1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 #include "lfsampling.h"
19 #include "protocols.h"
20 #include "usb_cdc.h" // for usb_poll_validate_length
23 # define SHORT_COIL() LOW(GPIO_SSC_DOUT)
26 # define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
30 * Function to do a modulation and then get samples.
32 * @param periods 0xFFFF0000 is period_0, 0x0000FFFF is period_1
36 void ModThenAcquireRawAdcSamples125k(uint32_t delay_off
, uint32_t periods
, uint32_t useHighFreq
, uint8_t *command
)
38 /* Make sure the tag is reset */
39 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
40 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
43 uint16_t period_0
= periods
>> 16;
44 uint16_t period_1
= periods
& 0xFFFF;
46 // 95 == 125 KHz 88 == 124.8 KHz
47 int divisor_used
= (useHighFreq
) ? 88 : 95;
48 sample_config sc
= { 0,0,1, divisor_used
, 0};
49 setSamplingConfig(&sc
);
52 BigBuf_Clear_keep_EM();
54 LFSetupFPGAForADC(sc
.divisor
, 1);
56 // And a little more time for the tag to fully power up
59 // now modulate the reader field
60 while(*command
!= '\0' && *command
!= ' ') {
61 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
64 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
66 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
68 if(*(command
++) == '0')
73 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
76 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
77 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
80 DoAcquisition_config(false);
83 /* blank r/w tag data stream
84 ...0000000000000000 01111111
85 1010101010101010101010101010101010101010101010101010101010101010
88 101010101010101[0]000...
90 [5555fe852c5555555555555555fe0000]
95 // some hardcoded initial params
96 // when we read a TI tag we sample the zerocross line at 2Mhz
97 // TI tags modulate a 1 as 16 cycles of 123.2Khz
98 // TI tags modulate a 0 as 16 cycles of 134.2Khz
99 #define FSAMPLE 2000000
100 #define FREQLO 123200
101 #define FREQHI 134200
103 signed char *dest
= (signed char *)BigBuf_get_addr();
104 uint16_t n
= BigBuf_max_traceLen();
105 // 128 bit shift register [shift3:shift2:shift1:shift0]
106 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
108 int i
, cycles
=0, samples
=0;
109 // how many sample points fit in 16 cycles of each frequency
110 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
111 // when to tell if we're close enough to one freq or another
112 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
114 // TI tags charge at 134.2Khz
115 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
116 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
118 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
119 // connects to SSP_DIN and the SSP_DOUT logic level controls
120 // whether we're modulating the antenna (high)
121 // or listening to the antenna (low)
122 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
124 // get TI tag data into the buffer
127 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
129 for (i
=0; i
<n
-1; i
++) {
130 // count cycles by looking for lo to hi zero crossings
131 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
133 // after 16 cycles, measure the frequency
136 samples
=i
-samples
; // number of samples in these 16 cycles
138 // TI bits are coming to us lsb first so shift them
139 // right through our 128 bit right shift register
140 shift0
= (shift0
>>1) | (shift1
<< 31);
141 shift1
= (shift1
>>1) | (shift2
<< 31);
142 shift2
= (shift2
>>1) | (shift3
<< 31);
145 // check if the cycles fall close to the number
146 // expected for either the low or high frequency
147 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
148 // low frequency represents a 1
150 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
151 // high frequency represents a 0
153 // probably detected a gay waveform or noise
154 // use this as gaydar or discard shift register and start again
155 shift3
= shift2
= shift1
= shift0
= 0;
159 // for each bit we receive, test if we've detected a valid tag
161 // if we see 17 zeroes followed by 6 ones, we might have a tag
162 // remember the bits are backwards
163 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
164 // if start and end bytes match, we have a tag so break out of the loop
165 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
166 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
174 // if flag is set we have a tag
176 DbpString("Info: No valid tag detected.");
178 // put 64 bit data into shift1 and shift0
179 shift0
= (shift0
>>24) | (shift1
<< 8);
180 shift1
= (shift1
>>24) | (shift2
<< 8);
182 // align 16 bit crc into lower half of shift2
183 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
185 // if r/w tag, check ident match
186 if (shift3
& (1<<15) ) {
187 DbpString("Info: TI tag is rewriteable");
188 // only 15 bits compare, last bit of ident is not valid
