1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2015 piwi
3 // fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Implements a card only attack based on crypto text (encrypted nonces
9 // received during a nested authentication) only. Unlike other card only
10 // attacks this doesn't rely on implementation errors but only on the
11 // inherent weaknesses of the crypto1 cypher. Described in
12 // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
13 // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
14 // Computer and Communications Security, 2015
15 //-----------------------------------------------------------------------------
16 #include "cmdhfmfhard.h"
18 #define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
19 #define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
20 #define MIN_NONCES_REQUIRED 4000 // 4000-5000 could be good
21 #define NONCES_TRIGGER 2500 // every 2500 nonces check if we can crack the key
22 #define CRACKING_THRESHOLD 39.00f // as 2^39
24 #define END_OF_LIST_MARKER 0xFFFFFFFF
26 static const float p_K
[257] = { // the probability that a random nonce has a Sum Property == K
27 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
28 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
29 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
30 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
31 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
32 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
33 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
34 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
35 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
36 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
37 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
38 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
39 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
40 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
41 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
42 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
43 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
44 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
45 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
46 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
47 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
58 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
61 typedef struct noncelistentry
{
67 typedef struct noncelist
{
74 noncelistentry_t
*first
;
78 static size_t nonces_to_bruteforce
= 0;
79 static noncelistentry_t
*brute_force_nonces
[256];
80 static uint32_t cuid
= 0;
81 static noncelist_t nonces
[256];
82 static uint8_t best_first_bytes
[256];
83 static uint16_t first_byte_Sum
= 0;
84 static uint16_t first_byte_num
= 0;
85 static uint16_t num_good_first_bytes
= 0;
86 static uint64_t maximum_states
= 0;
87 static uint64_t known_target_key
;
88 static bool write_stats
= false;
89 static FILE *fstats
= NULL
;
97 #define STATELIST_INDEX_WIDTH 16
98 #define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
103 uint32_t *index
[2][STATELIST_INDEX_SIZE
];
104 } partial_indexed_statelist_t
;
113 static partial_indexed_statelist_t partial_statelist
[17];
114 static partial_indexed_statelist_t statelist_bitflip
;
115 static statelist_t
*candidates
= NULL
;
117 bool thread_check_started
= false;
118 bool thread_check_done
= false;
119 bool field_off
= false;
121 pthread_t thread_check
;
123 static bool generate_candidates(uint16_t, uint16_t);
124 static bool brute_force(void);
126 static int add_nonce(uint32_t nonce_enc
, uint8_t par_enc
)
128 uint8_t first_byte
= nonce_enc
>> 24;
129 noncelistentry_t
*p1
= nonces
[first_byte
].first
;
130 noncelistentry_t
*p2
= NULL
;
132 if (p1
== NULL
) { // first nonce with this 1st byte
134 first_byte_Sum
+= evenparity32((nonce_enc
& 0xff000000) | (par_enc
& 0x08));
135 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
138 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
139 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
142 while (p1
!= NULL
&& (p1
->nonce_enc
& 0x00ff0000) < (nonce_enc
& 0x00ff0000)) {
147 if (p1
== NULL
) { // need to add at the end of the list
148 if (p2
== NULL
) { // list is empty yet. Add first entry.
149 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
150 } else { // add new entry at end of existing list.
151 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
153 } else if ((p1
->nonce_enc
& 0x00ff0000) != (nonce_enc
& 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
154 if (p2
== NULL
) { // need to insert at start of list
155 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
157 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
159 } else { // we have seen this 2nd byte before. Nothing to add or insert.
163 // add or insert new data
165 p2
->nonce_enc
= nonce_enc
;
166 p2
->par_enc
= par_enc
;
168 if(nonces_to_bruteforce
< 256){
169 brute_force_nonces
[nonces_to_bruteforce
] = p2
;
170 nonces_to_bruteforce
++;
173 nonces
[first_byte
].num
++;
174 nonces
[first_byte
].Sum
+= evenparity32((nonce_enc
& 0x00ff0000) | (par_enc
& 0x04));
175 nonces
[first_byte
].updated
= true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
177 return (1); // new nonce added
180 static void init_nonce_memory(void)
182 for (uint16_t i
= 0; i
< 256; i
++) {
185 nonces
[i
].Sum8_guess
= 0;
186 nonces
[i
].Sum8_prob
= 0.0;
187 nonces
[i
].updated
= true;
188 nonces
[i
].first
= NULL
;
192 num_good_first_bytes
= 0;
195 static void free_nonce_list(noncelistentry_t
*p
)
200 free_nonce_list(p
->next
);
205 static void free_nonces_memory(void)
207 for (uint16_t i
= 0; i
< 256; i
++) {
208 free_nonce_list(nonces
[i
].first
);
212 static uint16_t PartialSumProperty(uint32_t state
, odd_even_t odd_even
)
215 for (uint16_t j
= 0; j
< 16; j
++) {
217 uint16_t part_sum
= 0;
218 if (odd_even
== ODD_STATE
) {
219 for (uint16_t i
= 0; i
< 5; i
++) {
220 part_sum
^= filter(st
);
221 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
223 part_sum
^= 1; // XOR 1 cancelled out for the other 8 bits
225 for (uint16_t i
= 0; i
< 4; i
++) {
226 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
227 part_sum
^= filter(st
);
235 // static uint16_t SumProperty(struct Crypto1State *s)
237 // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
238 // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
239 // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
242 static double p_hypergeometric(uint16_t N
, uint16_t K
, uint16_t n
, uint16_t k
)
244 // for efficient computation we are using the recursive definition
246 // P(X=k) = P(X=k-1) * --------------------
249 // (N-K)*(N-K-1)*...*(N-K-n+1)
250 // P(X=0) = -----------------------------
251 // N*(N-1)*...*(N-n+1)
253 if (n
-k
> N
-K
|| k
> K
) return 0.0; // avoids log(x<=0) in calculation below
255 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
256 double log_result
= 0.0;
257 for (int16_t i
= N
-K
; i
>= N
-K
-n
+1; i
--) {
258 log_result
+= log(i
);
260 for (int16_t i
= N
; i
>= N
-n
+1; i
--) {
261 log_result
-= log(i
);
263 return (log_result
> 0) ? exp(log_result
) : 0.0;
265 if (n
-k
== N
-K
) { // special case. The published recursion below would fail with a divide by zero exception
266 double log_result
= 0.0;
267 for (int16_t i
= k
