1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
17 #include "proxmark3.h"
24 #include "legicrfsim.h"
27 #include "lfsampling.h"
29 #include "mifareutil.h"
37 // Craig Young - 14a stand-alone code
39 #include "iso14443a.h"
42 //=============================================================================
43 // A buffer where we can queue things up to be sent through the FPGA, for
44 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
45 // is the order in which they go out on the wire.
46 //=============================================================================
48 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
49 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
52 struct common_area common_area
__attribute__((section(".commonarea")));
54 void ToSendReset(void)
60 void ToSendStuffBit(int b
)
64 ToSend
[ToSendMax
] = 0;
69 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
74 if(ToSendMax
>= sizeof(ToSend
)) {
76 DbpString("ToSendStuffBit overflowed!");
80 //=============================================================================
81 // Debug print functions, to go out over USB, to the usual PC-side client.
82 //=============================================================================
84 void DbpString(char *str
)
86 byte_t len
= strlen(str
);
87 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
91 void DbpIntegers(int x1
, int x2
, int x3
)
93 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
97 void Dbprintf(const char *fmt
, ...) {
98 // should probably limit size here; oh well, let's just use a big buffer
99 char output_string
[128];
103 kvsprintf(fmt
, output_string
, 10, ap
);
106 DbpString(output_string
);
109 // prints HEX & ASCII
110 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
123 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
126 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
128 Dbprintf("%*D",l
,d
," ");
136 //-----------------------------------------------------------------------------
137 // Read an ADC channel and block till it completes, then return the result
138 // in ADC units (0 to 1023). Also a routine to average 32 samples and
140 //-----------------------------------------------------------------------------
141 static int ReadAdc(int ch
)
143 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
144 // AMPL_HI is a high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
145 // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
148 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
150 // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
152 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
153 AT91C_BASE_ADC
->ADC_MR
=
154 ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
155 ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
156 ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
158 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
159 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
161 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) {};
163 return AT91C_BASE_ADC
->ADC_CDR
[ch
] & 0x3ff;
166 int AvgAdc(int ch
) // was static - merlok
171 for(i
= 0; i
< 32; i
++) {
175 return (a
+ 15) >> 5;
178 static int AvgAdc_Voltage_HF(void)
180 int AvgAdc_Voltage_Low
, AvgAdc_Voltage_High
;
182 AvgAdc_Voltage_Low
= (MAX_ADC_HF_VOLTAGE_LOW
* AvgAdc(ADC_CHAN_HF_LOW
)) >> 10;
183 // if voltage range is about to be exceeded, use high voltage ADC channel if available (RDV40 only)
184 if (AvgAdc_Voltage_Low
> MAX_ADC_HF_VOLTAGE_LOW
- 300) {
185 AvgAdc_Voltage_High
= (MAX_ADC_HF_VOLTAGE_HIGH
* AvgAdc(ADC_CHAN_HF_HIGH
)) >> 10;
186 if (AvgAdc_Voltage_High
>= AvgAdc_Voltage_Low
) {
187 return AvgAdc_Voltage_High
;
190 return AvgAdc_Voltage_Low
;
193 static int AvgAdc_Voltage_LF(void)
195 return (MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10;
198 void MeasureAntennaTuningLfOnly(int *vLf125
, int *vLf134
, int *peakf
, int *peakv
, uint8_t LF_Results
[])
200 int i
, adcval
= 0, peak
= 0;
203 * Sweeps the useful LF range of the proxmark from
204 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
205 * read the voltage in the antenna, the result left
206 * in the buffer is a graph which should clearly show
207 * the resonating frequency of your LF antenna
208 * ( hopefully around 95 if it is tuned to 125kHz!)
