1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
24 // + 22279: : 0c 03 e8 01
26 // ...with an incorrect answer...
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
30 // We still left the error signalling bytes in the traces like 0xbb
32 // A correct trace should look like this:
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
37 //-----------------------------------------------------------------------------
39 #include "proxmark3.h"
45 // Needed for CRC in emulation mode;
46 // same construction as in ISO 14443;
47 // different initial value (CRC_ICLASS)
48 #include "iso14443crc.h"
49 #include "iso15693tools.h"
51 static int timeout
= 4096;
54 static int SendIClassAnswer(uint8_t *resp
, int respLen
, int delay
);
56 //-----------------------------------------------------------------------------
57 // The software UART that receives commands from the reader, and its state
59 //-----------------------------------------------------------------------------
63 STATE_START_OF_COMMUNICATION
,
83 static RAMFUNC
int OutOfNDecoding(int bit
)
89 Uart
.bitBuffer
= bit
^ 0xFF0;
94 Uart
.bitBuffer
^= bit
;
98 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
101 if(Uart.byteCnt > 15) { return TRUE; }
107 if(Uart
.state
!= STATE_UNSYNCD
) {
110 if((Uart
.bitBuffer
& Uart
.syncBit
) ^ Uart
.syncBit
) {
116 if(((Uart
.bitBuffer
<< 1) & Uart
.syncBit
) ^ Uart
.syncBit
) {
122 if(bit
!= bitright
) { bit
= bitright
; }
125 // So, now we only have to deal with *bit*, lets see...
126 if(Uart
.posCnt
== 1) {
127 // measurement first half bitperiod
129 // Drop in first half means that we are either seeing
132 if(Uart
.nOutOfCnt
== 1) {
133 // End of Communication
134 Uart
.state
= STATE_UNSYNCD
;
136 if(Uart
.byteCnt
== 0) {
137 // Its not straightforward to show single EOFs
138 // So just leave it and do not return TRUE
139 Uart
.output
[0] = 0xf0;
146 else if(Uart
.state
!= STATE_START_OF_COMMUNICATION
) {
147 // When not part of SOF or EOF, it is an error
148 Uart
.state
= STATE_UNSYNCD
;
155 // measurement second half bitperiod
156 // Count the bitslot we are in... (ISO 15693)
160 if(Uart
.dropPosition
) {
161 if(Uart
.state
== STATE_START_OF_COMMUNICATION
) {
167 // It is an error if we already have seen a drop in current frame
168 Uart
.state
= STATE_UNSYNCD
;
172 Uart
.dropPosition
= Uart
.nOutOfCnt
;
179 if(Uart
.nOutOfCnt
== Uart
.OutOfCnt
&& Uart
.OutOfCnt
== 4) {
182 if(Uart
.state
== STATE_START_OF_COMMUNICATION
) {
183 if(Uart
.dropPosition
== 4) {
184 Uart
.state
= STATE_RECEIVING
;
187 else if(Uart
.dropPosition
== 3) {
188 Uart
.state
= STATE_RECEIVING
;
190 //Uart.output[Uart.byteCnt] = 0xdd;
194 Uart
.state
= STATE_UNSYNCD
;
197 Uart
.dropPosition
= 0;
202 if(!Uart
.dropPosition
) {
203 Uart
.state
= STATE_UNSYNCD
;
212 //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
213 //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
215 Uart
.shiftReg
^= ((Uart
.dropPosition
& 0x03) << 6);
217 Uart
.dropPosition
= 0;
219 if(Uart
.bitCnt
== 8) {
220 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
& 0xff);
228 else if(Uart
.nOutOfCnt
== Uart
.OutOfCnt
) {
231 if(!Uart
.dropPosition
) {
232 Uart
.state
= STATE_UNSYNCD
;
238 Uart
.output
[Uart
.byteCnt
] = (Uart
.dropPosition
& 0xff);
243 Uart
.dropPosition
= 0;
248 Uart.output[Uart.byteCnt] = 0xAA;
250 Uart.output[Uart.byteCnt] = error & 0xFF;
252 Uart.output[Uart.byteCnt] = 0xAA;
254 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
256 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
258 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
260 Uart.output[Uart.byteCnt] = 0xAA;
268 bit
= Uart
.bitBuffer
& 0xf0;
270 bit
^= 0x0F; // drops become 1s ;-)
272 // should have been high or at least (4 * 128) / fc
273 // according to ISO this should be at least (9 * 128 + 20) / fc
274 if(Uart
.highCnt
== 8) {
275 // we went low, so this could be start of communication
276 // it turns out to be safer to choose a less significant
277 // syncbit... so we check whether the neighbour also represents the drop
278 Uart
.posCnt
= 1; // apparently we are busy with our first half bit period
279 Uart
.syncBit
= bit
& 8;
281 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; }
282 else if(bit
& 4) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; bit
<<= 2; }
283 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; }
284 else if(bit
& 2) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; bit
<<= 1; }
285 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0;
286 if(Uart
.syncBit
&& (Uart
.bitBuffer
& 8)) {
289 // the first half bit period is expected in next sample
294 else if(bit
& 1) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0; }
297 Uart
.state
= STATE_START_OF_COMMUNICATION
;
301 Uart
.OutOfCnt
= 4; // Start at 1/4, could switch to 1/256
302 Uart
.dropPosition
= 0;
311 if(Uart
.highCnt
< 8) {
320 //=============================================================================
322 //=============================================================================
327 DEMOD_START_OF_COMMUNICATION
,
328 DEMOD_START_OF_COMMUNICATION2
,
329 DEMOD_START_OF_COMMUNICATION3
,
333 DEMOD_END_OF_COMMUNICATION
,
334 DEMOD_END_OF_COMMUNICATION2
,
357 static RAMFUNC
int ManchesterDecoding(int v
)
364 Demod
.buffer
= Demod
.buffer2
;
365 Demod
.buffer2
= Demod
.buffer3
;
373 if(Demod
.state
==DEMOD_UNSYNCD
) {
374 Demod
.output
[Demod
.len
] = 0xfa;
377 Demod
.posCount
= 1; // This is the first half bit period, so after syncing handle the second part
380 Demod
.syncBit
= 0x08;
387 Demod
.syncBit
= 0x04;
394 Demod
.syncBit
= 0x02;
397 if(bit
& 0x01 && Demod
.syncBit
) {
398 Demod
.syncBit
= 0x01;
403 Demod
.state
= DEMOD_START_OF_COMMUNICATION
;
404 Demod
.sub
= SUB_FIRST_HALF
;
409 //if(trigger) LED_A_OFF(); // Not useful in this case...