+1; i
<= n
; i
++) {
268 log_result
+= log(i
);
270 for (int16_t i
= K
+1; i
<= N
; i
++) {
271 log_result
-= log(i
);
273 return (log_result
> 0) ? exp(log_result
) : 0.0;
274 } else { // recursion
275 return (p_hypergeometric(N
, K
, n
, k
-1) * (K
-k
+1) * (n
-k
+1) / (k
* (N
-K
-n
+k
)));
280 static float sum_probability(uint16_t K
, uint16_t n
, uint16_t k
)
282 const uint16_t N
= 256;
284 if (k
> K
|| p_K
[K
] == 0.0) return 0.0;
286 double p_T_is_k_when_S_is_K
= p_hypergeometric(N
, K
, n
, k
);
288 if (p_T_is_k_when_S_is_K
== 0.0) return 0.0;
290 double p_S_is_K
= p_K
[K
];
292 for (uint16_t i
= 0; i
<= 256; i
++) {
294 double tmp
= p_hypergeometric(N
, i
, n
, k
);
296 p_T_is_k
+= p_K
[i
] * tmp
;
299 return(p_T_is_k_when_S_is_K
* p_S_is_K
/ p_T_is_k
);
303 static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff
)
305 static const uint_fast8_t common_bits_LUT
[256] = {
306 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
307 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
308 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
309 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
310 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
311 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
312 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
313 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
314 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
315 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
316 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
317 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
318 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
319 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
320 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
321 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
324 return common_bits_LUT
[bytes_diff
];
329 // printf("Tests: Partial Statelist sizes\n");
330 // for (uint16_t i = 0; i <= 16; i+=2) {
331 // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
333 // for (uint16_t i = 0; i <= 16; i+=2) {
334 // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
337 // #define NUM_STATISTICS 100000
338 // uint32_t statistics_odd[17];
339 // uint64_t statistics[257];
340 // uint32_t statistics_even[17];
341 // struct Crypto1State cs;
342 // time_t time1 = clock();
344 // for (uint16_t i = 0; i < 257; i++) {
345 // statistics[i] = 0;
347 // for (uint16_t i = 0; i < 17; i++) {
348 // statistics_odd[i] = 0;
349 // statistics_even[i] = 0;
352 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
353 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
354 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
355 // uint16_t sum_property = SumProperty(&cs);
356 // statistics[sum_property] += 1;
357 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
358 // statistics_even[sum_property]++;
359 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
360 // statistics_odd[sum_property]++;
361 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
364 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
365 // for (uint16_t i = 0; i < 257; i++) {
366 // if (statistics[i] != 0) {
367 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
370 // for (uint16_t i = 0; i <= 16; i++) {
371 // if (statistics_odd[i] != 0) {
372 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
375 // for (uint16_t i = 0; i <= 16; i++) {
376 // if (statistics_odd[i] != 0) {
377 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
381 // printf("Tests: Sum Probabilities based on Partial Sums\n");
382 // for (uint16_t i = 0; i < 257; i++) {
383 // statistics[i] = 0;
385 // uint64_t num_states = 0;
386 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
387 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
388 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
389 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
390 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
393 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
394 // for (uint16_t i = 0; i < 257; i++) {
395 // if (statistics[i] != 0) {
396 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
400 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
401 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
402 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
403 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
404 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
405 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
406 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
408 // struct Crypto1State *pcs;
409 // pcs = crypto1_create(0xffffffffffff);
410 // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
411 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
412 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
413 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
414 // best_first_bytes[0],
416 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
417 // //test_state_odd = pcs->odd & 0x00ffffff;
418 // //test_state_even = pcs->even & 0x00ffffff;
419 // crypto1_destroy(pcs);
420 // pcs = crypto1_create(0xa0a1a2a3a4a5);
421 // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
422 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
423 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
424 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
425 // best_first_bytes[0],
427 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
428 // //test_state_odd = pcs->odd & 0x00ffffff;
429 // //test_state_even = pcs->even & 0x00ffffff;
430 // crypto1_destroy(pcs);
431 // pcs = crypto1_create(0xa6b9aa97b955);
432 // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
433 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
434 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
435 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
436 // best_first_bytes[0],
438 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
439 //test_state_odd = pcs->odd & 0x00ffffff;
440 //test_state_even = pcs->even & 0x00ffffff;
441 // crypto1_destroy(pcs);
444 // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
446 // printf("\nTests: Actual BitFlipProperties odd/even:\n");
447 // for (uint16_t i = 0; i < 256; i++) {
448 // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
454 // printf("\nTests: Sorted First Bytes:\n");
455 // for (uint16_t i = 0; i < 256; i++) {
456 // uint8_t best_byte = best_first_bytes[i];
457 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
458 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
460 // nonces[best_byte].num,
461 // nonces[best_byte].Sum,
462 // nonces[best_byte].Sum8_guess,
463 // nonces[best_byte].Sum8_prob * 100,
464 // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
465 // //nonces[best_byte].score1,
466 // //nonces[best_byte].score2
470 // printf("\nTests: parity performance\n");
471 // time_t time1p = clock();
472 // uint32_t par_sum = 0;
473 // for (uint32_t i = 0; i < 100000000; i++) {
474 // par_sum += parity(i);
476 // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
480 // for (uint32_t i = 0; i < 100000000; i++) {
481 // par_sum += evenparity32(i);
483 // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
488 static void sort_best_first_bytes(void)
490 // sort based on probability for correct guess