211 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
212 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
215 for (i
=255; i
>=19; i
--) {
217 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
219 adcval
= AvgAdc_Voltage_LF();
220 if (i
==95) *vLf125
= adcval
; // voltage at 125Khz
221 if (i
==89) *vLf134
= adcval
; // voltage at 134Khz
223 LF_Results
[i
] = adcval
>> 9; // scale int to fit in byte for graphing purposes
224 if(LF_Results
[i
] > peak
) {
226 peak
= LF_Results
[i
];
232 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
237 void MeasureAntennaTuningHfOnly(int *vHf
)
239 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
241 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
242 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
244 *vHf
= AvgAdc_Voltage_HF();
249 void MeasureAntennaTuning(int mode
)
251 uint8_t LF_Results
[256] = {0};
252 int peakv
= 0, peakf
= 0;
253 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
257 if (((mode
& FLAG_TUNE_ALL
) == FLAG_TUNE_ALL
) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF
)) {
258 // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
259 MeasureAntennaTuningHfOnly(&vHf
);
260 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
262 if (mode
& FLAG_TUNE_LF
) {
263 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
265 if (mode
& FLAG_TUNE_HF
) {
266 MeasureAntennaTuningHfOnly(&vHf
);
270 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
>>1 | (vLf134
>>1<<16), vHf
, peakf
| (peakv
>>1<<16), LF_Results
, 256);
271 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
276 void MeasureAntennaTuningHf(void)
278 int vHf
= 0; // in mV
280 DbpString("Measuring HF antenna, press button to exit");
282 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
283 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
284 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
288 vHf
= AvgAdc_Voltage_HF();
290 Dbprintf("%d mV",vHf
);
291 if (BUTTON_PRESS()) break;
293 DbpString("cancelled");
295 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
300 void ReadMem(int addr
)
302 const uint8_t *data
= ((uint8_t *)addr
);
304 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
305 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
308 /* osimage version information is linked in */
309 extern struct version_information version_information
;
310 /* bootrom version information is pointed to from _bootphase1_version_pointer */
311 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
314 void SendVersion(void)
316 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
317 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
319 /* Try to find the bootrom version information. Expect to find a pointer at
320 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
321 * pointer, then use it.
323 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
324 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
325 strcat(VersionString
, "bootrom version information appears invalid\n");
327 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
328 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
331 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
332 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
334 for (int i
= 0; i
< fpga_bitstream_num
; i
++) {
335 strncat(VersionString
, fpga_version_information
[i
], sizeof(VersionString
) - strlen(VersionString
) - 1);
336 strncat(VersionString
, "\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
339 // test availability of SmartCard slot
340 if (I2C_is_available()) {
341 strncat(VersionString
, "SmartCard Slot: available\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
343 strncat(VersionString
, "SmartCard Slot: not available\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
346 // Send Chip ID and used flash memory
347 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
348 uint32_t compressed_data_section_size
= common_area
.arg1
;
349 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
352 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
353 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
354 void printUSBSpeed(void)
356 Dbprintf("USB Speed:");
357 Dbprintf(" Sending USB packets to client...");
359 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
360 uint8_t *test_data
= BigBuf_get_addr();
363 uint32_t start_time
= end_time
= GetTickCount();
364 uint32_t bytes_transferred
= 0;
367 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
368 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
369 end_time
= GetTickCount();
370 bytes_transferred
+= USB_CMD_DATA_SIZE
;
374 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
375 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
376 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
377 1000 * bytes_transferred
/ (end_time
- start_time
));
382 * Prints runtime information about the PM3.