410 switch(Demod
.syncBit
) {
411 case 0x08: Demod
.samples
= 3; break;
412 case 0x04: Demod
.samples
= 2; break;
413 case 0x02: Demod
.samples
= 1; break;
414 case 0x01: Demod
.samples
= 0; break;
416 // SOF must be long burst... otherwise stay unsynced!!!
417 if(!(Demod
.buffer
& Demod
.syncBit
) || !(Demod
.buffer2
& Demod
.syncBit
)) {
418 Demod
.state
= DEMOD_UNSYNCD
;
422 // SOF must be long burst... otherwise stay unsynced!!!
423 if(!(Demod
.buffer2
& Demod
.syncBit
) || !(Demod
.buffer3
& Demod
.syncBit
)) {
424 Demod
.state
= DEMOD_UNSYNCD
;
434 modulation
= bit
& Demod
.syncBit
;
435 modulation
|= ((bit
<< 1) ^ ((Demod
.buffer
& 0x08) >> 3)) & Demod
.syncBit
;
439 if(Demod
.posCount
==0) {
442 Demod
.sub
= SUB_FIRST_HALF
;
445 Demod
.sub
= SUB_NONE
;
450 /*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
451 if(Demod.state!=DEMOD_ERROR_WAIT) {
452 Demod.state = DEMOD_ERROR_WAIT;
453 Demod.output[Demod.len] = 0xaa;
457 //else if(modulation) {
459 if(Demod
.sub
== SUB_FIRST_HALF
) {
460 Demod
.sub
= SUB_BOTH
;
463 Demod
.sub
= SUB_SECOND_HALF
;
466 else if(Demod
.sub
== SUB_NONE
) {
467 if(Demod
.state
== DEMOD_SOF_COMPLETE
) {
468 Demod
.output
[Demod
.len
] = 0x0f;
470 Demod
.state
= DEMOD_UNSYNCD
;
475 Demod
.state
= DEMOD_ERROR_WAIT
;
478 /*if(Demod.state!=DEMOD_ERROR_WAIT) {
479 Demod.state = DEMOD_ERROR_WAIT;
480 Demod.output[Demod.len] = 0xaa;
485 switch(Demod
.state
) {
486 case DEMOD_START_OF_COMMUNICATION
:
487 if(Demod
.sub
== SUB_BOTH
) {
488 //Demod.state = DEMOD_MANCHESTER_D;
489 Demod
.state
= DEMOD_START_OF_COMMUNICATION2
;
491 Demod
.sub
= SUB_NONE
;
494 Demod
.output
[Demod
.len
] = 0xab;
495 Demod
.state
= DEMOD_ERROR_WAIT
;
499 case DEMOD_START_OF_COMMUNICATION2
:
500 if(Demod
.sub
== SUB_SECOND_HALF
) {
501 Demod
.state
= DEMOD_START_OF_COMMUNICATION3
;
504 Demod
.output
[Demod
.len
] = 0xab;
505 Demod
.state
= DEMOD_ERROR_WAIT
;
509 case DEMOD_START_OF_COMMUNICATION3
:
510 if(Demod
.sub
== SUB_SECOND_HALF
) {
511 // Demod.state = DEMOD_MANCHESTER_D;
512 Demod
.state
= DEMOD_SOF_COMPLETE
;
513 //Demod.output[Demod.len] = Demod.syncBit & 0xFF;
517 Demod
.output
[Demod
.len
] = 0xab;
518 Demod
.state
= DEMOD_ERROR_WAIT
;
522 case DEMOD_SOF_COMPLETE
:
523 case DEMOD_MANCHESTER_D
:
524 case DEMOD_MANCHESTER_E
:
525 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
526 // 00001111 = 1 (0 in 14443)
527 if(Demod
.sub
== SUB_SECOND_HALF
) { // SUB_FIRST_HALF
529 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) ^ 0x100;
530 Demod
.state
= DEMOD_MANCHESTER_D
;
532 else if(Demod
.sub
== SUB_FIRST_HALF
) { // SUB_SECOND_HALF
534 Demod
.shiftReg
>>= 1;
535 Demod
.state
= DEMOD_MANCHESTER_E
;
537 else if(Demod
.sub
== SUB_BOTH
) {
538 Demod
.state
= DEMOD_MANCHESTER_F
;
541 Demod
.state
= DEMOD_ERROR_WAIT
;
546 case DEMOD_MANCHESTER_F
:
547 // Tag response does not need to be a complete byte!
