1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID, EM4x05, EM410x
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 #include "lfsampling.h"
19 #include "protocols.h"
20 #include "usb_cdc.h" // for usb_poll_validate_length
23 * Function to do a modulation and then get samples.
29 void ModThenAcquireRawAdcSamples125k(uint32_t delay_off
, uint32_t period_0
, uint32_t period_1
, uint8_t *command
)
34 // use lf config settings
35 sample_config
*sc
= getSamplingConfig();
37 // Make sure the tag is reset
38 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
39 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
42 // clear read buffer (after fpga bitstream loaded...)
43 BigBuf_Clear_keep_EM();
46 LFSetupFPGAForADC(sc
->divisor
, 1);
48 // And a little more time for the tag to fully power up
50 // if delay_off = 0 then just bitbang 1 = antenna on 0 = off for respective periods.
51 bool bitbang
= delay_off
== 0;
52 // now modulate the reader field
55 // HACK it appears the loop and if statements take up about 7us so adjust waits accordingly...
57 if (period_0
< hack_cnt
|| period_1
< hack_cnt
) {
58 DbpString("Warning periods cannot be less than 7us in bit bang mode");
59 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
64 // hack2 needed--- it appears to take about 8-16us to turn the antenna back on
65 // leading to ~ 1 to 2 125khz samples extra in every off period
66 // so we should test for last 0 before next 1 and reduce period_0 by this extra amount...
67 // but is this time different for every antenna or other hw builds??? more testing needed
69 // prime cmd_len to save time comparing strings while modulating
71 while(command
[cmd_len
] != '\0' && command
[cmd_len
] != ' ')
76 for (counter
= 0; counter
< cmd_len
; counter
++) {
77 // if cmd = 0 then turn field off
78 if (command
[counter
] == '0') {
79 // if field already off leave alone (affects timing otherwise)
81 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
85 // note we appear to take about 7us to switch over (or run the if statements/loop...)
86 WaitUS(period_0
-hack_cnt
);
87 // else if cmd = 1 then turn field on
89 // if field already on leave alone (affects timing otherwise)
91 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
95 // note we appear to take about 7us to switch over (or run the if statements/loop...)
96 WaitUS(period_1
-hack_cnt
);
99 } else { // old mode of cmd read using delay as off period
100 while(*command
!= '\0' && *command
!= ' ') {
101 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
104 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
->divisor
);
105 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
107 if(*(command
++) == '0') {
113 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
116 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
->divisor
);
119 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
122 DoAcquisition_config(false, 0);
125 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
126 // tell client we are done
127 cmd_send(CMD_ACK
,0,0,0,0,0);
130 /* blank r/w tag data stream
131 ...0000000000000000 01111111
132 1010101010101010101010101010101010101010101010101010101010101010
135 101010101010101[0]000...
137 [5555fe852c5555555555555555fe0000]
141 // some hardcoded initial params
142 // when we read a TI tag we sample the zerocross line at 2Mhz
143 // TI tags modulate a 1 as 16 cycles of 123.2Khz
144 // TI tags modulate a 0 as 16 cycles of 134.2Khz
145 #define FSAMPLE 2000000
146 #define FREQLO 123200
147 #define FREQHI 134200
149 signed char *dest
= (signed char *)BigBuf_get_addr();
150 uint16_t n
= BigBuf_max_traceLen();
151 // 128 bit shift register [shift3:shift2:shift1:shift0]
152 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
154 int i
, cycles
=0, samples
=0;
155 // how many sample points fit in 16 cycles of each frequency
156 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
157 // when to tell if we're close enough to one freq or another
158 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
160 // TI tags charge at 134.2Khz
161 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
162 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
164 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
165 // connects to SSP_DIN and the SSP_DOUT logic level controls
166 // whether we're modulating the antenna (high)
167 // or listening to the antenna (low)
168 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
170 // get TI tag data into the buffer
173 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
175 for (i
=0; i
<n
-1; i
++) {
176 // count cycles by looking for lo to hi zero crossings
177 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
179 // after 16 cycles, measure the frequency
182 samples
=i
-samples
; // number of samples in these 16 cycles
184 // TI bits are coming to us lsb first so shift them
185 // right through our 128 bit right shift register
186 shift0
= (shift0
>>1) | (shift1
<< 31);
187 shift1
= (shift1
>>1) | (shift2
<< 31);
188 shift2
= (shift2
>>1) | (shift3
<< 31);
191 // check if the cycles fall close to the number
192 // expected for either the low or high frequency
193 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
194 // low frequency represents a 1
196 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
197 // high frequency represents a 0
199 // probably detected a gay waveform or noise
200 // use this as gaydar or discard shift register and start again
201 shift3
= shift2
= shift1
= shift0
= 0;
205 // for each bit we receive, test if we've detected a valid tag
207 // if we see 17 zeroes followed by 6 ones, we might have a tag
208 // remember the bits are backwards
209 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
210 // if start and end bytes match, we have a tag so break out of the loop
211 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
212 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
220 // if flag is set we have a tag
222 DbpString("Info: No valid tag detected.");
224 // put 64 bit data into shift1 and shift0
225 shift0
= (shift0
>>24) | (shift1
<< 8);
226 shift1
= (shift1
>>24) | (shift2
<< 8);
228 // align 16 bit crc into lower half of shift2
229 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
231 // if r/w tag, check ident match
232 if (shift3
& (1<<15) ) {
233 DbpString("Info: TI tag is rewriteable");
234 // only 15 bits compare, last bit of ident is not valid
235 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
236 DbpString("Error: Ident mismatch!");
238 DbpString("Info: TI tag ident is valid");
241 DbpString("Info: TI tag is readonly");
244 // WARNING the order of the bytes in which we calc crc below needs checking
245 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
246 // bytes in reverse or something
250 crc
= update_crc16(crc
, (shift0
)&0xff);
251 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
252 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
253 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
254 crc
= update_crc16(crc
, (shift1
)&0xff);
255 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
256 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
257 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
259 Dbprintf("Info: Tag data: %x%08x, crc=%x",
260 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
261 if (crc
!= (shift2
&0xffff)) {
262 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
264 DbpString("Info: CRC is good");
269 void WriteTIbyte(uint8_t b
)
273 // modulate 8 bits out to the antenna
277 // stop modulating antenna
284 // stop modulating antenna
294 void AcquireTiType(void)
297 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
298 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
299 #define TIBUFLEN 1250
302 uint32_t *BigBuf
= (uint32_t *)BigBuf_get_addr();
303 BigBuf_Clear_ext(false);
305 // Set up the synchronous serial port
306 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
307 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
309 // steal this pin from the SSP and use it to control the modulation
310 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
311 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
313 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
314 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
316 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
317 // 48/2 = 24 MHz clock must be divided by 12
318 AT91C_BASE_SSC
->SSC_CMR
= 12;
320 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
321 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
322 AT91C_BASE_SSC
->SSC_TCMR
= 0;
323 AT91C_BASE_SSC
->SSC_TFMR
= 0;
330 // Charge TI tag for 50ms.