384 void SendStatus(void)
386 BigBuf_print_status();
388 #ifdef WITH_SMARTCARD
391 printConfig(); //LF Sampling config
394 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
395 Dbprintf(" ToSendMax..........%d", ToSendMax
);
396 Dbprintf(" ToSendBit..........%d", ToSendBit
);
398 cmd_send(CMD_ACK
,1,0,0,0,0);
401 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone)
405 void StandAloneMode()
407 DbpString("Stand-alone mode! No PC necessary.");
408 // Oooh pretty -- notify user we're in elite samy mode now
410 LED(LED_ORANGE
, 200);
412 LED(LED_ORANGE
, 200);
414 LED(LED_ORANGE
, 200);
416 LED(LED_ORANGE
, 200);
425 #ifdef WITH_ISO14443a_StandAlone
426 void StandAloneMode14a()
429 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
432 bool playing
= false, GotoRecord
= false, GotoClone
= false;
433 bool cardRead
[OPTS
] = {false};
434 uint8_t readUID
[10] = {0};
435 uint32_t uid_1st
[OPTS
]={0};
436 uint32_t uid_2nd
[OPTS
]={0};
437 uint32_t uid_tmp1
= 0;
438 uint32_t uid_tmp2
= 0;
439 iso14a_card_select_t hi14a_card
[OPTS
];
441 LED(selected
+ 1, 0);
449 if (GotoRecord
|| !cardRead
[selected
])
453 LED(selected
+ 1, 0);
457 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
458 /* need this delay to prevent catching some weird data */
460 /* Code for reading from 14a tag */
461 uint8_t uid
[10] ={0};
463 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
468 if (BUTTON_PRESS()) {
469 if (cardRead
[selected
]) {
470 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
473 else if (cardRead
[(selected
+1)%OPTS
]) {
474 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
475 selected
= (selected
+1)%OPTS
;
479 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
483 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0, true))
487 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
488 memcpy(readUID
,uid
,10*sizeof(uint8_t));
489 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
490 // Set UID byte order
491 for (int i
=0; i
<4; i
++)
493 dst
= (uint8_t *)&uid_tmp2
;
494 for (int i
=0; i
<4; i
++)
496 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
497 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
501 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
502 uid_1st
[selected
] = (uid_tmp1
)>>8;
503 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
506 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
507 uid_1st
[selected
] = uid_tmp1
;
508 uid_2nd
[selected
] = uid_tmp2
;
514 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
515 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
518 LED(LED_ORANGE
, 200);
520 LED(LED_ORANGE
, 200);
523 LED(selected
+ 1, 0);
525 // Next state is replay:
528 cardRead
[selected
] = true;
530 /* MF Classic UID clone */
535 LED(selected
+ 1, 0);
536 LED(LED_ORANGE
, 250);
540 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
542 // wait for button to be released
543 while(BUTTON_PRESS())
545 // Delay cloning until card is in place
548 Dbprintf("Starting clone. [Bank: %u]", selected
);
549 // need this delay to prevent catching some weird data
551 // Begin clone function here:
552 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
553 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
554 memcpy(c.d.asBytes, data, 16);
557 Block read is similar:
558 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
559 We need to imitate that call with blockNo 0 to set a uid.
561 The get and set commands are handled in this file:
562 // Work with "magic Chinese" card
563 case CMD_MIFARE_CSETBLOCK:
564 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
566 case CMD_MIFARE_CGETBLOCK:
567 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
570 mfCSetUID provides example logic for UID set workflow:
571 -Read block0 from card in field with MifareCGetBlock()
572 -Configure new values without replacing reserved bytes
573 memcpy(block0, uid, 4); // Copy UID bytes from byte array
575 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
576 Bytes 5-7 are reserved SAK and ATQA for mifare classic
577 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
579 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
580 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
581 MifareCGetBlock(0x3F, 1, 0, oldBlock0
);
582 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
583 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
587 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
588 memcpy(newBlock0
,oldBlock0
,16);
589 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
591 newBlock0
[0] = uid_1st
[selected
]>>24;
592 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
593 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
594 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
595 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
596 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
597 MifareCSetBlock(0, 0xFF,0, newBlock0
);
598 MifareCGetBlock(0x3F, 1, 0, testBlock0
);
599 if (memcmp(testBlock0
,newBlock0
,16)==0)
601 DbpString("Cloned successfull!");
602 cardRead
[selected
] = false; // Only if the card was cloned successfully should we clear it
605 selected
= (selected
+1) % OPTS
;
608 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
613 LED(selected
+ 1, 0);
616 // Change where to record (or begin playing)
617 else if (playing
) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
620 LED(selected
+ 1, 0);
622 // Begin transmitting
624 DbpString("Playing");
627 int button_action
= BUTTON_HELD(1000);
628 if (button_action
== 0) { // No button action, proceed with sim
629 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
630 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
631 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
632 DbpString("Mifare Classic");
633 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
); // Mifare Classic
635 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
636 DbpString("Mifare Ultralight");
637 SimulateIso14443aTag(2,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare Ultralight
639 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
640 DbpString("Mifare DESFire");
641 SimulateIso14443aTag(3,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare DESFire
644 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
645 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
);
648 else if (button_action
== BUTTON_SINGLE_CLICK
) {
649 selected
= (selected
+ 1) % OPTS
;
650 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
654 else if (button_action
== BUTTON_HOLD
) {
655 Dbprintf("Playtime over. Begin cloning...");
662 /* We pressed a button so ignore it here with a delay */
665 LED(selected
+ 1, 0);
669 #elif WITH_LF_StandAlone
670 // samy's sniff and repeat routine
674 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
676 int tops
[OPTS
], high
[OPTS
], low
[OPTS
];
681 // Turn on selected LED
682 LED(selected
+ 1, 0);
689 // Was our button held down or pressed?