548 if(Demod
.len
> 0 || Demod
.bitCount
> 0) {
549 if(Demod
.bitCount
> 1) { // was > 0, do not interpret last closing bit, is part of EOF
550 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align data
551 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
555 Demod
.state
= DEMOD_UNSYNCD
;
559 Demod
.output
[Demod
.len
] = 0xad;
560 Demod
.state
= DEMOD_ERROR_WAIT
;
565 case DEMOD_ERROR_WAIT
:
566 Demod
.state
= DEMOD_UNSYNCD
;
570 Demod
.output
[Demod
.len
] = 0xdd;
571 Demod
.state
= DEMOD_UNSYNCD
;
575 /*if(Demod.bitCount>=9) {
576 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
579 Demod.parityBits <<= 1;
580 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
585 if(Demod
.bitCount
>=8) {
586 Demod
.shiftReg
>>= 1;
587 Demod
.output
[Demod
.len
] = (Demod
.shiftReg
& 0xff);
594 Demod
.output
[Demod
.len
] = 0xBB;
596 Demod
.output
[Demod
.len
] = error
& 0xFF;
598 Demod
.output
[Demod
.len
] = 0xBB;
600 Demod
.output
[Demod
.len
] = bit
& 0xFF;
602 Demod
.output
[Demod
.len
] = Demod
.buffer
& 0xFF;
605 Demod
.output
[Demod
.len
] = Demod
.buffer2
& 0xFF;
607 Demod
.output
[Demod
.len
] = Demod
.syncBit
& 0xFF;
609 Demod
.output
[Demod
.len
] = 0xBB;
616 } // end (state != UNSYNCED)
621 //=============================================================================
622 // Finally, a `sniffer' for iClass communication
623 // Both sides of communication!
624 //=============================================================================
626 //-----------------------------------------------------------------------------
627 // Record the sequence of commands sent by the reader to the tag, with
628 // triggering so that we start recording at the point that the tag is moved
630 //-----------------------------------------------------------------------------
631 void RAMFUNC
SnoopIClass(void)
635 // We won't start recording the frames that we acquire until we trigger;
636 // a good trigger condition to get started is probably when we see a
637 // response from the tag.
638 //int triggered = FALSE; // FALSE to wait first for card
640 // The command (reader -> tag) that we're receiving.
641 // The length of a received command will in most cases be no more than 18 bytes.
642 // So 32 should be enough!
643 #define ICLASS_BUFFER_SIZE 32
644 uint8_t readerToTagCmd
[ICLASS_BUFFER_SIZE
];
645 // The response (tag -> reader) that we're receiving.
646 uint8_t tagToReaderResponse
[ICLASS_BUFFER_SIZE
];
648 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
650 // free all BigBuf memory
652 // The DMA buffer, used to stream samples from the FPGA
653 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
655 // reset traceLen to 0
656 iso14a_set_tracing(TRUE
);
657 iso14a_clear_trace();
658 iso14a_set_trigger(FALSE
);
665 // Count of samples received so far, so that we can include timing
666 // information in the trace buffer.
670 // Set up the demodulator for tag -> reader responses.
671 Demod
.output
= tagToReaderResponse
;
673 Demod
.state
= DEMOD_UNSYNCD
;
675 // Setup for the DMA.
678 lastRxCounter
= DMA_BUFFER_SIZE
;
679 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
681 // And the reader -> tag commands
682 memset(&Uart
, 0, sizeof(Uart
));
683 Uart
.output
= readerToTagCmd
;
684 Uart
.byteCntMax
= 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
685 Uart
.state
= STATE_UNSYNCD
;
687 // And put the FPGA in the appropriate mode
688 // Signal field is off with the appropriate LED
690 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
691 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
693 uint32_t time_0
= GetCountSspClk();
694 uint32_t time_start
= 0;
695 uint32_t time_stop
= 0;
702 // And now we loop, receiving samples.
706 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) &
708 if(behindBy
> maxBehindBy
) {
709 maxBehindBy
= behindBy
;
710 if(behindBy
> (9 * DMA_BUFFER_SIZE
/ 10)) {
711 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy
);
715 if(behindBy
< 1) continue;
721 if(upTo
- dmaBuf
> DMA_BUFFER_SIZE
) {
722 upTo
-= DMA_BUFFER_SIZE
;
723 lastRxCounter
+= DMA_BUFFER_SIZE
;
724 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
725 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
732 decbyte
^= (1 << (3 - div
));
735 // FOR READER SIDE COMMUMICATION...
738 decbyter
^= (smpl
& 0x30);
742 if((div
+ 1) % 2 == 0) {
744 if(OutOfNDecoding((smpl
& 0xF0) >> 4)) {
745 rsamples
= samples
- Uart
.samples
;
746 time_stop
= (GetCountSspClk()-time_0
) << 4;
749 //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break;
750 //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
752 uint8_t parity
[MAX_PARITY_SIZE
];
753 GetParity(Uart
.output
, Uart
.byteCnt
, parity
);
754 LogTrace(Uart
.output
,Uart
.byteCnt
, time_start
, time_stop
, parity
, TRUE
);
758 /* And ready to receive another command. */
759 Uart
.state
= STATE_UNSYNCD
;
760 /* And also reset the demod code, which might have been */
761 /* false-triggered by the commands from the reader. */
762 Demod
.state
= DEMOD_UNSYNCD
;
766 time_start
= (GetCountSspClk()-time_0
) << 4;
773 if(ManchesterDecoding(smpl
& 0x0F)) {
774 time_stop
= (GetCountSspClk()-time_0
) << 4;
776 rsamples
= samples
- Demod
.samples
;
780 uint8_t parity
[MAX_PARITY_SIZE
];
781 GetParity(Demod
.output
, Demod
.len
, parity
);
782 LogTrace(Demod
.output
, Demod
.len
, time_start
, time_stop
, parity
, FALSE
);
785 // And ready to receive another response.