333 // stop modulating antenna and listen
340 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
341 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
342 i
++; if(i
>= TIBUFLEN
) break;
347 // return stolen pin to SSP
348 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
349 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
351 char *dest
= (char *)BigBuf_get_addr();
354 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
355 for (j
=0; j
<32; j
++) {
356 if(BigBuf
[i
] & (1 << j
)) {
365 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
366 // if crc provided, it will be written with the data verbatim (even if bogus)
367 // if not provided a valid crc will be computed from the data and written.
368 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
370 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
372 crc
= update_crc16(crc
, (idlo
)&0xff);
373 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
374 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
375 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
376 crc
= update_crc16(crc
, (idhi
)&0xff);
377 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
378 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
379 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
381 Dbprintf("Writing to tag: %x%08x, crc=%x",
382 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
384 // TI tags charge at 134.2Khz
385 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
386 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
387 // connects to SSP_DIN and the SSP_DOUT logic level controls
388 // whether we're modulating the antenna (high)
389 // or listening to the antenna (low)
390 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
393 // steal this pin from the SSP and use it to control the modulation
394 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
395 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
397 // writing algorithm:
398 // a high bit consists of a field off for 1ms and field on for 1ms
399 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
400 // initiate a charge time of 50ms (field on) then immediately start writing bits
401 // start by writing 0xBB (keyword) and 0xEB (password)
402 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
403 // finally end with 0x0300 (write frame)
404 // all data is sent lsb firts
405 // finish with 15ms programming time
409 SpinDelay(50); // charge time
411 WriteTIbyte(0xbb); // keyword
412 WriteTIbyte(0xeb); // password
413 WriteTIbyte( (idlo
)&0xff );
414 WriteTIbyte( (idlo
>>8 )&0xff );
415 WriteTIbyte( (idlo
>>16)&0xff );
416 WriteTIbyte( (idlo
>>24)&0xff );
417 WriteTIbyte( (idhi
)&0xff );
418 WriteTIbyte( (idhi
>>8 )&0xff );
419 WriteTIbyte( (idhi
>>16)&0xff );
420 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
421 WriteTIbyte( (crc
)&0xff ); // crc lo
422 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
423 WriteTIbyte(0x00); // write frame lo
424 WriteTIbyte(0x03); // write frame hi
426 SpinDelay(50); // programming time
430 // get TI tag data into the buffer
433 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
434 DbpString("Now use `lf ti read` to check");
437 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
440 uint8_t *tab
= BigBuf_get_addr();
442 //note FpgaDownloadAndGo destroys the bigbuf so be sure this is called before now...
443 //FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
444 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
446 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
448 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
449 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
451 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
452 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
456 //wait until SSC_CLK goes HIGH
458 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
459 //only check every 1000th time (usb_poll_validate_length on some systems was too slow)
461 if (BUTTON_PRESS() || usb_poll_validate_length() ) {
462 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
463 DbpString("Stopped");
482 //wait until SSC_CLK goes LOW
483 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
484 //only check every 1000th time (usb_poll_validate_length on some systems was too slow)
486 if (BUTTON_PRESS() || usb_poll_validate_length() ) {
487 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
488 DbpString("Stopped");
510 #define DEBUG_FRAME_CONTENTS 1
511 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
515 // compose fc/8 fc/10 waveform (FSK2)
516 static void fc(int c
, int *n
)
518 uint8_t *dest
= BigBuf_get_addr();
521 // for when we want an fc8 pattern every 4 logical bits
533 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
535 for (idx
=0; idx
<6; idx
++) {
547 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
549 for (idx
=0; idx
<5; idx
++) {
563 // compose fc/X fc/Y waveform (FSKx)
564 static void fcAll(uint8_t fc
, int *n
, uint8_t clock
, uint16_t *modCnt
)
566 uint8_t *dest
= BigBuf_get_addr();
567 uint8_t halfFC
= fc
/2;
568 uint8_t wavesPerClock
= clock
/fc
;
569 uint8_t mod
= clock
% fc
; //modifier
570 uint8_t modAdj
= fc
/mod
; //how often to apply modifier
571 bool modAdjOk
= !(fc
% mod
); //if (fc % mod==0) modAdjOk=TRUE;
572 // loop through clock - step field clock
573 for (uint8_t idx
=0; idx
< wavesPerClock
; idx
++){
574 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
575 memset(dest
+(*n
), 0, fc
-halfFC
); //in case of odd number use extra here
576 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
579 if (mod
>0) (*modCnt
)++;
580 if ((mod
>0) && modAdjOk
){ //fsk2
581 if ((*modCnt
% modAdj
) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
582 memset(dest
+(*n
), 0, fc
-halfFC
);
583 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
587 if (mod
>0 && !modAdjOk
){ //fsk1
588 memset(dest
+(*n
), 0, mod
-(mod
/2));
589 memset(dest
+(*n
)+(mod
-(mod
/2)), 1, mod
/2);
594 // prepare a waveform pattern in the buffer based on the ID given then
595 // simulate a HID tag until the button is pressed
596 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
600 HID tag bitstream format
601 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
602 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
603 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
604 A fc8 is inserted before every 4 bits
605 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
606 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
610 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
613 // set LF so we don't kill the bigbuf we are setting with simulation data.