690 int button_pressed
= BUTTON_HELD(1000);
693 // Button was held for a second, begin recording
694 if (button_pressed
> 0 && cardRead
== 0)
697 LED(selected
+ 1, 0);
701 DbpString("Starting recording");
703 // wait for button to be released
704 while(BUTTON_PRESS())
707 /* need this delay to prevent catching some weird data */
710 CmdHIDdemodFSK(1, &tops
[selected
], &high
[selected
], &low
[selected
], 0);
711 if (tops
[selected
] > 0)
712 Dbprintf("Recorded %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
714 Dbprintf("Recorded %x %x%08x", selected
, high
[selected
], low
[selected
]);
717 LED(selected
+ 1, 0);
718 // Finished recording
720 // If we were previously playing, set playing off
721 // so next button push begins playing what we recorded
728 else if (button_pressed
> 0 && cardRead
== 1)
731 LED(selected
+ 1, 0);
735 if (tops
[selected
] > 0)
736 Dbprintf("Cloning %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
738 Dbprintf("Cloning %x %x%08x", selected
, high
[selected
], low
[selected
]);
740 // wait for button to be released
741 while(BUTTON_PRESS())
744 /* need this delay to prevent catching some weird data */
747 CopyHIDtoT55x7(tops
[selected
] & 0x000FFFFF, high
[selected
], low
[selected
], (tops
[selected
] != 0 && ((high
[selected
]& 0xFFFFFFC0) != 0)), 0x1D);
748 if (tops
[selected
] > 0)
749 Dbprintf("Cloned %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
751 Dbprintf("Cloned %x %x%08x", selected
, high
[selected
], low
[selected
]);
754 LED(selected
+ 1, 0);
755 // Finished recording
757 // If we were previously playing, set playing off
758 // so next button push begins playing what we recorded
765 // Change where to record (or begin playing)
766 else if (button_pressed
)
768 // Next option if we were previously playing
770 selected
= (selected
+ 1) % OPTS
;
774 LED(selected
+ 1, 0);
776 // Begin transmitting
780 DbpString("Playing");
781 // wait for button to be released
782 while(BUTTON_PRESS())
784 if (tops
[selected
] > 0)
785 Dbprintf("%x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
787 Dbprintf("%x %x%08x", selected
, high
[selected
], low
[selected
]);
789 CmdHIDsimTAG(tops
[selected
], high
[selected
], low
[selected
], 0);
790 DbpString("Done playing");
791 if (BUTTON_HELD(1000) > 0)
793 DbpString("Exiting");
798 /* We pressed a button so ignore it here with a delay */
801 // when done, we're done playing, move to next option
802 selected
= (selected
+ 1) % OPTS
;
805 LED(selected
+ 1, 0);
808 while(BUTTON_PRESS())