189 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
190 DbpString("Error: Ident mismatch!");
192 DbpString("Info: TI tag ident is valid");
195 DbpString("Info: TI tag is readonly");
198 // WARNING the order of the bytes in which we calc crc below needs checking
199 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
200 // bytes in reverse or something
204 crc
= update_crc16(crc
, (shift0
)&0xff);
205 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
206 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
207 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
208 crc
= update_crc16(crc
, (shift1
)&0xff);
209 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
210 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
211 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
213 Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
214 if (crc
!= (shift2
&0xffff)) {
215 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
217 DbpString("Info: CRC is good");
223 void WriteTIbyte(uint8_t b
)
227 // modulate 8 bits out to the antenna
230 if ( b
& ( 1 << i
) ) {
231 // stop modulating antenna 1ms
234 // modulate antenna 1ms
238 // stop modulating antenna 1ms
241 // modulate antenna 1m
248 void AcquireTiType(void)
251 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
252 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
253 #define TIBUFLEN 1250
256 uint32_t *buf
= (uint32_t *)BigBuf_get_addr();
258 //clear buffer now so it does not interfere with timing later
259 BigBuf_Clear_ext(false);
261 // Set up the synchronous serial port
262 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
263 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
265 // steal this pin from the SSP and use it to control the modulation
266 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
267 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
269 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
270 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
272 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
273 // 48/2 = 24 MHz clock must be divided by 12
274 AT91C_BASE_SSC
->SSC_CMR
= 12;
276 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
277 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
278 AT91C_BASE_SSC
->SSC_TCMR
= 0;
279 AT91C_BASE_SSC
->SSC_TFMR
= 0;
280 // iceman, FpgaSetupSsc() ?? the code above? can it be replaced?
286 // Charge TI tag for 50ms.
289 // stop modulating antenna and listen
296 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
297 buf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
298 i
++; if(i
>= TIBUFLEN
) break;
303 // return stolen pin to SSP
304 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
305 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
307 char *dest
= (char *)BigBuf_get_addr();
311 for (i
= TIBUFLEN
-1; i
>= 0; i
--) {
312 for (j
= 0; j
< 32; j
++) {
313 if(buf
[i
] & (1 << j
)) {
322 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
323 // if crc provided, it will be written with the data verbatim (even if bogus)
324 // if not provided a valid crc will be computed from the data and written.
325 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
328 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
330 crc
= update_crc16(crc
, (idlo
)&0xff);
331 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
332 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
333 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
334 crc
= update_crc16(crc
, (idhi
)&0xff);
335 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
336 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
337 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
339 Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi
, (unsigned int) idlo
, crc
);
341 // TI tags charge at 134.2Khz
342 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
343 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
344 // connects to SSP_DIN and the SSP_DOUT logic level controls
345 // whether we're modulating the antenna (high)
346 // or listening to the antenna (low)
347 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
350 // steal this pin from the SSP and use it to control the modulation
351 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
352 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
354 // writing algorithm:
355 // a high bit consists of a field off for 1ms and field on for 1ms
356 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
357 // initiate a charge time of 50ms (field on) then immediately start writing bits
358 // start by writing 0xBB (keyword) and 0xEB (password)
359 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
360 // finally end with 0x0300 (write frame)
361 // all data is sent lsb first
362 // finish with 15ms programming time
366 WaitMS(50); // charge time
368 WriteTIbyte(0xbb); // keyword
369 WriteTIbyte(0xeb); // password