614 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
617 // special start of frame marker containing invalid bit sequences
618 fc(8, &n
); fc(8, &n
); // invalid
619 fc(8, &n
); fc(10, &n
); // logical 0
620 fc(10, &n
); fc(10, &n
); // invalid
621 fc(8, &n
); fc(10, &n
); // logical 0
624 // manchester encode bits 43 to 32
625 for (i
=11; i
>=0; i
--) {
626 if ((i
%4)==3) fc(0,&n
);
628 fc(10, &n
); fc(8, &n
); // low-high transition
630 fc(8, &n
); fc(10, &n
); // high-low transition
635 // manchester encode bits 31 to 0
636 for (i
=31; i
>=0; i
--) {
637 if ((i
%4)==3) fc(0,&n
);
639 fc(10, &n
); fc(8, &n
); // low-high transition
641 fc(8, &n
); fc(10, &n
); // high-low transition
647 SimulateTagLowFrequency(n
, 0, ledcontrol
);
653 // prepare a waveform pattern in the buffer based on the ID given then
654 // simulate a FSK tag until the button is pressed
655 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
656 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
660 uint8_t fcHigh
= arg1
>> 8;
661 uint8_t fcLow
= arg1
& 0xFF;
663 uint8_t clk
= arg2
& 0xFF;
664 uint8_t invert
= (arg2
>> 8) & 1;
666 // set LF so we don't kill the bigbuf we are setting with simulation data.
667 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
669 for (i
=0; i
<size
; i
++){
670 if (BitStream
[i
] == invert
){
671 fcAll(fcLow
, &n
, clk
, &modCnt
);
673 fcAll(fcHigh
, &n
, clk
, &modCnt
);
676 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh
, fcLow
, clk
, invert
, n
);
677 /*Dbprintf("DEBUG: First 32:");
678 uint8_t *dest = BigBuf_get_addr();
680 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
682 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
687 SimulateTagLowFrequency(n
, 0, ledcontrol
);
693 // compose ask waveform for one bit(ASK)
694 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
)
696 uint8_t *dest
= BigBuf_get_addr();
697 uint8_t halfClk
= clock
/2;
698 // c = current bit 1 or 0
700 memset(dest
+(*n
), c
, halfClk
);
701 memset(dest
+(*n
) + halfClk
, c
^1, halfClk
);
703 memset(dest
+(*n
), c
, clock
);
708 static void biphaseSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t *phase
)
710 uint8_t *dest
= BigBuf_get_addr();
711 uint8_t halfClk
= clock
/2;
713 memset(dest
+(*n
), c
^ 1 ^ *phase
, halfClk
);
714 memset(dest
+(*n
) + halfClk
, c
^ *phase
, halfClk
);
716 memset(dest
+(*n
), c
^ *phase
, clock
);
722 static void stAskSimBit(int *n
, uint8_t clock
) {
723 uint8_t *dest
= BigBuf_get_addr();
724 uint8_t halfClk
= clock
/2;
725 //ST = .5 high .5 low 1.5 high .5 low 1 high
726 memset(dest
+(*n
), 1, halfClk
);
727 memset(dest
+(*n
) + halfClk
, 0, halfClk
);
728 memset(dest
+(*n
) + clock
, 1, clock
+ halfClk
);
729 memset(dest
+(*n
) + clock
*2 + halfClk
, 0, halfClk
);
730 memset(dest
+(*n
) + clock
*3, 1, clock
);
734 // args clock, ask/man or askraw, invert, transmission separator
735 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
739 uint8_t clk
= (arg1
>> 8) & 0xFF;
740 uint8_t encoding
= arg1
& 0xFF;
741 uint8_t separator
= arg2
& 1;
742 uint8_t invert
= (arg2
>> 8) & 1;
744 // set LF so we don't kill the bigbuf we are setting with simulation data.
745 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
747 if (encoding
==2){ //biphase
749 for (i
=0; i
<size
; i
++){
750 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
752 if (phase
==1) { //run a second set inverted to keep phase in check
753 for (i
=0; i
<size
; i
++){
754 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
757 } else { // ask/manchester || ask/raw
758 for (i
=0; i
<size
; i
++){
759 askSimBit(BitStream
[i
]^invert
, &n
, clk
, encoding
);
761 if (encoding
==0 && BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted (for ask/raw || biphase phase)
762 for (i
=0; i
<size
; i
++){
763 askSimBit(BitStream
[i
]^invert
^1, &n
, clk
, encoding
);
767 if (separator
==1 && encoding
== 1)
768 stAskSimBit(&n
, clk
);
769 else if (separator
==1)
770 Dbprintf("sorry but separator option not yet available");
772 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk
, invert
, encoding
, separator
, n
);
774 //Dbprintf("First 32:");
775 //uint8_t *dest = BigBuf_get_addr();
777 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
779 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
781 if (ledcontrol
) LED_A_ON();
782 SimulateTagLowFrequency(n
, 0, ledcontrol
);
783 if (ledcontrol
) LED_A_OFF();
786 //carrier can be 2,4 or 8
787 static void pskSimBit(uint8_t waveLen
, int *n
, uint8_t clk
, uint8_t *curPhase
, bool phaseChg
)
789 uint8_t *dest
= BigBuf_get_addr();
790 uint8_t halfWave
= waveLen
/2;
794 // write phase change
795 memset(dest
+(*n
), *curPhase
^1, halfWave
);
796 memset(dest
+(*n
) + halfWave
, *curPhase
, halfWave
);
801 //write each normal clock wave for the clock duration
802 for (; i
< clk
; i
+=waveLen
){
803 memset(dest
+(*n
), *curPhase
, halfWave
);
804 memset(dest
+(*n
) + halfWave
, *curPhase
^1, halfWave
);
809 // args clock, carrier, invert,
810 void CmdPSKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
814 uint8_t clk
= arg1
>> 8;
815 uint8_t carrier
= arg1
& 0xFF;
816 uint8_t invert
= arg2
& 0xFF;
817 uint8_t curPhase
= 0;
818 // set LF so we don't kill the bigbuf we are setting with simulation data.