817 Listen and detect an external reader. Determine the best location
821 Inside the ListenReaderField() function, there is two mode.
822 By default, when you call the function, you will enter mode 1.
823 If you press the PM3 button one time, you will enter mode 2.
824 If you press the PM3 button a second time, you will exit the function.
826 DESCRIPTION OF MODE 1:
827 This mode just listens for an external reader field and lights up green
828 for HF and/or red for LF. This is the original mode of the detectreader
831 DESCRIPTION OF MODE 2:
832 This mode will visually represent, using the LEDs, the actual strength of the
833 current compared to the maximum current detected. Basically, once you know
834 what kind of external reader is present, it will help you spot the best location to place
835 your antenna. You will probably not get some good results if there is a LF and a HF reader
836 at the same place! :-)
840 static const char LIGHT_SCHEME
[] = {
841 0x0, /* ---- | No field detected */
842 0x1, /* X--- | 14% of maximum current detected */
843 0x2, /* -X-- | 29% of maximum current detected */
844 0x4, /* --X- | 43% of maximum current detected */
845 0x8, /* ---X | 57% of maximum current detected */
846 0xC, /* --XX | 71% of maximum current detected */
847 0xE, /* -XXX | 86% of maximum current detected */
848 0xF, /* XXXX | 100% of maximum current detected */
850 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
852 void ListenReaderField(int limit
)
854 int lf_av
, lf_av_new
=0, lf_baseline
= 0, lf_max
;
855 int hf_av
, hf_av_new
=0, hf_baseline
= 0, hf_max
;
856 int mode
=1, display_val
, display_max
, i
;
860 #define REPORT_CHANGE_PERCENT 5 // report new values only if they have changed at least by REPORT_CHANGE_PERCENT
861 #define MIN_HF_FIELD 300 // in mode 1 signal HF field greater than MIN_HF_FIELD above baseline
862 #define MIN_LF_FIELD 1200 // in mode 1 signal LF field greater than MIN_LF_FIELD above baseline
865 // switch off FPGA - we don't want to measure our own signal
866 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
867 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
871 lf_av
= lf_max
= AvgAdc_Voltage_LF();
873 if(limit
!= HF_ONLY
) {
874 Dbprintf("LF 125/134kHz Baseline: %dmV", lf_av
);
878 hf_av
= hf_max
= AvgAdc_Voltage_HF();
880 if (limit
!= LF_ONLY
) {
881 Dbprintf("HF 13.56MHz Baseline: %dmV", hf_av
);
887 if (BUTTON_PRESS()) {
891 DbpString("Signal Strength Mode");
895 DbpString("Stopped");
900 while (BUTTON_PRESS());
904 if (limit
!= HF_ONLY
) {
906 if (lf_av
- lf_baseline
> MIN_LF_FIELD
)
912 lf_av_new
= AvgAdc_Voltage_LF();
913 // see if there's a significant change
914 if (ABS((lf_av
- lf_av_new
)*100/(lf_av
?lf_av
:1)) > REPORT_CHANGE_PERCENT
) {
915 Dbprintf("LF 125/134kHz Field Change: %5dmV", lf_av_new
);
922 if (limit
!= LF_ONLY
) {
924 if (hf_av
- hf_baseline
> MIN_HF_FIELD
)
930 hf_av_new
= AvgAdc_Voltage_HF();
932 // see if there's a significant change
933 if (ABS((hf_av
- hf_av_new
)*100/(hf_av
?hf_av
:1)) > REPORT_CHANGE_PERCENT
) {
934 Dbprintf("HF 13.56MHz Field Change: %5dmV", hf_av_new
);
942 if (limit
== LF_ONLY
) {
944 display_max
= lf_max
;
945 } else if (limit
== HF_ONLY
) {
947 display_max
= hf_max
;
948 } else { /* Pick one at random */
949 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
951 display_max
= hf_max
;
954 display_max
= lf_max
;
957 for (i
=0; i
<LIGHT_LEN
; i
++) {
958 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
959 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
960 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
961 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
962 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
970 void UsbPacketReceived(uint8_t *packet
, int len
)
972 UsbCommand
*c
= (UsbCommand
*)packet
;
974 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
978 case CMD_SET_LF_SAMPLING_CONFIG
:
979 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
981 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
982 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0], c
->arg
[1]),0,0,0,0);
984 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
985 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
987 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
988 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