491 for (uint16_t i
= 0; i
< 256; i
++ ) {
493 float prob1
= nonces
[i
].Sum8_prob
;
494 float prob2
= nonces
[best_first_bytes
[0]].Sum8_prob
;
495 while (prob1
< prob2
&& j
< i
) {
496 prob2
= nonces
[best_first_bytes
[++j
]].Sum8_prob
;
499 for (uint16_t k
= i
; k
> j
; k
--) {
500 best_first_bytes
[k
] = best_first_bytes
[k
-1];
503 best_first_bytes
[j
] = i
;
506 // determine how many are above the CONFIDENCE_THRESHOLD
507 uint16_t num_good_nonces
= 0;
508 for (uint16_t i
= 0; i
< 256; i
++) {
509 if (nonces
[best_first_bytes
[i
]].Sum8_prob
>= CONFIDENCE_THRESHOLD
) {
514 uint16_t best_first_byte
= 0;
516 // select the best possible first byte based on number of common bits with all {b'}
517 // uint16_t max_common_bits = 0;
518 // for (uint16_t i = 0; i < num_good_nonces; i++) {
519 // uint16_t sum_common_bits = 0;
520 // for (uint16_t j = 0; j < num_good_nonces; j++) {
522 // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
525 // if (sum_common_bits > max_common_bits) {
526 // max_common_bits = sum_common_bits;
527 // best_first_byte = i;
531 // select best possible first byte {b} based on least likely sum/bitflip property
533 for (uint16_t i
= 0; i
< num_good_nonces
; i
++ ) {
534 uint16_t sum8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
535 float bitflip_prob
= 1.0;
536 if (nonces
[best_first_bytes
[i
]].BitFlip
[ODD_STATE
] || nonces
[best_first_bytes
[i
]].BitFlip
[EVEN_STATE
]) {
537 bitflip_prob
= 0.09375;
539 nonces
[best_first_bytes
[i
]].score1
= p_K
[sum8
] * bitflip_prob
;
540 if (p_K
[sum8
] * bitflip_prob
<= min_p_K
) {
541 min_p_K
= p_K
[sum8
] * bitflip_prob
;
546 // use number of commmon bits as a tie breaker
547 uint16_t max_common_bits
= 0;
548 for (uint16_t i
= 0; i
< num_good_nonces
; i
++) {
549 float bitflip_prob
= 1.0;
550 if (nonces
[best_first_bytes
[i
]].BitFlip
[ODD_STATE
] || nonces
[best_first_bytes
[i
]].BitFlip
[EVEN_STATE
]) {
551 bitflip_prob
= 0.09375;
553 if (p_K
[nonces
[best_first_bytes
[i
]].Sum8_guess
] * bitflip_prob
== min_p_K
) {
554 uint16_t sum_common_bits
= 0;
555 for (uint16_t j
= 0; j
< num_good_nonces
; j
++) {
556 sum_common_bits
+= common_bits(best_first_bytes
[i
] ^ best_first_bytes
[j
]);
558 nonces
[best_first_bytes
[i
]].score2
= sum_common_bits
;
559 if (sum_common_bits
> max_common_bits
) {
560 max_common_bits
= sum_common_bits
;
566 // swap best possible first byte to the pole position
567 uint16_t temp
= best_first_bytes
[0];
568 best_first_bytes
[0] = best_first_bytes
[best_first_byte
];
569 best_first_bytes
[best_first_byte
] = temp
;
573 static uint16_t estimate_second_byte_sum(void)
576 for (uint16_t first_byte
= 0; first_byte
< 256; first_byte
++) {
577 float Sum8_prob
= 0.0;
579 if (nonces
[first_byte
].updated
) {
580 for (uint16_t sum
= 0; sum
<= 256; sum
++) {
581 float prob
= sum_probability(sum
, nonces
[first_byte
].num
, nonces
[first_byte
].Sum
);
582 if (prob
> Sum8_prob
) {
587 nonces
[first_byte
].Sum8_guess
= Sum8
;
588 nonces
[first_byte
].Sum8_prob
= Sum8_prob
;
589 nonces
[first_byte
].updated
= false;
593 sort_best_first_bytes();
595 uint16_t num_good_nonces
= 0;
596 for (uint16_t i
= 0; i
< 256; i
++) {
597 if (nonces
[best_first_bytes
[i
]].Sum8_prob
>= CONFIDENCE_THRESHOLD
) {
602 return num_good_nonces
;
605 static int read_nonce_file(void)
607 FILE *fnonces
= NULL
;
608 uint8_t trgBlockNo
= 0;
609 uint8_t trgKeyType
= 0;
611 uint32_t nt_enc1
= 0, nt_enc2
= 0;
613 int total_num_nonces
= 0;
615 if ((fnonces
= fopen("nonces.bin","rb")) == NULL
) {
616 PrintAndLog("Could not open file nonces.bin");
620 PrintAndLog("Reading nonces from file nonces.bin...");
621 size_t bytes_read
= fread(read_buf
, 1, 6, fnonces
);
622 if ( bytes_read
== 0) {
623 PrintAndLog("File reading error.");
627 cuid
= bytes_to_num(read_buf
, 4);
628 trgBlockNo
= bytes_to_num(read_buf
+4, 1);
629 trgKeyType
= bytes_to_num(read_buf
+5, 1);
631 while (fread(read_buf
, 1, 9, fnonces
) == 9) {
632 nt_enc1
= bytes_to_num(read_buf
, 4);
633 nt_enc2
= bytes_to_num(read_buf
+4, 4);
634 par_enc
= bytes_to_num(read_buf
+8, 1);
635 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
636 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
637 add_nonce(nt_enc1
, par_enc
>> 4);
638 add_nonce(nt_enc2
, par_enc
& 0x0f);
639 total_num_nonces
+= 2;
642 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces
, cuid
, trgBlockNo
, trgKeyType
==0?'A':'B');
646 static void Check_for_FilterFlipProperties(void)
648 printf("Checking for Filter Flip Properties...\n");
650 uint16_t num_bitflips
= 0;
652 for (uint16_t i
= 0; i
< 256; i
++) {
653 nonces
[i
].BitFlip
[ODD_STATE
] = false;
654 nonces
[i
].BitFlip
[EVEN_STATE
] = false;
657 for (uint16_t i
= 0; i
< 256; i
++) {
658 uint8_t parity1
= (nonces
[i
].first
->par_enc
) >> 3; // parity of first byte
659 uint8_t parity2_odd
= (nonces
[i
^0x80].first
->par_enc
) >> 3; // XOR 0x80 = last bit flipped
660 uint8_t parity2_even
= (nonces
[i
^0x40].first
->par_enc
) >> 3; // XOR 0x40 = second last bit flipped
662 if (parity1
== parity2_odd
) { // has Bit Flip Property for odd bits
663 nonces
[i
].BitFlip
[ODD_STATE
] = true;
665 } else if (parity1
== parity2_even
) { // has Bit Flip Property for even bits
666 nonces
[i
].BitFlip
[EVEN_STATE
] = true;
672 fprintf(fstats
, "%d;", num_bitflips
);
676 static void simulate_MFplus_RNG(uint32_t test_cuid
, uint64_t test_key
, uint32_t *nt_enc
, uint8_t *par_enc
)
678 struct Crypto1State sim_cs
= {0, 0};
679 // init cryptostate with key:
680 for(int8_t i
= 47; i
> 0; i
-= 2) {
681 sim_cs
.odd
= sim_cs
.odd
<< 1 | BIT(test_key
, (i
- 1) ^ 7);
682 sim_cs
.even
= sim_cs
.even
<< 1 | BIT(test_key
, i
^ 7);
686 uint32_t nt
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
687 for (int8_t byte_pos
= 3; byte_pos
>= 0; byte_pos
--) {
688 uint8_t nt_byte_dec
= (nt
>> (8*byte_pos
)) & 0xff;
689 uint8_t nt_byte_enc
= crypto1_byte(&sim_cs
, nt_byte_dec
^ (test_cuid
>> (8*byte_pos
)), false) ^ nt_byte_dec
; // encode the nonce byte
690 *nt_enc
= (*nt_enc
<< 8) | nt_byte_enc
;
691 uint8_t ks_par
= filter(sim_cs
.odd
); // the keystream bit to encode/decode the parity bit
692 uint8_t nt_byte_par_enc
= ks_par
^ oddparity8(nt_byte_dec
); // determine the nt byte's parity and encode it
693 *par_enc
= (*par_enc
<< 1) | nt_byte_par_enc
;
698 static void simulate_acquire_nonces()
700 clock_t time1
= clock();
701 bool filter_flip_checked
= false;
702 uint32_t total_num_nonces
= 0;
703 uint32_t next_fivehundred
= 500;
704 uint32_t total_added_nonces
= 0;
706 cuid
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
707 known_target_key
= ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
709 printf("Simulating nonce acquisition for target key %012"llx
", cuid %08x ...\n", known_target_key
, cuid
);
710 fprintf(fstats
, "%012"llx
";%08x;", known_target_key
, cuid
);
716 simulate_MFplus_RNG(cuid
, known_target_key
, &nt_enc
, &par_enc
);
717 //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
718 total_added_nonces
+= add_nonce(nt_enc
, par_enc
);
721 if (first_byte_num
== 256 ) {
722 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
723 if (!filter_flip_checked
) {
724 Check_for_FilterFlipProperties();
725 filter_flip_checked
= true;
727 num_good_first_bytes
= estimate_second_byte_sum();
728 if (total_num_nonces
> next_fivehundred