819 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
821 for (i
=0; i
<size
; i
++){
822 if (BitStream
[i
] == curPhase
){
823 pskSimBit(carrier
, &n
, clk
, &curPhase
, FALSE
);
825 pskSimBit(carrier
, &n
, clk
, &curPhase
, TRUE
);
828 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier
, clk
, invert
, n
);
829 //Dbprintf("DEBUG: First 32:");
830 //uint8_t *dest = BigBuf_get_addr();
832 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
834 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
836 if (ledcontrol
) LED_A_ON();
837 SimulateTagLowFrequency(n
, 0, ledcontrol
);
838 if (ledcontrol
) LED_A_OFF();
841 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
842 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
844 uint8_t *dest
= BigBuf_get_addr();
845 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
847 uint32_t hi2
=0, hi
=0, lo
=0;
850 // Configure to go in 125Khz listen mode
851 LFSetupFPGAForADC(95, true);
854 BigBuf_Clear_keep_EM();
856 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
859 if (ledcontrol
) LED_A_ON();
861 DoAcquisition_default(-1,true);
863 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
864 size
= 50*128*2; //big enough to catch 2 sequences of largest format
865 idx
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
, &dummyIdx
);
867 if (idx
>0 && lo
>0 && (size
==96 || size
==192)){
868 // go over previously decoded manchester data and decode into usable tag ID
869 if (hi2
!= 0){ //extra large HID tags 88/192 bits
870 Dbprintf("TAG ID: %x%08x%08x (%d)",
871 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
872 }else { //standard HID tags 44/96 bits
873 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
876 uint32_t cardnum
= 0;
877 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
879 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
881 while(lo2
> 1){ //find last bit set to 1 (format len bit)
889 cardnum
= (lo
>>1)&0xFFFF;
893 cardnum
= (lo
>>1)&0x7FFFF;
894 fc
= ((hi
&0xF)<<12)|(lo
>>20);
897 cardnum
= (lo
>>1)&0xFFFF;
898 fc
= ((hi
&1)<<15)|(lo
>>17);
901 cardnum
= (lo
>>1)&0xFFFFF;
902 fc
= ((hi
&1)<<11)|(lo
>>21);
905 else { //if bit 38 is not set then 37 bit format is used
910 cardnum
= (lo
>>1)&0x7FFFF;
911 fc
= ((hi
&0xF)<<12)|(lo
>>20);
914 //Dbprintf("TAG ID: %x%08x (%d)",
915 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
916 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
917 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF,
918 (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
);
921 if (ledcontrol
) LED_A_OFF();
928 hi2
= hi
= lo
= idx
= 0;
932 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
933 DbpString("Stopped");
934 if (ledcontrol
) LED_A_OFF();
937 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
938 void CmdAWIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
940 uint8_t *dest
= BigBuf_get_addr();
942 int idx
=0, dummyIdx
=0;
944 BigBuf_Clear_keep_EM();
945 // Configure to go in 125Khz listen mode
946 LFSetupFPGAForADC(95, true);
948 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
951 if (ledcontrol
) LED_A_ON();
953 DoAcquisition_default(-1,true);
955 size
= 50*128*2; //big enough to catch 2 sequences of largest format
956 idx
= AWIDdemodFSK(dest
, &size
, &dummyIdx
);
958 if (idx
<=0 || size
!=96) continue;
960 // 0 10 20 30 40 50 60
962 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
963 // -----------------------------------------------------------------------------
964 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
965 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
966 // |---26 bit---| |-----117----||-------------142-------------|
967 // b = format bit len, o = odd parity of last 3 bits
968 // f = facility code, c = card number
969 // w = wiegand parity
970 // (26 bit format shown)
972 //get raw ID before removing parities
973 uint32_t rawLo
= bytebits_to_byte(dest
+idx
+64,32);
974 uint32_t rawHi
= bytebits_to_byte(dest
+idx
+32,32);
975 uint32_t rawHi2
= bytebits_to_byte(dest
+idx
,32);
977 size
= removeParity(dest
, idx
+8, 4, 1, 88);
978 if (size
!= 66) continue;
979 // ok valid card found!