786 memset(&Demod
, 0, sizeof(Demod
));
787 Demod
.output
= tagToReaderResponse
;
788 Demod
.state
= DEMOD_UNSYNCD
;
791 time_start
= (GetCountSspClk()-time_0
) << 4;
800 DbpString("cancelled_a");
805 DbpString("COMMAND FINISHED");
807 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
808 Dbprintf("%x %x %x", Uart
.byteCntMax
, traceLen
, (int)Uart
.output
[0]);
811 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
812 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
813 Dbprintf("%x %x %x", Uart
.byteCntMax
, traceLen
, (int)Uart
.output
[0]);
820 void rotateCSN(uint8_t* originalCSN
, uint8_t* rotatedCSN
) {
822 for(i
= 0; i
< 8; i
++) {
823 rotatedCSN
[i
] = (originalCSN
[i
] >> 3) | (originalCSN
[(i
+1)%8] << 5);
827 //-----------------------------------------------------------------------------
828 // Wait for commands from reader
829 // Stop when button is pressed
830 // Or return TRUE when command is captured
831 //-----------------------------------------------------------------------------
832 static int GetIClassCommandFromReader(uint8_t *received
, int *len
, int maxLen
)
834 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
835 // only, since we are receiving, not transmitting).
836 // Signal field is off with the appropriate LED
838 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
840 // Now run a `software UART' on the stream of incoming samples.
841 Uart
.output
= received
;
842 Uart
.byteCntMax
= maxLen
;
843 Uart
.state
= STATE_UNSYNCD
;
848 if(BUTTON_PRESS()) return FALSE
;
850 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
851 AT91C_BASE_SSC
->SSC_THR
= 0x00;
853 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
854 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
856 if(OutOfNDecoding(b
& 0x0f)) {
864 static uint8_t encode4Bits(const uint8_t b
)
867 // OTA, the least significant bits first
869 // 1 - Bit value to send
870 // 2 - Reversed (big-endian)
876 case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
877 case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
878 case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
879 case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
880 case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
881 case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
882 case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
883 case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
884 case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
885 case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
886 case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
887 case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
888 case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
889 case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
890 case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
891 default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
896 //-----------------------------------------------------------------------------
897 // Prepare tag messages
898 //-----------------------------------------------------------------------------
899 static void CodeIClassTagAnswer(const uint8_t *cmd
, int len
)
903 * SOF comprises 3 parts;
904 * * An unmodulated time of 56.64 us
905 * * 24 pulses of 423.75 KHz (fc/32)
906 * * A logic 1, which starts with an unmodulated time of 18.88us
907 * followed by 8 pulses of 423.75kHz (fc/32)
910 * EOF comprises 3 parts:
911 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
913 * - 24 pulses of fc/32
914 * - An unmodulated time of 56.64 us
917 * A logic 0 starts with 8 pulses of fc/32
918 * followed by an unmodulated time of 256/fc (~18,88us).
920 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
921 * 8 pulses of fc/32 (also 18.88us)
923 * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag,
925 * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us).
926 * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us
928 * In this mode the SOF can be written as 00011101 = 0x1D
929 * The EOF can be written as 10111000 = 0xb8
940 ToSend
[++ToSendMax
] = 0x1D;
942 for(i
= 0; i
< len
; i
++) {
944 ToSend
[++ToSendMax
] = encode4Bits(b
& 0xF); //Least significant half
945 ToSend
[++ToSendMax
] = encode4Bits((b
>>4) & 0xF);//Most significant half
949 ToSend
[++ToSendMax
] = 0xB8;
950 //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
951 // Convert from last byte pos to length
956 static void CodeIClassTagSOF()
958 //So far a dummy implementation, not used
959 //int lastProxToAirDuration =0;
963 ToSend
[++ToSendMax
] = 0x1D;
964 // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
966 // Convert from last byte pos to length
970 int doIClassSimulation(uint8_t csn
[], int breakAfterMacReceived
, uint8_t *reader_mac_buf
);
972 * @brief SimulateIClass simulates an iClass card.
973 * @param arg0 type of simulation
974 * - 0 uses the first 8 bytes in usb data as CSN
975 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
976 * in the usb data. This mode collects MAC from the reader, in order to do an offline
977 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
978 * - Other : Uses the default CSN (031fec8af7ff12e0)
979 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
983 void SimulateIClass(uint32_t arg0
, uint32_t arg1
, uint32_t arg2
, uint8_t *datain
)
985 uint32_t simType
= arg0
;
986 uint32_t numberOfCSNS
= arg1
;
987 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
989 // Enable and clear the trace
990 iso14a_set_tracing(TRUE
);
991 iso14a_clear_trace();
993 uint8_t csn_crc
[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
995 // Use the CSN from commandline
996 memcpy(csn_crc
, datain
, 8);
997 doIClassSimulation(csn_crc
,0,NULL
);
998 }else if(simType
== 1)
1000 doIClassSimulation(csn_crc
,0,NULL
);
1002 else if(simType
== 2)
1005 uint8_t mac_responses
[USB_CMD_DATA_SIZE
] = { 0 };
1006 Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS
);
1007 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
1008 // in order to collect MAC's from the reader. This can later be used in an offlne-attack
1009 // in order to obtain the keys, as in the "dismantling iclass"-paper.
1011 for( ; i
< numberOfCSNS
&& i
*8+8 < USB_CMD_DATA_SIZE
; i
++)
1013 // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
1015 memcpy(csn_crc
, datain
+(i
*8), 8);
1016 if(doIClassSimulation(csn_crc
,1,mac_responses
+i
*8))
1018 cmd_send(CMD_ACK
,CMD_SIMULATE_TAG_ICLASS
,i
,0,mac_responses
,i
*8);
1019 return; // Button pressed
1022 cmd_send(CMD_ACK
,CMD_SIMULATE_TAG_ICLASS
,i
,0,mac_responses
,i
*8);
1026 // We may want a mode here where we hardcode the csns to use (from proxclone).