) {
729 next_fivehundred
= (total_num_nonces
/500+1) * 500;
730 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
733 CONFIDENCE_THRESHOLD
* 100.0,
734 num_good_first_bytes
);
738 } while (num_good_first_bytes
< GOOD_BYTES_REQUIRED
);
740 time1
= clock() - time1
;
742 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
744 ((float)time1
)/CLOCKS_PER_SEC
,
745 total_num_nonces
* 60.0 * CLOCKS_PER_SEC
/(float)time1
);
747 fprintf(fstats
, "%d;%d;%d;%1.2f;", total_num_nonces
, total_added_nonces
, num_good_first_bytes
, CONFIDENCE_THRESHOLD
);
751 static int acquire_nonces(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, bool nonce_file_write
, bool slow
)
753 clock_t time1
= clock();
754 bool initialize
= true;
755 bool finished
= false;
756 bool filter_flip_checked
= false;
758 uint8_t write_buf
[9];
759 uint32_t total_num_nonces
= 0;
760 uint32_t next_fivehundred
= 500;
761 uint32_t total_added_nonces
= 0;
763 FILE *fnonces
= NULL
;
768 printf("Acquiring nonces...\n");
772 flags
|= initialize
? 0x0001 : 0;
773 flags
|= slow
? 0x0002 : 0;
774 flags
|= field_off
? 0x0004 : 0;
775 UsbCommand c
= {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
, {blockNo
+ keyType
* 0x100, trgBlockNo
+ trgKeyType
* 0x100, flags
}};
776 memcpy(c
.d
.asBytes
, key
, 6);
777 clearCommandBuffer();
780 if (field_off
) finished
= true;
783 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) return 1;
784 if (resp
.arg
[0]) return resp
.arg
[0]; // error during nested_hard
787 // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
788 if (nonce_file_write
&& fnonces
== NULL
) {
789 if ((fnonces
= fopen("nonces.bin","wb")) == NULL
) {
790 PrintAndLog("Could not create file nonces.bin");
793 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
794 num_to_bytes(cuid
, 4, write_buf
);
795 fwrite(write_buf
, 1, 4, fnonces
);
796 fwrite(&trgBlockNo
, 1, 1, fnonces
);
797 fwrite(&trgKeyType
, 1, 1, fnonces
);
803 uint32_t nt_enc1
, nt_enc2
;
805 uint16_t num_acquired_nonces
= resp
.arg
[2];
806 uint8_t *bufp
= resp
.d
.asBytes
;
807 for (uint16_t i
= 0; i
< num_acquired_nonces
; i
+=2) {
808 nt_enc1
= bytes_to_num(bufp
, 4);
809 nt_enc2
= bytes_to_num(bufp
+4, 4);
810 par_enc
= bytes_to_num(bufp
+8, 1);
812 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
813 total_added_nonces
+= add_nonce(nt_enc1
, par_enc
>> 4);
814 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
815 total_added_nonces
+= add_nonce(nt_enc2
, par_enc
& 0x0f);
817 if (nonce_file_write
&& fnonces
) {
818 fwrite(bufp
, 1, 9, fnonces
);
825 total_num_nonces
+= num_acquired_nonces
;
828 if (first_byte_num
== 256 && !field_off
) {
829 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
830 if (!filter_flip_checked
) {
831 Check_for_FilterFlipProperties();
832 filter_flip_checked
= true;
835 num_good_first_bytes
= estimate_second_byte_sum();
836 if (total_num_nonces
> next_fivehundred
) {
837 next_fivehundred
= (total_num_nonces
/500+1) * 500;
838 printf("Acquired %5d nonces (%5d / %5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
841 (total_added_nonces
< MIN_NONCES_REQUIRED
) ? MIN_NONCES_REQUIRED
: (NONCES_TRIGGER
*idx
),
842 CONFIDENCE_THRESHOLD
* 100.0,
843 num_good_first_bytes
);
846 if (total_added_nonces
>= MIN_NONCES_REQUIRED
) {
847 num_good_first_bytes
= estimate_second_byte_sum();
848 if (total_added_nonces
> (NONCES_TRIGGER
* idx
)) {
850 clock_t time1
= clock();
851 bool cracking
= generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
852 time1
= clock() - time1
;
853 if (time1
> 0) PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1
)/CLOCKS_PER_SEC
);
855 if (cracking
|| known_target_key
!= -1) {
856 field_off
= brute_force(); // switch off field with next SendCommand and then finish
866 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) {
867 if (fnonces
) fclose(fnonces
);
872 if (fnonces
) fclose(fnonces
);
873 return resp
.arg
[0]; // error during nested_hard
881 if (nonce_file_write
&& fnonces
)
884 time1
= clock() - time1
;
886 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
888 ((float)time1
)/CLOCKS_PER_SEC
,
889 total_num_nonces
* 60.0 * CLOCKS_PER_SEC
/(float)time1
895 static int init_partial_statelists(void)
897 const uint32_t sizes_odd
[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
898 // const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
899 const uint32_t sizes_even
[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 };
901 printf("Allocating memory for partial statelists...\n");
902 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
903 for (uint16_t i
= 0; i
<= 16; i
+=2) {
904 partial_statelist
[i
].len
[odd_even
] = 0;
905 uint32_t num_of_states
= odd_even
== ODD_STATE
? sizes_odd
[i
] : sizes_even
[i
];
906 partial_statelist
[i
].states
[odd_even
] = malloc(sizeof(uint32_t) * num_of_states
);
907 if (partial_statelist
[i
].states
[odd_even
] == NULL
) {
908 PrintAndLog("Cannot allocate enough memory. Aborting");
911 for (uint32_t j
= 0; j
< STATELIST_INDEX_SIZE
; j
++) {
912 partial_statelist
[i
].index
[odd_even
][j
] = NULL
;
917 printf("Generating partial statelists...\n");
918 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
920 uint32_t num_of_states
= 1<<20;
921 for (uint32_t state
= 0; state
< num_of_states
; state
++) {
922 uint16_t sum_property
= PartialSumProperty(state
, odd_even
);
923 uint32_t *p
= partial_statelist
[sum_property
].states
[odd_even
];
924 p
+= partial_statelist
[sum_property
].len
[odd_even
];
926 partial_statelist
[sum_property
].len
[odd_even
]++;
927 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
928 if ((state
& index_mask
) != index
) {
929 index
= state
& index_mask
;
931 if (partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
932 partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
935 // add End Of List markers
936 for (uint16_t i
= 0; i
<= 16; i
+= 2) {
937 uint32_t *p
= partial_statelist
[i
].states
[odd_even
];
938 p
+= partial_statelist
[i
].len
[odd_even
];
939 *p
= END_OF_LIST_MARKER
;
946 static void init_BitFlip_statelist(void)
948 printf("Generating bitflip statelist...\n");
949 uint32_t *p
= statelist_bitflip
.states
[0] = malloc(sizeof(uint32_t) * 1<<20);
951 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
952 for (uint32_t state
= 0; state
< (1 << 20); state
++) {
953 if (filter(state
) != filter(state
^1)) {
954 if ((state
& index_mask
) != index
) {
955 index
= state
& index_mask
;
957 if (statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
958 statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
963 // set len and add End Of List marker
964 statelist_bitflip
.len
[0] = p
- statelist_bitflip
.states
[0];
965 *p
= END_OF_LIST_MARKER
;
966 statelist_bitflip
.states
[0] = realloc(statelist_bitflip
.states
[0], sizeof(uint32_t) * (statelist_bitflip
.len
[0] + 1));
969 static inline uint32_t *find_first_state(uint32_t state
, uint32_t mask
, partial_indexed_statelist_t
*sl
, odd_even_t odd_even
)
971 uint32_t *p
= sl
->index
[odd_even
][(state
& mask
) >> (20-STATELIST_INDEX_WIDTH
)]; // first Bits as index
973 if (p
== NULL
) return NULL
;
974 while (*p
< (state
& mask
)) p
++;
975 if (*p
== END_OF_LIST_MARKER
) return NULL
; // reached end of list, no match
976 if ((*p
& mask
) == (state
& mask
)) return p
; // found a match.