982 // 0 10 20 30 40 50 60
984 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
985 // -----------------------------------------------------------------------------
986 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
987 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
988 // |26 bit| |-117--| |-----142------|
989 // b = format bit len, o = odd parity of last 3 bits
990 // f = facility code, c = card number
991 // w = wiegand parity
992 // (26 bit format shown)
995 uint32_t cardnum
= 0;
998 uint8_t fmtLen
= bytebits_to_byte(dest
,8);
1000 fc
= bytebits_to_byte(dest
+9, 8);
1001 cardnum
= bytebits_to_byte(dest
+17, 16);
1002 code1
= bytebits_to_byte(dest
+8,fmtLen
);
1003 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, fc
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
1005 cardnum
= bytebits_to_byte(dest
+8+(fmtLen
-17), 16);
1007 code1
= bytebits_to_byte(dest
+8,fmtLen
-32);
1008 code2
= bytebits_to_byte(dest
+8+(fmtLen
-32),32);
1009 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, code2
, rawHi2
, rawHi
, rawLo
);
1011 code1
= bytebits_to_byte(dest
+8,fmtLen
);
1012 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
1016 if (ledcontrol
) LED_A_OFF();
1023 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1024 DbpString("Stopped");
1025 if (ledcontrol
) LED_A_OFF();
1028 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
1030 uint8_t *dest
= BigBuf_get_addr();
1032 size_t size
=0, idx
=0;
1033 int clk
=0, invert
=0, errCnt
=0, maxErr
=20;
1037 BigBuf_Clear_keep_EM();
1038 // Configure to go in 125Khz listen mode
1039 LFSetupFPGAForADC(95, true);
1041 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1044 if (ledcontrol
) LED_A_ON();
1046 DoAcquisition_default(-1,true);
1047 size
= BigBuf_max_traceLen();
1048 //askdemod and manchester decode
1049 if (size
> 16385) size
= 16385; //big enough to catch 2 sequences of largest format
1050 errCnt
= askdemod(dest
, &size
, &clk
, &invert
, maxErr
, 0, 1);
1053 if (errCnt
<0) continue;
1055 errCnt
= Em410xDecode(dest
, &size
, &idx
, &hi
, &lo
);
1058 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
1062 (uint32_t)(lo
&0xFFFF),
1063 (uint32_t)((lo
>>16LL) & 0xFF),
1064 (uint32_t)(lo
& 0xFFFFFF));
1066 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
1069 (uint32_t)(lo
&0xFFFF),
1070 (uint32_t)((lo
>>16LL) & 0xFF),
1071 (uint32_t)(lo
& 0xFFFFFF));
1075 if (ledcontrol
) LED_A_OFF();
1077 *low
=lo
& 0xFFFFFFFF;
1082 hi
= lo
= size
= idx
= 0;
1083 clk
= invert
= errCnt
= 0;
1085 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1086 DbpString("Stopped");
1087 if (ledcontrol
) LED_A_OFF();
1090 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
1092 uint8_t *dest
= BigBuf_get_addr();
1094 uint32_t code
=0, code2
=0;
1096 uint8_t facilitycode
=0;
1100 BigBuf_Clear_keep_EM();
1101 // Configure to go in 125Khz listen mode
1102 LFSetupFPGAForADC(95, true);
1104 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1106 if (ledcontrol
) LED_A_ON();
1107 DoAcquisition_default(-1,true);
1108 //fskdemod and get start index
1110 idx
= IOdemodFSK(dest
, BigBuf_max_traceLen(), &dummyIdx
);
1111 if (idx
<0) continue;
1115 //0 10 20 30 40 50 60
1117 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1118 //-----------------------------------------------------------------------------
1119 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1121 //XSF(version)facility:codeone+codetwo
1123 if(findone
){ //only print binary if we are doing one
1124 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
1125 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
1126 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
1127 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
1128 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
1129 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
1130 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
1132 code
= bytebits_to_byte(dest
+idx
,32);
1133 code2
= bytebits_to_byte(dest
+idx
+32,32);
1134 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
1135 facilitycode
= bytebits_to_byte(dest
+idx
+18,8);
1136 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
1138 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version
,facilitycode
,number
,code
,code2
);
1139 // if we're only looking for one tag
1141 if (ledcontrol
) LED_A_OFF();
1148 version
=facilitycode
=0;
1154 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1155 DbpString("Stopped");
1156 if (ledcontrol
) LED_A_OFF();
1159 /*------------------------------
1160 * T5555/T5557/T5567/T5577 routines
1161 *------------------------------
1162 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1164 * Relevant communication times in microsecond
1165 * To compensate antenna falling times shorten the write times
1166 * and enlarge the gap ones.
1167 * Q5 tags seems to have issues when these values changes.
1169 #define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1170 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1171 #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1172 #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1173 #define READ_GAP 15*8
1175 void TurnReadLFOn(int delay
) {
1176 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1177 // Give it a bit of time for the resonant antenna to settle.
1178 WaitUS(delay
); //155*8 //50*8
1181 // Write one bit to card
1182 void T55xxWriteBit(int bit
) {
1184 TurnReadLFOn(WRITE_0
);
1186 TurnReadLFOn(WRITE_1
);
1187 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1191 // Send T5577 reset command then read stream (see if we can identify the start of the stream)
1192 void T55xxResetRead(void) {
1194 //clear buffer now so it does not interfere with timing later
1195 BigBuf_Clear_keep_EM();
1197 // Set up FPGA, 125kHz
1198 LFSetupFPGAForADC(95, true);
1200 // make sure tag is fully powered up...
1203 // Trigger T55x7 in mode.
1204 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1207 // reset tag - op code 00
1211 TurnReadLFOn(READ_GAP
);
1214 DoPartialAcquisition(0, true, BigBuf_max_traceLen(), 0);
1216 // Turn the field off
1217 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1218 cmd_send(CMD_ACK
,0,0,0,0,0);
1222 // Write one card block in page 0, no lock
1223 void T55xxWriteBlockExt(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t arg
) {
1225 bool PwdMode
= arg
& 0x1;
1226 uint8_t Page
= (arg
& 0x2)>>1;
1227 bool testMode
= arg
& 0x4;
1230 // Set up FPGA, 125kHz
1231 LFSetupFPGAForADC(95, true);
1233 // make sure tag is fully powered up...
1235 // Trigger T55x7 in mode.