1027 // That will speed things up a little, but not required just yet.
1028 Dbprintf("The mode is not implemented, reserved for future use");
1030 Dbprintf("Done...");
1034 * @brief Does the actual simulation
1035 * @param csn - csn to use
1036 * @param breakAfterMacReceived if true, returns after reader MAC has been received.
1038 int doIClassSimulation(uint8_t csn
[], int breakAfterMacReceived
, uint8_t *reader_mac_buf
)
1041 // CSN followed by two CRC bytes
1042 uint8_t response1
[] = { 0x0F} ;
1043 uint8_t response2
[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1044 uint8_t response3
[] = { 0,0,0,0,0,0,0,0,0,0};
1045 memcpy(response3
,csn
,sizeof(response3
));
1046 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn
[0],csn
[1],csn
[2],csn
[3],csn
[4],csn
[5],csn
[6],csn
[7]);
1048 uint8_t response4
[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1050 // Construct anticollision-CSN
1051 rotateCSN(response3
,response2
);
1053 // Compute CRC on both CSNs
1054 ComputeCrc14443(CRC_ICLASS
, response2
, 8, &response2
[8], &response2
[9]);
1055 ComputeCrc14443(CRC_ICLASS
, response3
, 8, &response3
[8], &response3
[9]);
1061 // Tag anticoll. CSN
1062 // Reader 81 anticoll. CSN
1065 uint8_t *modulated_response
;
1066 int modulated_response_size
;
1067 uint8_t* trace_data
= NULL
;
1068 int trace_data_size
= 0;
1069 //uint8_t sof = 0x0f;
1071 // free eventually allocated BigBuf memory
1073 // Respond SOF -- takes 1 bytes
1074 uint8_t *resp1
= BigBuf_malloc(2);
1077 // Anticollision CSN (rotated CSN)
1078 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1079 uint8_t *resp2
= BigBuf_malloc(28);
1083 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1084 uint8_t *resp3
= BigBuf_malloc(30);
1088 // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
1089 uint8_t *resp4
= BigBuf_malloc(20);
1092 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
1093 memset(receivedCmd
, 0x44, MAX_FRAME_SIZE
);
1096 // Prepare card messages
1099 // First card answer: SOF
1101 memcpy(resp1
, ToSend
, ToSendMax
); resp1Len
= ToSendMax
;
1103 // Anticollision CSN
1104 CodeIClassTagAnswer(response2
, sizeof(response2
));
1105 memcpy(resp2
, ToSend
, ToSendMax
); resp2Len
= ToSendMax
;
1108 CodeIClassTagAnswer(response3
, sizeof(response3
));
1109 memcpy(resp3
, ToSend
, ToSendMax
); resp3Len
= ToSendMax
;
1112 CodeIClassTagAnswer(response4
, sizeof(response4
));
1113 memcpy(resp4
, ToSend
, ToSendMax
); resp4Len
= ToSendMax
;
1116 // Start from off (no field generated)
1117 //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1119 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1122 // We need to listen to the high-frequency, peak-detected path.
1123 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1126 // To control where we are in the protocol
1128 uint32_t time_0
= GetCountSspClk();
1129 uint32_t t2r_time
=0;
1130 uint32_t r2t_time
=0;
1133 bool buttonPressed
= false;
1139 // Can be used to get a trigger for an oscilloscope..
1142 if(!GetIClassCommandFromReader(receivedCmd
, &len
, 100)) {
1143 buttonPressed
= true;
1146 r2t_time
= GetCountSspClk();
1150 // Okay, look at the command now.
1151 if(receivedCmd
[0] == 0x0a ) {
1152 // Reader in anticollission phase
1153 modulated_response
= resp1
; modulated_response_size
= resp1Len
; //order = 1;
1154 trace_data
= response1
;
1155 trace_data_size
= sizeof(response1
);
1156 } else if(receivedCmd
[0] == 0x0c) {
1157 // Reader asks for anticollission CSN
1158 modulated_response
= resp2
; modulated_response_size
= resp2Len
; //order = 2;
1159 trace_data
= response2
;
1160 trace_data_size
= sizeof(response2
);
1161 //DbpString("Reader requests anticollission CSN:");
1162 } else if(receivedCmd
[0] == 0x81) {
1163 // Reader selects anticollission CSN.
1164 // Tag sends the corresponding real CSN
1165 modulated_response
= resp3
; modulated_response_size
= resp3Len
; //order = 3;
1166 trace_data
= response3
;
1167 trace_data_size
= sizeof(response3
);
1168 //DbpString("Reader selects anticollission CSN:");
1169 } else if(receivedCmd
[0] == 0x88) {
1170 // Read e-purse (88 02)
1171 modulated_response
= resp4
; modulated_response_size
= resp4Len
; //order = 4;
1172 trace_data
= response4
;
1173 trace_data_size
= sizeof(response4
);
1175 } else if(receivedCmd
[0] == 0x05) {
1176 // Reader random and reader MAC!!!