990 case CMD_HID_DEMOD_FSK
:
991 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 0, 1);
993 case CMD_HID_SIM_TAG
:
994 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], 1);
996 case CMD_FSK_SIM_TAG
:
997 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
999 case CMD_ASK_SIM_TAG
:
1000 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1002 case CMD_PSK_SIM_TAG
:
1003 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1005 case CMD_HID_CLONE_TAG
:
1006 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0], 0x1D);
1008 case CMD_PARADOX_CLONE_TAG
:
1009 // Paradox cards are the same as HID, with a different preamble, so we can reuse the same function
1010 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0], 0x0F);
1012 case CMD_IO_DEMOD_FSK
:
1013 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
1015 case CMD_IO_CLONE_TAG
:
1016 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
1018 case CMD_EM410X_DEMOD
:
1019 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
1021 case CMD_EM410X_WRITE_TAG
:
1022 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1024 case CMD_READ_TI_TYPE
:
1027 case CMD_WRITE_TI_TYPE
:
1028 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
1030 case CMD_SIMULATE_TAG_125K
:
1032 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
1035 case CMD_LF_SIMULATE_BIDIR
:
1036 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
1038 case CMD_INDALA_CLONE_TAG
:
1039 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
1041 case CMD_INDALA_CLONE_TAG_L
:
1042 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
1044 case CMD_T55XX_READ_BLOCK
:
1045 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1047 case CMD_T55XX_WRITE_BLOCK
:
1048 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
1050 case CMD_T55XX_WAKEUP
:
1051 T55xxWakeUp(c
->arg
[0]);
1053 case CMD_T55XX_RESET_READ
:
1056 case CMD_PCF7931_READ
:
1059 case CMD_PCF7931_WRITE
:
1060 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1062 case CMD_PCF7931_BRUTEFORCE
:
1063 BruteForcePCF7931(c
->arg
[0], (c
->arg
[1] & 0xFF), c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128);
1065 case CMD_EM4X_READ_WORD
:
1066 EM4xReadWord(c
->arg
[0], c
->arg
[1],c
->arg
[2]);
1068 case CMD_EM4X_WRITE_WORD
:
1069 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1071 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1072 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1074 case CMD_VIKING_CLONE_TAG
:
1075 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1083 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1084 SnoopHitag(c
->arg
[0]);
1086 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1087 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1089 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1090 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1092 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1093 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1095 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1096 check_challenges_cmd((bool)c
->arg
[0], (byte_t
*)c
->d
.asBytes
, (uint8_t)c
->arg
[1]);
1098 case CMD_READ_HITAG_S
://Reader for only Hitag S tags, args = key or challenge
1099 ReadHitagSCmd((hitag_function
)c
->arg
[0], (hitag_data
*)c
->d
.asBytes
, (uint8_t)c
->arg
[1], (uint8_t)c
->arg
[2], false);
1101 case CMD_READ_HITAG_S_BLK
:
1102 ReadHitagSCmd((hitag_function
)c
->arg
[0], (hitag_data
*)c
->d
.asBytes
, (uint8_t)c
->arg
[1], (uint8_t)c
->arg
[2], true);
1104 case CMD_WR_HITAG_S
://writer for Hitag tags args=data to write,page and key or challenge
1105 if ((hitag_function
)c
->arg
[0] < 10) {
1106 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1108 else if ((hitag_function
)c
->arg
[0] >= 10) {
1109 WriterHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
, c
->arg
[2]);
1114 #ifdef WITH_ISO15693
1115 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1116 AcquireRawAdcSamplesIso15693();
1118 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1119 RecordRawAdcSamplesIso15693();
1122 case CMD_ISO_15693_COMMAND
:
1123 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1126 case CMD_ISO_15693_FIND_AFI
:
1127 BruteforceIso15693Afi(c
->arg
[0]);
1130 case CMD_ISO_15693_DEBUG
:
1131 SetDebugIso15693(c
->arg
[0]);