1236 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1239 if (testMode
) Dbprintf("TestMODE");
1241 T55xxWriteBit(testMode
? 0 : 1);
1242 T55xxWriteBit(testMode
? 1 : Page
); //Page 0
1246 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1247 T55xxWriteBit(Pwd
& i
);
1253 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1254 T55xxWriteBit(Data
& i
);
1256 // Send Block number
1257 for (i
= 0x04; i
!= 0; i
>>= 1)
1258 T55xxWriteBit(Block
& i
);
1260 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1261 // so wait a little more)
1263 // "there is a clock delay before programming"
1264 // - programming takes ~5.6ms for t5577 ~18ms for E5550 or t5567
1265 // so we should wait 1 clock + 5.6ms then read response?
1266 // but we need to know we are dealing with t5577 vs t5567 vs e5550 (or q5) marshmellow...
1268 //TESTMODE TIMING TESTS:
1269 // <566us does nothing
1270 // 566-568 switches between wiping to 0s and doing nothing
1271 // 5184 wipes and allows 1 block to be programmed.
1272 // indefinite power on wipes and then programs all blocks with bitshifted data sent.
1276 TurnReadLFOn(20 * 1000);
1277 //could attempt to do a read to confirm write took
1278 // as the tag should repeat back the new block
1279 // until it is reset, but to confirm it we would
1280 // need to know the current block 0 config mode for
1281 // modulation clock an other details to demod the response...
1282 // response should be (for t55x7) a 0 bit then (ST if on)
1283 // block data written in on repeat until reset.
1285 //DoPartialAcquisition(20, true, 12000);
1289 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1293 // Write one card block in page 0, no lock
1294 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t arg
) {
1295 T55xxWriteBlockExt(Data
, Block
, Pwd
, arg
);
1296 cmd_send(CMD_ACK
,0,0,0,0,0);
1299 // Read one card block in page [page]
1300 void T55xxReadBlock(uint16_t arg0
, uint8_t Block
, uint32_t Pwd
) {
1302 bool PwdMode
= arg0
& 0x1;
1303 uint8_t Page
= (arg0
& 0x2) >> 1;
1305 bool RegReadMode
= (Block
== 0xFF);//regular read mode
1307 //clear buffer now so it does not interfere with timing later
1308 BigBuf_Clear_ext(false);
1310 //make sure block is at max 7
1313 // Set up FPGA, 125kHz to power up the tag
1314 LFSetupFPGAForADC(95, true);
1316 // make sure tag is fully powered up...
1318 // Trigger T55x7 Direct Access Mode with start gap
1319 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1324 T55xxWriteBit(Page
); //Page 0
1328 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1329 T55xxWriteBit(Pwd
& i
);
1331 // Send a zero bit separation
1334 // Send Block number (if direct access mode)
1336 for (i
= 0x04; i
!= 0; i
>>= 1)
1337 T55xxWriteBit(Block
& i
);
1339 // Turn field on to read the response
1340 // 137*8 seems to get to the start of data pretty well...
1341 // but we want to go past the start and let the repeating data settle in...
1342 TurnReadLFOn(210*8);
1345 // Now do the acquisition
1346 DoPartialAcquisition(0, true, 12000, 0);
1348 // Turn the field off
1349 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1350 cmd_send(CMD_ACK
,0,0,0,0,0);
1354 void T55xxWakeUp(uint32_t Pwd
){
1358 // Set up FPGA, 125kHz
1359 LFSetupFPGAForADC(95, true);
1361 // make sure tag is fully powered up...
1364 // Trigger T55x7 Direct Access Mode
1365 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1370 T55xxWriteBit(0); //Page 0
1373 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1374 T55xxWriteBit(Pwd
& i
);
1376 // Turn and leave field on to let the begin repeating transmission
1377 TurnReadLFOn(20*1000);
1380 /*-------------- Cloning routines -----------*/
1382 void WriteT55xx(uint32_t *blockdata
, uint8_t startblock
, uint8_t numblocks
) {
1383 // write last block first and config block last (if included)
1384 for (uint8_t i
= numblocks
+startblock
; i
> startblock
; i
--) {
1385 T55xxWriteBlockExt(blockdata
[i
-1],i
-1,0,0);
1389 // Copy HID id to card and setup block 0 config
1390 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
) {
1391 uint32_t data
[] = {0,0,0,0,0,0,0};
1392 uint8_t last_block
= 0;
1395 // Ensure no more than 84 bits supplied
1397 DbpString("Tags can only have 84 bits.");
1400 // Build the 6 data blocks for supplied 84bit ID
1402 // load preamble (1D) & long format identifier (9E manchester encoded)
1403 data
[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2
>> 16) & 0xF) & 0xFF);
1404 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1405 data
[2] = manchesterEncode2Bytes(hi2
& 0xFFFF);
1406 data
[3] = manchesterEncode2Bytes(hi
>> 16);
1407 data
[4] = manchesterEncode2Bytes(hi
& 0xFFFF);
1408 data
[5] = manchesterEncode2Bytes(lo
>> 16);
1409 data
[6] = manchesterEncode2Bytes(lo
& 0xFFFF);
1411 // Ensure no more than 44 bits supplied
1413 DbpString("Tags can only have 44 bits.");
1416 // Build the 3 data blocks for supplied 44bit ID
1419 data
[1] = 0x1D000000 | (manchesterEncode2Bytes(hi
) & 0xFFFFFF);
1420 data
[2] = manchesterEncode2Bytes(lo
>> 16);
1421 data
[3] = manchesterEncode2Bytes(lo
& 0xFFFF);
1423 // load chip config block
1424 data
[0] = T55x7_BITRATE_RF_50
| T55x7_MODULATION_FSK2a
| last_block
<< T55x7_MAXBLOCK_SHIFT
;
1426 //TODO add selection of chip for Q5 or T55x7
1427 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1430 // Program the data blocks for supplied ID
1431 // and the block 0 for HID format
1432 WriteT55xx(data
, 0, last_block
+1);
1439 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
) {
1440 uint32_t data