1178 // We do not know what to answer, so lets keep quiet
1179 modulated_response
= resp1
; modulated_response_size
= 0; //order = 5;
1181 trace_data_size
= 0;
1182 if (breakAfterMacReceived
){
1184 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
1185 ,csn
[0],csn
[1],csn
[2],csn
[3],csn
[4],csn
[5],csn
[6],csn
[7]);
1186 Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len
,
1187 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1188 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1189 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1190 if (reader_mac_buf
!= NULL
)
1192 memcpy(reader_mac_buf
,receivedCmd
+1,8);
1196 } else if(receivedCmd
[0] == 0x00 && len
== 1) {
1197 // Reader ends the session
1198 modulated_response
= resp1
; modulated_response_size
= 0; //order = 0;
1200 trace_data_size
= 0;
1202 //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
1203 // Never seen this command before
1204 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1206 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1207 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1208 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1210 modulated_response
= resp1
; modulated_response_size
= 0; //order = 0;
1212 trace_data_size
= 0;
1215 if(cmdsRecvd
> 100) {
1216 //DbpString("100 commands later...");
1223 A legit tag has about 380us delay between reader EOT and tag SOF.
1225 if(modulated_response_size
> 0) {
1226 SendIClassAnswer(modulated_response
, modulated_response_size
, 1);
1227 t2r_time
= GetCountSspClk();
1231 uint8_t parity
[MAX_PARITY_SIZE
];
1232 GetParity(receivedCmd
, len
, parity
);
1233 LogTrace(receivedCmd
,len
, (r2t_time
-time_0
)<< 4, (r2t_time
-time_0
) << 4, parity
, TRUE
);
1235 if (trace_data
!= NULL
) {
1236 GetParity(trace_data
, trace_data_size
, parity
);
1237 LogTrace(trace_data
, trace_data_size
, (t2r_time
-time_0
) << 4, (t2r_time
-time_0
) << 4, parity
, FALSE
);
1240 DbpString("Trace full");
1245 memset(receivedCmd
, 0x44, MAX_FRAME_SIZE
);
1248 //Dbprintf("%x", cmdsRecvd);
1255 DbpString("Button pressed");
1257 return buttonPressed
;
1260 static int SendIClassAnswer(uint8_t *resp
, int respLen
, int delay
)
1262 int i
= 0, d
=0;//, u = 0, d = 0;
1265 //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
1266 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT
);
1268 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1270 while(!BUTTON_PRESS()) {
1271 if((AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
)){
1272 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1274 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)){
1287 AT91C_BASE_SSC
->SSC_THR
= b
;
1290 // if (i > respLen +4) break;
1291 if (i
> respLen
+1) break;
1299 //-----------------------------------------------------------------------------
1300 // Transmit the command (to the tag) that was placed in ToSend[].
1301 //-----------------------------------------------------------------------------
1302 static void TransmitIClassCommand(const uint8_t *cmd
, int len
, int *samples
, int *wait
)
1305 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1306 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1311 if(*wait
< 10) *wait
= 10;
1313 for(c
= 0; c
< *wait
;) {
1314 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1315 AT91C_BASE_SSC
->SSC_THR
= 0x00; // For exact timing!
1318 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1319 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1329 bool firstpart
= TRUE
;
1332 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1334 // DOUBLE THE SAMPLES!
1336 sendbyte
= (cmd
[c
] & 0xf0) | (cmd
[c
] >> 4);
1339 sendbyte
= (cmd
[c
] & 0x0f) | (cmd
[c
] << 4);
1342 if(sendbyte
== 0xff) {
1345 AT91C_BASE_SSC
->SSC_THR
= sendbyte
;
1346 firstpart
= !firstpart
;
1352 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1353 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1358 if (samples
) *samples
= (c
+ *wait
) << 3;
1362 //-----------------------------------------------------------------------------
1363 // Prepare iClass reader command to send to FPGA
1364 //-----------------------------------------------------------------------------
1365 void CodeIClassCommand(const uint8_t * cmd
, int len
)
1372 // Start of Communication: 1 out of 4
1373 ToSend
[++ToSendMax
] = 0xf0;
1374 ToSend
[++ToSendMax
] = 0x00;
1375 ToSend
[++ToSendMax
] = 0x0f;
1376 ToSend
[++ToSendMax
] = 0x00;
1378 // Modulate the bytes
1379 for (i
= 0; i
< len
; i
++) {
1381 for(j
= 0; j
< 4; j
++) {
1382 for(k
= 0; k
< 4; k
++) {
1384 ToSend
[++ToSendMax
] = 0x0f;
1387 ToSend
[++ToSendMax
] = 0x00;
1394 // End of Communication
1395 ToSend
[++ToSendMax
] = 0x00;
1396 ToSend
[++ToSendMax
] = 0x00;
1397 ToSend
[++ToSendMax
] = 0xf0;
1398 ToSend
[++ToSendMax
] = 0x00;
1400 // Convert from last character reference to length
1404 void ReaderTransmitIClass(uint8_t* frame
, int len
)
1409 // This is tied to other size changes
1410 CodeIClassCommand(frame
,len
);
1413 TransmitIClassCommand(ToSend
, ToSendMax
, &samples
, &wait
);
1417 // Store reader command in buffer
1419 uint8_t par
[MAX_PARITY_SIZE
];
1420 GetParity(frame
, len
, par
);
1421 LogTrace(frame
, len
, rsamples
, rsamples
, par
, TRUE
);
1425 //-----------------------------------------------------------------------------
1426 // Wait a certain time for tag response
1427 // If a response is captured return TRUE
1428 // If it takes too long return FALSE
1429 //-----------------------------------------------------------------------------
1430 static int GetIClassAnswer(uint8_t *receivedResponse
, int maxLen
, int *samples
, int *elapsed
) //uint8_t *buffer
1432 // buffer needs to be 512 bytes
1435 // Set FPGA mode to "reader listen mode", no modulation (listen
1436 // only, since we are receiving, not transmitting).
1437 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1439 // Now get the answer from the card
1440 Demod
.output
= receivedResponse
;
1442 Demod
.state
= DEMOD_UNSYNCD
;
1445 if (elapsed
) *elapsed
= 0;
1453 if(BUTTON_PRESS()) return FALSE
;
1455 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1456 AT91C_BASE_SSC
->SSC_THR
= 0x00; // To make use of exact timing of next command from reader!!