1134 case CMD_READER_ISO_15693
:
1135 ReaderIso15693(c
->arg
[0]);
1137 case CMD_SIMTAG_ISO_15693
:
1138 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1143 case CMD_SIMULATE_TAG_LEGIC_RF
:
1144 LegicRfSimulate(c
->arg
[0]);
1147 case CMD_WRITER_LEGIC_RF
:
1148 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1151 case CMD_READER_LEGIC_RF
:
1152 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1156 #ifdef WITH_ISO14443b
1157 case CMD_READ_SRI512_TAG
:
1158 ReadSTMemoryIso14443b(0x0F);
1160 case CMD_READ_SRIX4K_TAG
:
1161 ReadSTMemoryIso14443b(0x7F);
1163 case CMD_SNOOP_ISO_14443B
:
1166 case CMD_SIMULATE_TAG_ISO_14443B
:
1167 SimulateIso14443bTag();
1169 case CMD_ISO_14443B_COMMAND
:
1170 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1174 #ifdef WITH_ISO14443a
1175 case CMD_SNOOP_ISO_14443a
:
1176 SnoopIso14443a(c
->arg
[0]);
1178 case CMD_READER_ISO_14443a
:
1181 case CMD_SIMULATE_TAG_ISO_14443a
:
1182 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1185 case CMD_EPA_PACE_COLLECT_NONCE
:
1186 EPA_PACE_Collect_Nonce(c
);
1188 case CMD_EPA_PACE_REPLAY
:
1192 case CMD_READER_MIFARE
:
1193 ReaderMifare(c
->arg
[0]);
1195 case CMD_MIFARE_READBL
:
1196 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1198 case CMD_MIFAREU_READBL
:
1199 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1201 case CMD_MIFAREUC_AUTH
:
1202 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1204 case CMD_MIFAREU_READCARD
:
1205 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1207 case CMD_MIFAREUC_SETPWD
:
1208 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1210 case CMD_MIFARE_READSC
:
1211 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1213 case CMD_MIFARE_WRITEBL
:
1214 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1216 //case CMD_MIFAREU_WRITEBL_COMPAT:
1217 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1219 case CMD_MIFAREU_WRITEBL
:
1220 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1222 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1223 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1225 case CMD_MIFARE_NESTED
:
1226 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1228 case CMD_MIFARE_CHKKEYS
:
1229 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1231 case CMD_SIMULATE_MIFARE_CARD
:
1232 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1236 case CMD_MIFARE_SET_DBGMODE
:
1237 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1239 case CMD_MIFARE_EML_MEMCLR
:
1240 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1242 case CMD_MIFARE_EML_MEMSET
:
1243 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1245 case CMD_MIFARE_EML_MEMGET
:
1246 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1248 case CMD_MIFARE_EML_CARDLOAD
:
1249 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1252 // Work with "magic Chinese" card
1253 case CMD_MIFARE_CWIPE
:
1254 MifareCWipe(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1256 case CMD_MIFARE_CSETBLOCK
:
1257 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1259 case CMD_MIFARE_CGETBLOCK
:
1260 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1262 case CMD_MIFARE_CIDENT
:
1267 case CMD_MIFARE_SNIFFER
:
1268 SniffMifare(c
->arg
[0]);
1274 // Makes use of ISO14443a FPGA Firmware
1275 case CMD_SNOOP_ICLASS
:
1278 case CMD_SIMULATE_TAG_ICLASS
:
1279 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1281 case CMD_READER_ICLASS
:
1282 ReaderIClass(c
->arg
[0]);
1284 case CMD_READER_ICLASS_REPLAY
:
1285 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1287 case CMD_ICLASS_EML_MEMSET
:
1288 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1290 case CMD_ICLASS_WRITEBLOCK
:
1291 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1293 case CMD_ICLASS_READCHECK
: // auth step 1
1294 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1296 case CMD_ICLASS_READBLOCK
:
1297 iClass_ReadBlk(c
->arg
[0]);
1299 case CMD_ICLASS_AUTHENTICATION
: //check
1300 iClass_Authentication(c
->d
.asBytes
);
1302 case CMD_ICLASS_DUMP
:
1303 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1305 case CMD_ICLASS_CLONE
:
1306 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1310 case CMD_HF_SNIFFER
:
1311 HfSnoop(c
->arg
[0], c
->arg
[1]);
1314 #ifdef WITH_SMARTCARD
1315 case CMD_SMART_ATR
: {