977 return NULL
; // no match
980 static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
982 uint_fast8_t j_1_bit_mask
= 0x01 << (bit
-1);
983 uint_fast8_t bit_diff
= byte_diff
& j_1_bit_mask
; // difference of (j-1)th bit
984 uint_fast8_t filter_diff
= filter(state1
>> (4-state_bit
)) ^ filter(state2
>> (4-state_bit
)); // difference in filter function
985 uint_fast8_t mask_y12_y13
= 0xc0 >> state_bit
;
986 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y12_y13
; // difference in state bits 12 and 13
987 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
^ filter_diff
); // use parity function to XOR all bits
991 static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
993 uint_fast8_t j_bit_mask
= 0x01 << bit
;
994 uint_fast8_t bit_diff
= byte_diff
& j_bit_mask
; // difference of jth bit
995 uint_fast8_t mask_y13_y16
= 0x48 >> state_bit
;
996 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y13_y16
; // difference in state bits 13 and 16
997 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
); // use parity function to XOR all bits
1001 static inline bool remaining_bits_match(uint_fast8_t num_common_bits
, uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, odd_even_t odd_even
)
1005 switch (num_common_bits
) {
1006 case 0: if (!invariant_holds(byte_diff
, state1
, state2
, 1, 0)) return true;
1007 case 1: if (invalid_state(byte_diff
, state1
, state2
, 1, 0)) return false;
1008 case 2: if (!invariant_holds(byte_diff
, state1
, state2
, 3, 1)) return true;
1009 case 3: if (invalid_state(byte_diff
, state1
, state2
, 3, 1)) return false;
1010 case 4: if (!invariant_holds(byte_diff
, state1
, state2
, 5, 2)) return true;
1011 case 5: if (invalid_state(byte_diff
, state1
, state2
, 5, 2)) return false;
1012 case 6: if (!invariant_holds(byte_diff
, state1
, state2
, 7, 3)) return true;
1013 case 7: if (invalid_state(byte_diff
, state1
, state2
, 7, 3)) return false;
1017 switch (num_common_bits
) {
1018 case 0: if (invalid_state(byte_diff
, state1
, state2
, 0, 0)) return false;
1019 case 1: if (!invariant_holds(byte_diff
, state1
, state2
, 2, 1)) return true;
1020 case 2: if (invalid_state(byte_diff
, state1
, state2
, 2, 1)) return false;
1021 case 3: if (!invariant_holds(byte_diff
, state1
, state2
, 4, 2)) return true;
1022 case 4: if (invalid_state(byte_diff
, state1
, state2
, 4, 2)) return false;
1023 case 5: if (!invariant_holds(byte_diff
, state1
, state2
, 6, 3)) return true;
1024 case 6: if (invalid_state(byte_diff
, state1
, state2
, 6, 3)) return false;
1028 return true; // valid state
1031 static bool all_other_first_bytes_match(uint32_t state
, odd_even_t odd_even
)
1033 for (uint16_t i
= 1; i
< num_good_first_bytes
; i
++) {
1034 uint16_t sum_a8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
1035 uint_fast8_t bytes_diff
= best_first_bytes
[0] ^ best_first_bytes
[i
];
1036 uint_fast8_t j
= common_bits(bytes_diff
);
1037 uint32_t mask
= 0xfffffff0;
1038 if (odd_even
== ODD_STATE
) {
1044 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1045 bool found_match
= false;
1046 for (uint16_t r
= 0; r
<= 16 && !found_match
; r
+= 2) {
1047 for (uint16_t s
= 0; s
<= 16 && !found_match
; s
+= 2) {
1048 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
1049 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
1050 uint16_t part_sum_a8
= (odd_even
== ODD_STATE
) ? r
: s
;
1051 uint32_t *p
= find_first_state(state
, mask
, &partial_statelist
[part_sum_a8
], odd_even
);
1053 while ((state
& mask
) == (*p
& mask
) && (*p
!= END_OF_LIST_MARKER
)) {
1054 if (remaining_bits_match(j
, bytes_diff
, state
, (state
&0x00fffff0) | *p
, odd_even
)) {
1056 // if ((odd_even == ODD_STATE && state == test_state_odd)
1057 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1058 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1059 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1063 // if ((odd_even == ODD_STATE && state == test_state_odd)
1064 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1065 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1066 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1072 // if ((odd_even == ODD_STATE && state == test_state_odd)
1073 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1074 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1075 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1083 // if ((odd_even == ODD_STATE && state == test_state_odd)
1084 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1085 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1094 static bool all_bit_flips_match(uint32_t state
, odd_even_t odd_even
)
1096 for (uint16_t i
= 0; i
< 256; i
++) {
1097 if (nonces
[i
].BitFlip
[odd_even
] && i
!= best_first_bytes
[0]) {
1098 uint_fast8_t bytes_diff
= best_first_bytes
[0] ^ i
;
1099 uint_fast8_t j
= common_bits(bytes_diff
);
1100 uint32_t mask
= 0xfffffff0;
1101 if (odd_even
== ODD_STATE
) {
1107 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1108 bool found_match
= false;
1109 uint32_t *p
= find_first_state(state
, mask
, &statelist_bitflip
, 0);
1111 while ((state
& mask
) == (*p
& mask
) && (*p
!= END_OF_LIST_MARKER
)) {
1112 if (remaining_bits_match(j
, bytes_diff
, state
, (state
&0x00fffff0) | *p
, odd_even
)) {
1114 // if ((odd_even == ODD_STATE && state == test_state_odd)
1115 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1116 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1117 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1121 // if ((odd_even == ODD_STATE && state == test_state_odd)
1122 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1123 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1124 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1130 // if ((odd_even == ODD_STATE && state == test_state_odd)
1131 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1132 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1133 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1137 // if ((odd_even == ODD_STATE && state == test_state_odd)
1138 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1139 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1150 static struct sl_cache_entry
{
1153 } sl_cache
[17][17][2];
1155 static void init_statelist_cache(void)
1157 for (uint16_t i
= 0; i
< 17; i
+=2) {
1158 for (uint16_t j
= 0; j
< 17; j
+=2) {
1159 for (uint16_t k
= 0; k
< 2; k
++) {
1160 sl_cache
[i
][j
][k
].sl
= NULL
;
1161 sl_cache
[i
][j
][k
].len
= 0;
1167 static int add_matching_states(statelist_t
*candidates
, uint16_t part_sum_a0
, uint16_t part_sum_a8
, odd_even_t odd_even
)
1169 uint32_t worstcase_size
= 1<<20;
1171 // check cache for existing results
1172 if (sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
!= NULL
) {
1173 candidates
->states
[odd_even
] = sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
;
1174 candidates
->len
[odd_even
] = sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].len
;
1178 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1179 if (candidates
->states
[odd_even
] == NULL
) {
1180 PrintAndLog("Out of memory error.\n");
1183 uint32_t *add_p
= candidates
->states
[odd_even
];
