;
1605 if(num_blocks
== max_blocks
) goto end
;
1614 if (BUTTON_PRESS()) return;
1615 } while (num_blocks
!= max_blocks
);
1617 Dbprintf("-----------------------------------------");
1618 Dbprintf("Memory content:");
1619 Dbprintf("-----------------------------------------");
1620 for(i
=0; i
<max_blocks
; i
++) {
1621 if(Blocks
[i
][ALLOC
]==1)
1622 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1623 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1624 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1626 Dbprintf("<missing block %d>", i
);
1628 Dbprintf("-----------------------------------------");
1634 //-----------------------------------
1635 // EM4469 / EM4305 routines
1636 //-----------------------------------
1637 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1638 #define FWD_CMD_WRITE 0xA
1639 #define FWD_CMD_READ 0x9
1640 #define FWD_CMD_DISABLE 0x5
1643 uint8_t forwardLink_data
[64]; //array of forwarded bits
1644 uint8_t * forward_ptr
; //ptr for forward message preparation
1645 uint8_t fwd_bit_sz
; //forwardlink bit counter
1646 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1648 //====================================================================
1649 // prepares command bits
1651 //====================================================================
1652 //--------------------------------------------------------------------
1653 uint8_t Prepare_Cmd( uint8_t cmd
) {
1654 //--------------------------------------------------------------------
1656 *forward_ptr
++ = 0; //start bit
1657 *forward_ptr
++ = 0; //second pause for 4050 code
1659 *forward_ptr
++ = cmd
;
1661 *forward_ptr
++ = cmd
;
1663 *forward_ptr
++ = cmd
;
1665 *forward_ptr
++ = cmd
;
1667 return 6; //return number of emited bits
1670 //====================================================================
1671 // prepares address bits
1673 //====================================================================
1675 //--------------------------------------------------------------------
1676 uint8_t Prepare_Addr( uint8_t addr
) {
1677 //--------------------------------------------------------------------
1679 register uint8_t line_parity
;
1684 *forward_ptr
++ = addr
;
1685 line_parity
^= addr
;
1689 *forward_ptr
++ = (line_parity
& 1);
1691 return 7; //return number of emited bits
1694 //====================================================================
1695 // prepares data bits intreleaved with parity bits
1697 //====================================================================
1699 //--------------------------------------------------------------------
1700 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1701 //--------------------------------------------------------------------
1703 register uint8_t line_parity
;
1704 register uint8_t column_parity
;
1705 register uint8_t i
, j
;
1706 register uint16_t data
;
1711 for(i
=0; i
<4; i
++) {
1713 for(j
=0; j
<8; j
++) {
1714 line_parity
^= data
;
1715 column_parity
^= (data
& 1) << j
;
1716 *forward_ptr
++ = data
;
1719 *forward_ptr
++ = line_parity
;
1724 for(j
=0; j
<8; j
++) {
1725 *forward_ptr
++ = column_parity
;
1726 column_parity
>>= 1;
1730 return 45; //return number of emited bits
1733 //====================================================================
1734 // Forward Link send function
1735 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1736 // fwd_bit_count set with number of bits to be sent
1737 //====================================================================
1738 void SendForward(uint8_t fwd_bit_count
) {
1740 fwd_write_ptr
= forwardLink_data
;
1741 fwd_bit_sz
= fwd_bit_count
;
1746 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1747 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1748 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1750 // Give it a bit of time for the resonant antenna to settle.
1751 // And for the tag to fully power up
1754 // force 1st mod pulse (start gap must be longer for 4305)
1755 fwd_bit_sz
--; //prepare next bit modulation
1757 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1758 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1759 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1760 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1761 SpinDelayUs(16*8); //16 cycles on (8us each)
1763 // now start writting
1764 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1765 if(((*fwd_write_ptr
++) & 1) == 1)
1766 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1768 //These timings work for 4469/4269/4305 (with the 55*8 above)
1769 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1770 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1771 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1772 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1773 SpinDelayUs(9*8); //16 cycles on (8us each)
1779 void EM4xLogin(uint32_t Password
) {
1781 uint8_t fwd_bit_count
;
1783 forward_ptr
= forwardLink_data
;
1784 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1785 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1787 SendForward(fwd_bit_count
);
1789 //Wait for command to complete
1794 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1796 uint8_t *dest
= mifare_get_bigbufptr();
1797 uint16_t bufferlength
= 12000;
1800 // Clear destination buffer before sending the command 0x80 = average.
1801 memset(dest
, 0x80, bufferlength
);
1803 uint8_t fwd_bit_count
;
1805 //If password mode do login
1806 if (PwdMode
== 1) EM4xLogin(Pwd
);
1808 forward_ptr
= forwardLink_data
;
1809 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1810 fwd_bit_count
+= Prepare_Addr( Address
);
1812 // Connect the A/D to the peak-detected low-frequency path.
1813 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1814 // Now set up the SSC to get the ADC samples that are now streaming at us.
1817 SendForward(fwd_bit_count
);
1819 // // Turn field on to read the response
1822 // Now do the acquisition
1825 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1826 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1828 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1829 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1831 if (i
>= bufferlength
) break;
1835 cmd_send(CMD_ACK
,0,0,0,0,0);
1836 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1840 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1842 uint8_t fwd_bit_count
;
1844 //If password mode do login
1845 if (PwdMode
== 1) EM4xLogin(Pwd
);
1847 forward_ptr
= forwardLink_data
;
1848 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1849 fwd_bit_count
+= Prepare_Addr( Address
);
1850 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1852 SendForward(fwd_bit_count
);
1854 //Wait for write to complete
1856 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off