1319 case CMD_SMART_SETCLOCK
:{
1320 SmartCardSetClock(c
->arg
[0]);
1323 case CMD_SMART_RAW
: {
1324 SmartCardRaw(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1327 case CMD_SMART_UPLOAD
: {
1328 // upload file from client
1329 uint8_t *mem
= BigBuf_get_addr();
1330 memcpy( mem
+ c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1331 cmd_send(CMD_ACK
,1,0,0,0,0);
1334 case CMD_SMART_UPGRADE
: {
1335 SmartCardUpgrade(c
->arg
[0]);
1340 case CMD_BUFF_CLEAR
:
1344 case CMD_MEASURE_ANTENNA_TUNING
:
1345 MeasureAntennaTuning(c
->arg
[0]);
1348 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1349 MeasureAntennaTuningHf();
1352 case CMD_LISTEN_READER_FIELD
:
1353 ListenReaderField(c
->arg
[0]);
1356 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1357 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1359 LED_D_OFF(); // LED D indicates field ON or OFF
1362 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1365 uint8_t *BigBuf
= BigBuf_get_addr();
1366 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1367 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1368 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1370 // Trigger a finish downloading signal with an ACK frame
1371 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1375 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1376 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1377 // to be able to use this one for uploading data to device
1378 // arg1 = 0 upload for LF usage
1379 // 1 upload for HF usage
1381 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1383 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1385 uint8_t *b
= BigBuf_get_addr();
1386 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1387 cmd_send(CMD_ACK
,0,0,0,0,0);
1394 case CMD_SET_LF_DIVISOR
:
1395 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1396 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1399 case CMD_SET_ADC_MUX
:
1401 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1402 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1403 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1404 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1415 cmd_send(CMD_ACK
,0,0,0,0,0);
1425 case CMD_SETUP_WRITE
:
1426 case CMD_FINISH_WRITE
:
1427 case CMD_HARDWARE_RESET
:
1431 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1433 // We're going to reset, and the bootrom will take control.
1437 case CMD_START_FLASH
:
1438 if(common_area
.flags
.bootrom_present
) {
1439 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1442 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1446 case CMD_DEVICE_INFO
: {
1447 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1448 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1449 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1453 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1458 void __attribute__((noreturn
)) AppMain(void)
1462 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1463 /* Initialize common area */
1464 memset(&common_area
, 0, sizeof(common_area
));
1465 common_area
.magic
= COMMON_AREA_MAGIC
;
1466 common_area
.version
= 1;
1468 common_area
.flags
.osimage_present
= 1;
1478 // The FPGA gets its clock from us from PCK0 output, so set that up.
1479 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1480 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1481 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1482 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1483 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1484 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1485 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1488 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1490 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1492 // Load the FPGA image, which we have stored in our flash.
1493 // (the HF version by default)
1494 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1502 byte_t rx
[sizeof(UsbCommand
)];
1507 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1509 UsbPacketReceived(rx
,rx_len
);
1514 #ifdef WITH_LF_StandAlone
1515 #ifndef WITH_ISO14443a_StandAlone
1516 if (BUTTON_HELD(1000) > 0)
1520 #ifdef WITH_ISO14443a
1521 #ifdef WITH_ISO14443a_StandAlone
1522 if (BUTTON_HELD(1000) > 0)
1523 StandAloneMode14a();