1184 for (uint32_t *p1
= partial_statelist
[part_sum_a0
].states
[odd_even
]; *p1
!= END_OF_LIST_MARKER
; p1
++) {
1185 uint32_t search_mask
= 0x000ffff0;
1186 uint32_t *p2
= find_first_state((*p1
<< 4), search_mask
, &partial_statelist
[part_sum_a8
], odd_even
);
1188 while (((*p1
<< 4) & search_mask
) == (*p2
& search_mask
) && *p2
!= END_OF_LIST_MARKER
) {
1189 if ((nonces
[best_first_bytes
[0]].BitFlip
[odd_even
] && find_first_state((*p1
<< 4) | *p2
, 0x000fffff, &statelist_bitflip
, 0))
1190 || !nonces
[best_first_bytes
[0]].BitFlip
[odd_even
]) {
1191 if (all_other_first_bytes_match((*p1
<< 4) | *p2
, odd_even
)) {
1192 if (all_bit_flips_match((*p1
<< 4) | *p2
, odd_even
)) {
1193 *add_p
++ = (*p1
<< 4) | *p2
;
1202 // set end of list marker and len
1203 *add_p
= END_OF_LIST_MARKER
;
1204 candidates
->len
[odd_even
] = add_p
- candidates
->states
[odd_even
];
1206 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
1208 sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
= candidates
->states
[odd_even
];
1209 sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].len
= candidates
->len
[odd_even
];
1214 static statelist_t
*add_more_candidates(statelist_t
*current_candidates
)
1216 statelist_t
*new_candidates
= NULL
;
1217 if (current_candidates
== NULL
) {
1218 if (candidates
== NULL
) {
1219 candidates
= (statelist_t
*)malloc(sizeof(statelist_t
));
1221 new_candidates
= candidates
;
1223 new_candidates
= current_candidates
->next
= (statelist_t
*)malloc(sizeof(statelist_t
));
1225 new_candidates
->next
= NULL
;
1226 new_candidates
->len
[ODD_STATE
] = 0;
1227 new_candidates
->len
[EVEN_STATE
] = 0;
1228 new_candidates
->states
[ODD_STATE
] = NULL
;
1229 new_candidates
->states
[EVEN_STATE
] = NULL
;
1230 return new_candidates
;
1233 static bool TestIfKeyExists(uint64_t key
)
1235 struct Crypto1State
*pcs
;
1236 pcs
= crypto1_create(key
);
1237 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
1239 uint32_t state_odd
= pcs
->odd
& 0x00ffffff;
1240 uint32_t state_even
= pcs
->even
& 0x00ffffff;
1241 //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
1244 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1245 bool found_odd
= false;
1246 bool found_even
= false;
1247 uint32_t *p_odd
= p
->states
[ODD_STATE
];
1248 uint32_t *p_even
= p
->states
[EVEN_STATE
];
1249 while (*p_odd
!= END_OF_LIST_MARKER
) {
1250 if ((*p_odd
& 0x00ffffff) == state_odd
) {
1256 while (*p_even
!= END_OF_LIST_MARKER
) {
1257 if ((*p_even
& 0x00ffffff) == state_even
) {
1262 count
+= (p_odd
- p
->states
[ODD_STATE
]) * (p_even
- p
->states
[EVEN_STATE
]);
1263 if (found_odd
&& found_even
) {
1264 PrintAndLog("\nKey Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. ",
1268 log(maximum_states
)/log(2)
1271 fprintf(fstats
, "1\n");
1273 crypto1_destroy(pcs
);
1278 printf("Key NOT found!\n");
1280 fprintf(fstats
, "0\n");
1282 crypto1_destroy(pcs
);
1287 static bool generate_candidates(uint16_t sum_a0
, uint16_t sum_a8
)
1289 printf("Generating crypto1 state candidates... \n");
1291 statelist_t
*current_candidates
= NULL
;
1292 // estimate maximum candidate states
1294 for (uint16_t sum_odd
= 0; sum_odd
<= 16; sum_odd
+= 2) {
1295 for (uint16_t sum_even
= 0; sum_even
<= 16; sum_even
+= 2) {
1296 if (sum_odd
*(16-sum_even
) + (16-sum_odd
)*sum_even
== sum_a0
) {
1297 maximum_states
+= (uint64_t)partial_statelist
[sum_odd
].len
[ODD_STATE
] * partial_statelist
[sum_even
].len
[EVEN_STATE
] * (1<<8);
1302 if (maximum_states
== 0) return false; // prevent keyspace reduction error (2^-inf)
1304 printf("Number of possible keys with Sum(a0) = %d: %"PRIu64
" (2^%1.1f)\n", sum_a0
, maximum_states
, log(maximum_states
)/log(2));
1306 init_statelist_cache();
1308 for (uint16_t p
= 0; p
<= 16; p
+= 2) {
1309 for (uint16_t q
= 0; q
<= 16; q
+= 2) {
1310 if (p
*(16-q
) + (16-p
)*q
== sum_a0
) {
1311 // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1312 // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
1313 for (uint16_t r
= 0; r
<= 16; r
+= 2) {
1314 for (uint16_t s
= 0; s
<= 16; s
+= 2) {
1315 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
1316 current_candidates
= add_more_candidates(current_candidates
);
1317 // check for the smallest partial statelist. Try this first - it might give 0 candidates
1318 // and eliminate the need to calculate the other part
1319 if (MIN(partial_statelist
[p
].len
[ODD_STATE
], partial_statelist
[r
].len
[ODD_STATE
])
1320 < MIN(partial_statelist
[q
].len
[EVEN_STATE
], partial_statelist
[s
].len
[EVEN_STATE
])) {
1321 add_matching_states(current_candidates
, p
, r
, ODD_STATE
);
1322 if(current_candidates
->len
[ODD_STATE
]) {
1323 add_matching_states(current_candidates
, q
, s
, EVEN_STATE
);
1325 current_candidates
->len
[EVEN_STATE
] = 0;
1326 uint32_t *p
= current_candidates
->states
[EVEN_STATE
] = malloc(sizeof(uint32_t));
1327 *p
= END_OF_LIST_MARKER
;
1330 add_matching_states(current_candidates
, q
, s
, EVEN_STATE
);
1331 if(current_candidates
->len
[EVEN_STATE
]) {
1332 add_matching_states(current_candidates
, p
, r
, ODD_STATE
);
1334 current_candidates
->len
[ODD_STATE
] = 0;
1335 uint32_t *p
= current_candidates
->states
[ODD_STATE
] = malloc(sizeof(uint32_t));
1336 *p
= END_OF_LIST_MARKER
;
1339 //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
1340 //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
1349 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
1350 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
1353 if (maximum_states
== 0) return false; // prevent keyspace reduction error (2^-inf)
1355 float kcalc
= log(maximum_states
)/log(2);
1356 printf("Number of remaining possible keys: %"PRIu64
" (2^%1.1f)\n", maximum_states
, kcalc
);
1358 if (maximum_states
!= 0) {
1359 fprintf(fstats
, "%1.1f;", kcalc
);
1361 fprintf(fstats
, "%1.1f;", 0.0);
1364 if (kcalc
< CRACKING_THRESHOLD
) return true;
1369 static void free_candidates_memory(statelist_t
*sl
)
1374 free_candidates_memory(sl
->next
);
1379 static void free_statelist_cache(void)
1381 for (uint16_t i
= 0; i
< 17; i
+=2) {
1382 for (uint16_t j
= 0; j
< 17; j
+=2) {
1383 for (uint16_t k
= 0; k
< 2; k
++) {
1384 free(sl_cache
[i
][j
][k
].sl
);
1390 uint64_t foundkey
= 0;
1391 size_t keys_found
= 0;
1392 size_t bucket_count
= 0;
1393 statelist_t
* buckets
[128];
1394 size_t total_states_tested
= 0;
1395 size_t thread_count
= 4;
1397 // these bitsliced states will hold identical states in all slices
1398 bitslice_t bitsliced_rollback_byte
[ROLLBACK_SIZE
];
1400 // arrays of bitsliced states with identical values in all slices
1401 bitslice_t bitsliced_encrypted_nonces
[NONCE_TESTS
][STATE_SIZE
];
1402 bitslice_t bitsliced_encrypted_parity_bits
[NONCE_TESTS
][ROLLBACK_SIZE
];
1406 static const uint64_t crack_states_bitsliced(statelist_t
*p
){
1407 // the idea to roll back the half-states before combining them was suggested/explained to me by bla
1408 // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
1410 uint8_t bSize
= sizeof(bitslice_t
);
1413 size_t bucket_states_tested
= 0;
1414 size_t bucket_size
[p
->len
[EVEN_STATE
]/MAX_BITSLICES
];
1416 const size_t bucket_states_tested