[] = {T55x7_BITRATE_RF_64
| T55x7_MODULATION_FSK2a
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
};
1441 //TODO add selection of chip for Q5 or T55x7
1442 // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1445 // Program the data blocks for supplied ID
1446 // and the block 0 config
1447 WriteT55xx(data
, 0, 3);
1454 // Clone Indala 64-bit tag by UID to T55x7
1455 void CopyIndala64toT55x7(uint32_t hi
, uint32_t lo
) {
1456 //Program the 2 data blocks for supplied 64bit UID
1457 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1458 uint32_t data
[] = { T55x7_BITRATE_RF_32
| T55x7_MODULATION_PSK1
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
};
1459 //TODO add selection of chip for Q5 or T55x7
1460 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1462 WriteT55xx(data
, 0, 3);
1463 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1464 // T5567WriteBlock(0x603E1042,0);
1467 // Clone Indala 224-bit tag by UID to T55x7
1468 void CopyIndala224toT55x7(uint32_t uid1
, uint32_t uid2
, uint32_t uid3
, uint32_t uid4
, uint32_t uid5
, uint32_t uid6
, uint32_t uid7
) {
1469 //Program the 7 data blocks for supplied 224bit UID
1470 uint32_t data
[] = {0, uid1
, uid2
, uid3
, uid4
, uid5
, uid6
, uid7
};
1471 // and the block 0 for Indala224 format
1472 //Config for Indala (RF/32;PSK2 with RF/2;Maxblock=7)
1473 data
[0] = T55x7_BITRATE_RF_32
| T55x7_MODULATION_PSK2
| (7 << T55x7_MAXBLOCK_SHIFT
);
1474 //TODO add selection of chip for Q5 or T55x7
1475 // data[0] = (((32-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK2 | 7 << T5555_MAXBLOCK_SHIFT;
1476 WriteT55xx(data
, 0, 8);
1477 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1478 // T5567WriteBlock(0x603E10E2,0);
1481 // clone viking tag to T55xx
1482 void CopyVikingtoT55xx(uint32_t block1
, uint32_t block2
, uint8_t Q5
) {
1483 uint32_t data
[] = {T55x7_BITRATE_RF_32
| T55x7_MODULATION_MANCHESTER
| (2 << T55x7_MAXBLOCK_SHIFT
), block1
, block2
};
1484 if (Q5
) data
[0] = T5555_SET_BITRATE(32) | T5555_MODULATION_MANCHESTER
| 2 << T5555_MAXBLOCK_SHIFT
;
1485 // Program the data blocks for supplied ID and the block 0 config
1486 WriteT55xx(data
, 0, 3);
1488 cmd_send(CMD_ACK
,0,0,0,0,0);
1491 // Define 9bit header for EM410x tags
1492 #define EM410X_HEADER 0x1FF
1493 #define EM410X_ID_LENGTH 40
1495 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
) {
1497 uint64_t id
= EM410X_HEADER
;
1498 uint64_t rev_id
= 0; // reversed ID
1499 int c_parity
[4]; // column parity
1500 int r_parity
= 0; // row parity
1503 // Reverse ID bits given as parameter (for simpler operations)
1504 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1506 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1509 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1514 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1515 id_bit
= rev_id
& 1;
1518 // Don't write row parity bit at start of parsing
1520 id
= (id
<< 1) | r_parity
;
1521 // Start counting parity for new row
1528 // First elements in column?
1530 // Fill out first elements
1531 c_parity
[i
] = id_bit
;
1533 // Count column parity
1534 c_parity
[i
% 4] ^= id_bit
;
1537 id
= (id
<< 1) | id_bit
;
1541 // Insert parity bit of last row
1542 id
= (id
<< 1) | r_parity
;
1544 // Fill out column parity at the end of tag
1545 for (i
= 0; i
< 4; ++i
)
1546 id
= (id
<< 1) | c_parity
[i
];
1551 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1555 uint32_t data
[] = {0, (uint32_t)(id
>>32), (uint32_t)(id
& 0xFFFFFFFF)};
1557 clock
= (card
& 0xFF00) >> 8;
1558 clock
= (clock
== 0) ? 64 : clock
;
1559 Dbprintf("Clock rate: %d", clock
);
1560 if (card
& 0xFF) { //t55x7
1561 clock
= GetT55xxClockBit(clock
);
1563 Dbprintf("Invalid clock rate: %d", clock
);
1566 data
[0] = clock
| T55x7_MODULATION_MANCHESTER
| (2 << T55x7_MAXBLOCK_SHIFT
);
1567 } else { //t5555 (Q5)
1568 data
[0] = T5555_SET_BITRATE(clock
) | T5555_MODULATION_MANCHESTER
| (2 << T5555_MAXBLOCK_SHIFT
);
1571 WriteT55xx(data
, 0, 3);
1574 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1575 (uint32_t)(id
>> 32), (uint32_t)id
);
1578 //-----------------------------------
1579 // EM4469 / EM4305 routines
1580 //-----------------------------------
1581 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1582 #define FWD_CMD_WRITE 0xA
1583 #define FWD_CMD_READ 0x9
1584 #define FWD_CMD_DISABLE 0x5
1586 uint8_t forwardLink_data
[64]; //array of forwarded bits
1587 uint8_t * forward_ptr
; //ptr for forward message preparation
1588 uint8_t fwd_bit_sz
; //forwardlink bit counter
1589 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1591 //====================================================================
1592 // prepares command bits
1594 //====================================================================
1595 //--------------------------------------------------------------------
1596 // VALUES TAKEN FROM EM4x function: SendForward
1597 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1598 // WRITE_GAP = 128; (16*8)
1599 // WRITE_1 = 256 32*8; (32*8)
1601 // These timings work for 4469/4269/4305 (with the 55*8 above)
1602 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1604 uint8_t Prepare_Cmd( uint8_t cmd
) {
1606 *forward_ptr
++ = 0; //start bit
1607 *forward_ptr
++ = 0; //second pause for 4050 code
1609 *forward_ptr
++ = cmd
;
1611 *forward_ptr
++ = cmd
;
1613 *forward_ptr
++ = cmd
;
1615 *forward_ptr
++ = cmd
;
1617 return 6; //return number of emited bits
1620 //====================================================================