1457 if (elapsed
) (*elapsed
)++;
1459 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1460 if(c
< timeout
) { c
++; } else { return FALSE
; }
1461 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1465 if(ManchesterDecoding(b
& 0x0f)) {
1473 int ReaderReceiveIClass(uint8_t* receivedAnswer
)
1476 if (!GetIClassAnswer(receivedAnswer
,160,&samples
,0)) return FALSE
;
1477 rsamples
+= samples
;
1479 uint8_t parity
[MAX_PARITY_SIZE
];
1480 GetParity(receivedAnswer
, Demod
.len
, parity
);
1481 LogTrace(receivedAnswer
,Demod
.len
,rsamples
,rsamples
,parity
,FALSE
);
1483 if(samples
== 0) return FALSE
;
1487 void setupIclassReader()
1489 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1490 // Reset trace buffer
1491 iso14a_set_tracing(TRUE
);
1492 iso14a_clear_trace();
1496 // Start from off (no field generated)
1497 // Signal field is off with the appropriate LED
1499 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1502 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1504 // Now give it time to spin up.
1505 // Signal field is on with the appropriate LED
1506 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1512 size_t sendCmdGetResponseWithRetries(uint8_t* command
, size_t cmdsize
, uint8_t* resp
, uint8_t expected_size
, uint8_t retries
)
1514 while(retries
-- > 0)
1516 ReaderTransmitIClass(command
, cmdsize
);
1517 if(expected_size
== ReaderReceiveIClass(resp
)){
1525 * @brief Talks to an iclass tag, sends the commands to get CSN and CC.
1526 * @param card_data where the CSN and CC are stored for return
1529 * 2 = Got CSN and CC
1531 uint8_t handshakeIclassTag(uint8_t *card_data
)
1533 static uint8_t act_all
[] = { 0x0a };
1534 static uint8_t identify
[] = { 0x0c };
1535 static uint8_t select
[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1536 static uint8_t readcheck_cc
[]= { 0x88, 0x02 };
1537 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1539 uint8_t read_status
= 0;
1542 ReaderTransmitIClass(act_all
, 1);
1544 if(!ReaderReceiveIClass(resp
)) return read_status
;//Fail
1546 ReaderTransmitIClass(identify
, 1);
1547 //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
1548 uint8_t len
= ReaderReceiveIClass(resp
);
1549 if(len
!= 10) return read_status
;//Fail
1551 //Copy the Anti-collision CSN to our select-packet
1552 memcpy(&select
[1],resp
,8);
1554 ReaderTransmitIClass(select
, sizeof(select
));
1555 //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
1556 len
= ReaderReceiveIClass(resp
);
1557 if(len
!= 10) return read_status
;//Fail
1559 //Success - level 1, we got CSN
1560 //Save CSN in response data
1561 memcpy(card_data
,resp
,8);
1563 //Flag that we got to at least stage 1, read CSN
1566 // Card selected, now read e-purse (cc)
1567 ReaderTransmitIClass(readcheck_cc
, sizeof(readcheck_cc
));
1568 if(ReaderReceiveIClass(resp
) == 8) {
1569 //Save CC (e-purse) in response data
1570 memcpy(card_data
+8,resp
,8);
1579 // Reader iClass Anticollission
1580 void ReaderIClass(uint8_t arg0
) {
1582 uint8_t card_data
[24]={0};
1583 uint8_t last_csn
[8]={0};
1586 bool abort_after_read
= arg0
& FLAG_ICLASS_READER_ONLY_ONCE
;
1587 bool get_cc
= arg0
& FLAG_ICLASS_READER_GET_CC
;
1589 setupIclassReader();
1591 size_t datasize
= 0;
1592 while(!BUTTON_PRESS())
1595 if(traceLen
> BigBuf_max_traceLen()) {
1596 DbpString("Trace full");
1601 read_status
= handshakeIclassTag(card_data
);
1603 if(read_status
== 0) continue;
1604 if(read_status
== 1) datasize
= 8;
1605 if(read_status
== 2) datasize
= 16;
1608 //Send back to client, but don't bother if we already sent this
1609 if(memcmp(last_csn
, card_data
, 8) != 0)
1612 if(!get_cc
|| (get_cc
&& read_status
== 2))
1614 cmd_send(CMD_ACK
,read_status
,0,0,card_data
,datasize
);
1615 if(abort_after_read
) {
1619 //Save that we already sent this....
1620 memcpy(last_csn
, card_data
, 8);
1622 //If 'get_cc' was specified and we didn't get a CC, we'll just keep trying...