= (p
->len
[EVEN_STATE
])*(p
->len
[ODD_STATE
]);
1419 bitslice_t
*bitsliced_even_states
[p
->len
[EVEN_STATE
]/MAX_BITSLICES
];
1420 size_t bitsliced_blocks
= 0;
1421 uint32_t const * restrict even_end
= p
->states
[EVEN_STATE
]+p
->len
[EVEN_STATE
];
1423 // bitslice all the even states
1424 for(uint32_t * restrict p_even
= p
->states
[EVEN_STATE
]; p_even
< even_end
; p_even
+= MAX_BITSLICES
){
1428 bitslice_t
* restrict lstate_p
= __mingw_aligned_malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
, bSize
);
1430 bitslice_t
* restrict lstate_p
= _aligned_malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
, bSize
);
1434 bitslice_t
* restrict lstate_p
= malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
);
1436 bitslice_t
* restrict lstate_p
= memalign(bSize
, (STATE_SIZE
+ROLLBACK_SIZE
) * bSize
);
1441 __sync_fetch_and_add(&total_states_tested
, bucket_states_tested
);
1445 memset(lstate_p
+1, 0x0, (STATE_SIZE
-1)*sizeof(bitslice_t
)); // zero even bits
1447 // bitslice even half-states
1448 const size_t max_slices
= (even_end
-p_even
) < MAX_BITSLICES
? even_end
-p_even
: MAX_BITSLICES
;
1450 bucket_size
[bitsliced_blocks
] = max_slices
;
1452 for(size_t slice_idx
= 0; slice_idx
< max_slices
; ++slice_idx
){
1453 uint32_t e
= *(p_even
+slice_idx
);
1454 for(size_t bit_idx
= 1; bit_idx
< STATE_SIZE
; bit_idx
+=2, e
>>= 1){
1457 lstate_p
[bit_idx
].bytes64
[slice_idx
>>6] |= 1ull << (slice_idx
&63);
1461 // compute the rollback bits
1462 for(size_t rollback
= 0; rollback
< ROLLBACK_SIZE
; ++rollback
){
1463 // inlined crypto1_bs_lfsr_rollback
1464 const bitslice_value_t feedout
= lstate_p
[0].value
;
1466 const bitslice_value_t ks_bits
= crypto1_bs_f20(lstate_p
);
1467 const bitslice_value_t feedback
= (feedout
^ ks_bits
^ lstate_p
[47- 5].value
^ lstate_p
[47- 9].value
^
1468 lstate_p
[47-10].value
^ lstate_p
[47-12].value
^ lstate_p
[47-14].value
^
1469 lstate_p
[47-15].value
^ lstate_p
[47-17].value
^ lstate_p
[47-19].value
^
1470 lstate_p
[47-24].value
^ lstate_p
[47-25].value
^ lstate_p
[47-27].value
^
1471 lstate_p
[47-29].value
^ lstate_p
[47-35].value
^ lstate_p
[47-39].value
^
1472 lstate_p
[47-41].value
^ lstate_p
[47-42].value
^ lstate_p
[47-43].value
);
1473 lstate_p
[47].value
= feedback
^ bitsliced_rollback_byte
[rollback
].value
;
1475 bitsliced_even_states
[bitsliced_blocks
++] = lstate_p
;
1478 // bitslice every odd state to every block of even half-states with half-finished rollback
1479 for(uint32_t const * restrict p_odd
= p
->states
[ODD_STATE
]; p_odd
< p
->states
[ODD_STATE
]+p
->len
[ODD_STATE
]; ++p_odd
){
1485 // set the odd bits and compute rollback
1486 uint64_t o
= (uint64_t) *p_odd
;
1487 lfsr_rollback_byte((struct Crypto1State
*) &o
, 0, 1);
1488 // pre-compute part of the odd feedback bits (minus rollback)
1489 bool odd_feedback_bit
= parity(o
&0x9ce5c);
1491 crypto1_bs_rewind_a0();
1493 for(size_t state_idx
= 0; state_idx
< STATE_SIZE
-ROLLBACK_SIZE
; o
>>= 1, state_idx
+=2){
1495 state_p
[state_idx
] = bs_ones
;
1497 state_p
[state_idx
] = bs_zeroes
;
1500 const bitslice_value_t odd_feedback
= odd_feedback_bit
? bs_ones
.value
: bs_zeroes
.value
;
1502 for(size_t block_idx
= 0; block_idx
< bitsliced_blocks
; ++block_idx
){
1503 const bitslice_t
* const restrict bitsliced_even_state
= bitsliced_even_states
[block_idx
];
1506 for(state_idx
= 0; state_idx
< STATE_SIZE
-ROLLBACK_SIZE
; state_idx
+=2){
1507 state_p
[1+state_idx
] = bitsliced_even_state
[1+state_idx
];
1509 // set rollback bits
1511 for(; state_idx
< STATE_SIZE
; lo
>>= 1, state_idx
+=2){
1512 // set the odd bits and take in the odd rollback bits from the even states
1514 state_p
[state_idx
].value
= ~bitsliced_even_state
[state_idx
].value
;
1516 state_p
[state_idx
] = bitsliced_even_state
[state_idx
];
1519 // set the even bits and take in the even rollback bits from the odd states
1521 state_p
[1+state_idx
].value
= ~bitsliced_even_state
[1+state_idx
].value
;
1523 state_p
[1+state_idx
] = bitsliced_even_state
[1+state_idx
];
1528 bucket_states_tested
+= bucket_size
[block_idx
];
1530 // pre-compute first keystream and feedback bit vectors
1531 const bitslice_value_t ksb
= crypto1_bs_f20(state_p
);
1532 const bitslice_value_t fbb
= (odd_feedback
^ state_p
[47- 0].value
^ state_p
[47- 5].value
^ // take in the even and rollback bits
1533 state_p
[47-10].value
^ state_p
[47-12].value
^ state_p
[47-14].value
^
1534 state_p
[47-24].value
^ state_p
[47-42].value
);
1536 // vector to contain test results (1 = passed, 0 = failed)
1537 bitslice_t results
= bs_ones
;
1539 for(size_t tests
= 0; tests
< NONCE_TESTS
; ++tests
){
1540 size_t parity_bit_idx
= 0;
1541 bitslice_value_t fb_bits
= fbb
;
1542 bitslice_value_t ks_bits
= ksb
;
1543 state_p
= &states
[KEYSTREAM_SIZE
-1];
1544 bitslice_value_t parity_bit_vector
= bs_zeroes
.value
;
1546 // highest bit is transmitted/received first
1547 for(int32_t ks_idx
= KEYSTREAM_SIZE
-1; ks_idx
>= 0; --ks_idx
, --state_p
){
1548 // decrypt nonce bits
1549 const bitslice_value_t encrypted_nonce_bit_vector
= bitsliced_encrypted_nonces
[tests
][ks_idx
].value
;
1550 const bitslice_value_t decrypted_nonce_bit_vector
= (encrypted_nonce_bit_vector
^ ks_bits
);
1552 // compute real parity bits on the fly
1553 parity_bit_vector
^= decrypted_nonce_bit_vector
;
1556 state_p
[0].value
= (fb_bits
^ decrypted_nonce_bit_vector
);
1558 // compute next keystream bit
1559 ks_bits
= crypto1_bs_f20(state_p
);
1562 if((ks_idx
&7) == 0){
1563 // get encrypted parity bits
1564 const bitslice_value_t encrypted_parity_bit_vector
= bitsliced_encrypted_parity_bits
[tests
][parity_bit_idx
++].value
;
1566 // decrypt parity bits
1567 const bitslice_value_t decrypted_parity_bit_vector
= (encrypted_parity_bit_vector
^ ks_bits
);
1569 // compare actual parity bits with decrypted parity bits and take count in results vector
1570 results
.value
&= (parity_bit_vector
^ decrypted_parity_bit_vector
);
1572 // make sure we still have a match in our set
1573 // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
1575 // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
1576 // the short-circuiting also helps
1577 if(results
.bytes64
[0] == 0
1578 #if MAX_BITSLICES > 64
1579 && results
.bytes64
[1] == 0
1581 #if MAX_BITSLICES > 128
1582 && results
.bytes64
[2] == 0
1583 && results
.bytes64
[3] == 0
1588 // this is about as fast but less portable (requires -std=gnu99)
1589 // asm goto ("ptest %1, %0\n\t"
1590 // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
1591 parity_bit_vector
= bs_zeroes
.value
;
1593 // compute next feedback bit vector
1594 fb_bits
= (state_p
[47- 0].value
^ state_p
[47- 5].value
^ state_p
[47- 9].value
^
1595 state_p
[47-10].value
^ state_p
[47-12].value
^ state_p
[47-14].value
^
1596 state_p
[47-15].value
^ state_p
[47-17].value
^ state_p
[47-19].value
^
1597 state_p
[47-24].value
^ state_p
[47-25].value
^ state_p
[47-27].value
^
1598 state_p
[47-29].value
^ state_p
[47-35].value
^ state_p
[47-39].value
^
1599 state_p
[47-41].value
^ state_p
[47-42].value
^ state_p
[47-43].value
);
1602 // all nonce tests were successful: we've found the key in this block!