1621 // prepares address bits
1623 //====================================================================
1624 uint8_t Prepare_Addr( uint8_t addr
) {
1626 register uint8_t line_parity
;
1631 *forward_ptr
++ = addr
;
1632 line_parity
^= addr
;
1636 *forward_ptr
++ = (line_parity
& 1);
1638 return 7; //return number of emited bits
1641 //====================================================================
1642 // prepares data bits intreleaved with parity bits
1644 //====================================================================
1645 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1647 register uint8_t line_parity
;
1648 register uint8_t column_parity
;
1649 register uint8_t i
, j
;
1650 register uint16_t data
;
1655 for(i
=0; i
<4; i
++) {
1657 for(j
=0; j
<8; j
++) {
1658 line_parity
^= data
;
1659 column_parity
^= (data
& 1) << j
;
1660 *forward_ptr
++ = data
;
1663 *forward_ptr
++ = line_parity
;
1668 for(j
=0; j
<8; j
++) {
1669 *forward_ptr
++ = column_parity
;
1670 column_parity
>>= 1;
1674 return 45; //return number of emited bits
1677 //====================================================================
1678 // Forward Link send function
1679 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1680 // fwd_bit_count set with number of bits to be sent
1681 //====================================================================
1682 void SendForward(uint8_t fwd_bit_count
) {
1684 fwd_write_ptr
= forwardLink_data
;
1685 fwd_bit_sz
= fwd_bit_count
;
1687 // Set up FPGA, 125kHz or 95 divisor
1688 LFSetupFPGAForADC(95, true);
1690 // force 1st mod pulse (start gap must be longer for 4305)
1691 fwd_bit_sz
--; //prepare next bit modulation
1693 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1694 WaitUS(55*8); //55 cycles off (8us each)for 4305 //another reader has 37 here...
1695 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1696 WaitUS(18*8); //18 cycles on (8us each)
1698 // now start writting
1699 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1700 if(((*fwd_write_ptr
++) & 1) == 1)
1701 WaitUS(32*8); //32 cycles at 125Khz (8us each)
1703 //These timings work for 4469/4269/4305 (with the 55*8 above)
1704 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1705 WaitUS(23*8); //23 cycles off (8us each)
1706 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1707 WaitUS(18*8); //18 cycles on (8us each)
1712 void EM4xLogin(uint32_t Password
) {
1714 uint8_t fwd_bit_count
;
1716 forward_ptr
= forwardLink_data
;
1717 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1718 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1720 SendForward(fwd_bit_count
);
1722 //Wait for command to complete
1726 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1728 uint8_t fwd_bit_count
;
1730 // Clear destination buffer before sending the command
1731 BigBuf_Clear_ext(false);
1735 //If password mode do login
1736 if (PwdMode
== 1) EM4xLogin(Pwd
);
1738 forward_ptr
= forwardLink_data
;
1739 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1740 fwd_bit_count
+= Prepare_Addr( Address
);
1742 SendForward(fwd_bit_count
);
1744 // Now do the acquisition
1745 DoPartialAcquisition(20, true, 6000, 1000);
1747 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1749 cmd_send(CMD_ACK
,0,0,0,0,0);
1752 void EM4xWriteWord(uint32_t flag
, uint32_t Data
, uint32_t Pwd
) {
1754 bool PwdMode
= (flag
& 0xF);
1755 uint8_t Address
= (flag
>> 8) & 0xFF;
1756 uint8_t fwd_bit_count
;
1758 //clear buffer now so it does not interfere with timing later
1759 BigBuf_Clear_ext(false);
1763 //If password mode do login
1764 if (PwdMode
) EM4xLogin(Pwd
);
1766 forward_ptr
= forwardLink_data
;
1767 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1768 fwd_bit_count
+= Prepare_Addr( Address
);
1769 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1771 SendForward(fwd_bit_count
);
1773 //Wait for write to complete
1777 //Capture response if one exists
1778 DoPartialAcquisition(20, true, 6000, 1000);
1780 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1782 cmd_send(CMD_ACK
,0,0,0,0,0);
1787 COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
1788 because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
1790 READER START SEQUENCE:
1791 burst 800 us, gap 2.2 msecs
1792 burst 3.6 msecs gap 2.2 msecs
1793 burst 800 us gap 2.2 msecs
1796 This triggers a COTAG tag to response
1798 void Cotag(uint32_t arg0
) {
1800 #define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); }
1801 #define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
1803 uint8_t rawsignal
= arg0
& 0xF;
1807 // Switching to LF image on FPGA. This might empty BigBuff
1808 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1810 //clear buffer now so it does not interfere with timing later
1811 BigBuf_Clear_ext(false);
1813 // Set up FPGA, 132kHz to power up the tag
1814 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 89);
1815 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1817 // Connect the A/D to the peak-detected low-frequency path.
1818 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1820 // Now set up the SSC to get the ADC samples that are now streaming at us.
1823 // start clock - 1.5ticks is 1us
1826 //send COTAG start pulse
1833 case 0: doCotagAcquisition(50000); break;
1834 case 1: doCotagAcquisitionManchester(); break;
1835 case 2: DoAcquisition_config(true, 0); break;
1838 // Turn the field off
1839 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1840 cmd_send(CMD_ACK
,0,0,0,0,0);