1626 cmd_send(CMD_ACK
,0,0,0,card_data
, 0);
1630 void ReaderIClass_Replay(uint8_t arg0
, uint8_t *MAC
) {
1632 uint8_t card_data
[USB_CMD_DATA_SIZE
]={0};
1633 uint16_t block_crc_LUT
[255] = {0};
1635 {//Generate a lookup table for block crc
1636 for(int block
= 0; block
< 255; block
++){
1638 block_crc_LUT
[block
] = iclass_crc16(&bl
,1);
1641 //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
1643 uint8_t check
[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1644 uint8_t read
[] = { 0x0c, 0x00, 0x00, 0x00 };
1650 static struct memory_t
{
1658 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1660 setupIclassReader();
1663 while(!BUTTON_PRESS()) {
1667 if(traceLen
> BigBuf_max_traceLen()) {
1668 DbpString("Trace full");
1672 uint8_t read_status
= handshakeIclassTag(card_data
);
1673 if(read_status
< 2) continue;
1675 //for now replay captured auth (as cc not updated)
1676 memcpy(check
+5,MAC
,4);
1678 if(sendCmdGetResponseWithRetries(check
, sizeof(check
),resp
, 4, 5))
1680 Dbprintf("Error: Authentication Fail!");
1684 //first get configuration block (block 1)
1685 crc
= block_crc_LUT
[1];
1688 read
[3] = crc
& 0xff;
1690 if(sendCmdGetResponseWithRetries(read
, sizeof(read
),resp
, 10, 10))
1692 Dbprintf("Dump config (block 1) failed");
1697 memory
.k16
= (mem
& 0x80);
1698 memory
.book
= (mem
& 0x20);
1699 memory
.k2
= (mem
& 0x8);
1700 memory
.lockauth
= (mem
& 0x2);
1701 memory
.keyaccess
= (mem
& 0x1);
1703 cardsize
= memory
.k16
? 255 : 32;
1705 //Set card_data to all zeroes, we'll fill it with data
1706 memset(card_data
,0x0,USB_CMD_DATA_SIZE
);
1707 uint8_t failedRead
=0;
1708 uint8_t stored_data_length
=0;
1709 //then loop around remaining blocks
1710 for(int block
=0; block
< cardsize
; block
++){
1713 crc
= block_crc_LUT
[block
];
1715 read
[3] = crc
& 0xff;
1717 if(!sendCmdGetResponseWithRetries(read
, sizeof(read
), resp
, 10, 10))
1719 Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
1720 block
, resp
[0], resp
[1], resp
[2],
1721 resp
[3], resp
[4], resp
[5],
1724 //Fill up the buffer
1725 memcpy(card_data
+stored_data_length
,resp
,8);
1726 stored_data_length
+= 8;
1728 if(stored_data_length
+8 > USB_CMD_DATA_SIZE
)
1729 {//Time to send this off and start afresh
1731 stored_data_length
,//data length
1732 failedRead
,//Failed blocks?
1734 card_data
, stored_data_length
);
1736 stored_data_length
= 0;
1742 stored_data_length
+=8;//Otherwise, data becomes misaligned
1743 Dbprintf("Failed to dump block %d", block
);
1746 //Send off any remaining data
1747 if(stored_data_length
> 0)
1750 stored_data_length
,//data length
1751 failedRead
,//Failed blocks?
1753 card_data
, stored_data_length
);
1755 //If we got here, let's break
1758 //Signal end of transmission
1768 //2. Create Read method (cut-down from above) based off responses from 1.
1769 // Since we have the MAC could continue to use replay function.
1770 //3. Create Write method
1772 void IClass_iso14443A_write(uint8_t arg0, uint8_t blockNo, uint8_t *data, uint8_t *MAC) {
1773 uint8_t act_all[] = { 0x0a };
1774 uint8_t identify[] = { 0x0c };
1775 uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1776 uint8_t readcheck_cc[]= { 0x88, 0x02 };
1777 uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1778 uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
1779 uint8_t write[] = { 0x87, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1783 uint8_t* resp = (((uint8_t *)BigBuf) + 3560);
1785 // Reset trace buffer
1786 memset(trace, 0x44, RECV_CMD_OFFSET);
1791 // Start from off (no field generated)
1792 // Signal field is off with the appropriate LED
1794 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1797 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1799 // Now give it time to spin up.
1800 // Signal field is on with the appropriate LED
1801 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1806 for(int i=0;i<1;i++) {
1808 if(traceLen > TRACE_SIZE) {
1809 DbpString("Trace full");
1813 if (BUTTON_PRESS()) break;
1816 ReaderTransmitIClass(act_all, 1);
1818 if(ReaderReceiveIClass(resp)) {
1819 ReaderTransmitIClass(identify, 1);
1820 if(ReaderReceiveIClass(resp) == 10) {
1822 memcpy(&select[1],resp,8);
1823 ReaderTransmitIClass(select, sizeof(select));
1825 if(ReaderReceiveIClass(resp) == 10) {
1826 Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
1827 resp[0], resp[1], resp[2],
1828 resp[3], resp[4], resp[5],
1832 Dbprintf("Readcheck on Sector 2");
1833 ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
1834 if(ReaderReceiveIClass(resp) == 8) {
1835 Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x",
1836 resp[0], resp[1], resp[2],
1837 resp[3], resp[4], resp[5],
1840 Dbprintf("Authenticate");
1841 //for now replay captured auth (as cc not updated)
1842 memcpy(check+5,MAC,4);
1843 Dbprintf(" AA: %02x %02x %02x %02x",
1844 check[5], check[6], check[7],check[8]);
1845 ReaderTransmitIClass(check, sizeof(check));
1846 if(ReaderReceiveIClass(resp) == 4) {
1847 Dbprintf(" AR: %02x %02x %02x %02x",
1848 resp[0], resp[1], resp[2],resp[3]);
1850 Dbprintf("Error: Authentication Fail!");
1853 Dbprintf("Write Block");
1855 //read configuration for max block number
1858 uint8_t *blockno=&read[1];
1859 crc = iclass_crc16((char *)blockno,1);
1861 read[3] = crc & 0xff;
1862 while(!read_success){
1863 ReaderTransmitIClass(read, sizeof(read));
1864 if(ReaderReceiveIClass(resp) == 10) {
1867 memory.k16= (mem & 0x80);
1868 memory.book= (mem & 0x20);
1869 memory.k2= (mem & 0x8);
1870 memory.lockauth= (mem & 0x2);
1871 memory.keyaccess= (mem & 0x1);
1880 memcpy(write+1,blockNo,1);
1881 memcpy(write+2,data,8);
1882 memcpy(write+10,mac,4);
1883 while(!send_success){
1884 ReaderTransmitIClass(write, sizeof(write));
1885 if(ReaderReceiveIClass(resp) == 10) {