1603 state_t keys
[MAX_BITSLICES
];
1604 crypto1_bs_convert_states(&states
[KEYSTREAM_SIZE
], keys
);
1605 for(size_t results_idx
= 0; results_idx
< MAX_BITSLICES
; ++results_idx
){
1606 if(get_vector_bit(results_idx
, results
)){
1607 key
= keys
[results_idx
].value
;
1612 // prepare to set new states
1613 crypto1_bs_rewind_a0();
1619 for(size_t block_idx
= 0; block_idx
< bitsliced_blocks
; ++block_idx
){
1623 __mingw_aligned_free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1625 _aligned_free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1628 free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1632 __sync_fetch_and_add(&total_states_tested
, bucket_states_tested
);
1636 static void* crack_states_thread(void* x
){
1637 const size_t thread_id
= (size_t)x
;
1638 size_t current_bucket
= thread_id
;
1639 while(current_bucket
< bucket_count
){
1640 statelist_t
* bucket
= buckets
[current_bucket
];
1642 const uint64_t key
= crack_states_bitsliced(bucket
);
1644 __sync_fetch_and_add(&keys_found
, 1);
1645 __sync_fetch_and_add(&foundkey
, key
);
1647 } else if(keys_found
){
1654 current_bucket
+= thread_count
;
1659 static bool brute_force(void)
1662 if (known_target_key
!= -1) {
1663 PrintAndLog("Looking for known target key in remaining key space...");
1664 ret
= TestIfKeyExists(known_target_key
);
1666 if (maximum_states
== 0) return false; // prevent keyspace reduction error (2^-inf)
1668 PrintAndLog("Brute force phase starting.");
1670 clock_t time1
= clock();
1676 PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES
);
1677 PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes
[0]^(cuid
>>24));
1678 // convert to 32 bit little-endian
1679 crypto1_bs_bitslice_value32((best_first_bytes
[0]<<24)^cuid
, bitsliced_rollback_byte
, 8);
1681 PrintAndLog("Bitslicing nonces...");
1682 for(size_t tests
= 0; tests
< NONCE_TESTS
; tests
++){
1683 uint32_t test_nonce
= brute_force_nonces
[tests
]->nonce_enc
;
1684 uint8_t test_parity
= brute_force_nonces
[tests
]->par_enc
;
1685 // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
1686 crypto1_bs_bitslice_value32(cuid
^test_nonce
, bitsliced_encrypted_nonces
[tests
], 32);
1687 // convert to 32 bit little-endian
1688 crypto1_bs_bitslice_value32(rev32( ~(test_parity
^ ~(parity(cuid
>>24 & 0xff)<<3 | parity(cuid
>>16 & 0xff)<<2 | parity(cuid
>>8 & 0xff)<<1 | parity(cuid
&0xff)))), bitsliced_encrypted_parity_bits
[tests
], 4);
1690 total_states_tested
= 0;
1692 // count number of states to go
1694 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1695 buckets
[bucket_count
] = p
;
1700 thread_count
= sysconf(_SC_NPROCESSORS_CONF
);
1701 if ( thread_count
< 1)
1705 pthread_t threads
[thread_count
];
1707 // enumerate states using all hardware threads, each thread handles one bucket
1708 PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64
" states...", thread_count
, bucket_count
, maximum_states
);
1710 for(size_t i
= 0; i
< thread_count
; i
++){
1711 pthread_create(&threads
[i
], NULL
, crack_states_thread
, (void*) i
);
1713 for(size_t i
= 0; i
< thread_count
; i
++){
1714 pthread_join(threads
[i
], 0);
1717 time1
= clock() - time1
;
1718 if ( time1
< 0 ) time1
= -1;
1720 if (keys_found
&& TestIfKeyExists(foundkey
)) {
1721 PrintAndLog("Success! Found %u keys after %0.0f seconds", keys_found
, ((float)time1
)/CLOCKS_PER_SEC
);
1722 PrintAndLog("\nFound key: %012"PRIx64
"\n", foundkey
);
1725 PrintAndLog("Fail! Tested %"PRIu32
" states, in %0.0f seconds", total_states_tested
, ((float)time1
)/CLOCKS_PER_SEC
);
1728 // reset this counter for the next call
1729 nonces_to_bruteforce
= 0;
1735 int mfnestedhard(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, uint8_t *trgkey
, bool nonce_file_read
, bool nonce_file_write
, bool slow
, int tests
)
1737 // initialize Random number generator
1739 srand((unsigned) time(&t
));
1741 if (trgkey
!= NULL
) {
1742 known_target_key
= bytes_to_num(trgkey
, 6);
1744 known_target_key
= -1;
1747 init_partial_statelists();
1748 init_BitFlip_statelist();
1749 write_stats
= false;
1752 // set the correct locale for the stats printing
1753 setlocale(LC_ALL
, "");
1755 if ((fstats
= fopen("hardnested_stats.txt","a")) == NULL
) {
1756 PrintAndLog("Could not create/open file hardnested_stats.txt");
1759 for (uint32_t i
= 0; i
< tests
; i
++) {
1760 init_nonce_memory();
1761 simulate_acquire_nonces();
1763 printf("Sum(a0) = %d\n", first_byte_Sum
);
1764 fprintf(fstats
, "%d;", first_byte_Sum
);
1765 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
1767 free_nonces_memory();
1768 free_statelist_cache();
1769 free_candidates_memory(candidates
);
1775 init_nonce_memory();
1776 if (nonce_file_read
) { // use pre-acquired data from file nonces.bin
1777 if (read_nonce_file() != 0) {
1780 Check_for_FilterFlipProperties();
1781 num_good_first_bytes
= MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED
);
1782 PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD
*100.0, num_good_first_bytes
);
1784 clock_t time1
= clock();
1785 bool cracking
= generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
1786 time1
= clock() - time1
;
1788 PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1
)/CLOCKS_PER_SEC
);
1792 } else { // acquire nonces.
1793 uint16_t is_OK
= acquire_nonces(blockNo
, keyType
, key
, trgBlockNo
, trgKeyType
, nonce_file_write
, slow
);
1802 //PrintAndLog("Sum(a0) = %d", first_byte_Sum);
1803 // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
1804 // best_first_bytes[0],
1805 // best_first_bytes[1],
1806 // best_first_bytes[2],
1807 // best_first_bytes[3],
1808 // best_first_bytes[4],
1809 // best_first_bytes[5],
1810 // best_first_bytes[6],
1811 // best_first_bytes[7],
1812 // best_first_bytes[8],
1813 // best_first_bytes[9] );
1815 free_nonces_memory();
1816 free_statelist_cache();
1817 free_candidates_memory(candidates
);