370 WriteTIbyte( (idlo
)&0xff );
371 WriteTIbyte( (idlo
>>8 )&0xff );
372 WriteTIbyte( (idlo
>>16)&0xff );
373 WriteTIbyte( (idlo
>>24)&0xff );
374 WriteTIbyte( (idhi
)&0xff );
375 WriteTIbyte( (idhi
>>8 )&0xff );
376 WriteTIbyte( (idhi
>>16)&0xff );
377 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
378 WriteTIbyte( (crc
)&0xff ); // crc lo
379 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
380 WriteTIbyte(0x00); // write frame lo
381 WriteTIbyte(0x03); // write frame hi
383 WaitMS(50); // programming time
387 // get TI tag data into the buffer
390 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
391 DbpString("Now use `lf ti read` to check");
395 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
398 uint8_t *tab
= BigBuf_get_addr();
402 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
| FPGA_LF_EDGE_DETECT_READER_FIELD
);
404 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
405 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
406 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
411 if (ledcontrol
) LED_D_ON();
413 //wait until SSC_CLK goes HIGH
414 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
416 if ( usb_poll_validate_length() || BUTTON_PRESS() ) {
417 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
428 if (ledcontrol
) LED_D_OFF();
430 //wait until SSC_CLK goes LOW
431 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
433 if ( usb_poll_validate_length() || BUTTON_PRESS() ) {
434 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
453 #define DEBUG_FRAME_CONTENTS 1
454 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
458 // compose fc/8 fc/10 waveform (FSK2)
459 static void fc(int c
, int *n
)
461 uint8_t *dest
= BigBuf_get_addr();
464 // for when we want an fc8 pattern every 4 logical bits
476 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
478 for (idx
=0; idx
<6; idx
++) {
490 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
492 for (idx
=0; idx
<5; idx
++) {
506 // compose fc/X fc/Y waveform (FSKx)
507 static void fcAll(uint8_t fc
, int *n
, uint8_t clock
, uint16_t *modCnt
)
509 uint8_t *dest
= BigBuf_get_addr();
510 uint8_t halfFC
= fc
/2;
511 uint8_t wavesPerClock
= clock
/fc
;
512 uint8_t mod
= clock
% fc
; //modifier
513 uint8_t modAdj
= fc
/mod
; //how often to apply modifier
514 bool modAdjOk
= !(fc
% mod
); //if (fc % mod==0) modAdjOk=TRUE;
515 // loop through clock - step field clock
516 for (uint8_t idx
=0; idx
< wavesPerClock
; idx
++){
517 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
518 memset(dest
+(*n
), 0, fc
-halfFC
); //in case of odd number use extra here
519 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
522 if (mod
>0) (*modCnt
)++;
523 if ((mod
>0) && modAdjOk
){ //fsk2
524 if ((*modCnt
% modAdj
) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
525 memset(dest
+(*n
), 0, fc
-halfFC
);
526 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
530 if (mod
>0 && !modAdjOk
){ //fsk1
531 memset(dest
+(*n
), 0, mod
-(mod
/2));
532 memset(dest
+(*n
)+(mod
-(mod
/2)), 1, mod
/2);
537 // prepare a waveform pattern in the buffer based on the ID given then
538 // simulate a HID tag until the button is pressed
539 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
541 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
546 HID tag bitstream format
547 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
548 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
549 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
550 A fc8 is inserted before every 4 bits
551 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
552 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
556 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
560 // special start of frame marker containing invalid bit sequences
561 fc(8, &n
); fc(8, &n
); // invalid
562 fc(8, &n
); fc(10, &n
); // logical 0
563 fc(10, &n
); fc(10, &n
); // invalid
564 fc(8, &n
); fc(10, &n
); // logical 0
567 // manchester encode bits 43 to 32
568 for (i
=11; i
>=0; i
--) {
569 if ((i
%4)==3) fc(0,&n
);
571 fc(10, &n
); fc(8, &n
); // low-high transition
573 fc(8, &n
); fc(10, &n
); // high-low transition
578 // manchester encode bits 31 to 0
579 for (i
=31; i
>=0; i
--) {
580 if ((i
%4)==3) fc(0,&n
);
582 fc(10, &n
); fc(8, &n
); // low-high transition
584 fc(8, &n
); fc(10, &n
); // high-low transition
589 if (ledcontrol
) LED_A_ON();
590 SimulateTagLowFrequency(n
, 0, ledcontrol
);
591 if (ledcontrol
) LED_A_OFF();
594 // prepare a waveform pattern in the buffer based on the ID given then
595 // simulate a FSK tag until the button is pressed
596 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
597 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
599 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
601 // free eventually allocated BigBuf memory
602 BigBuf_free(); BigBuf_Clear_ext(false);
606 int ledcontrol
= 1, n
= 0, i
= 0;
607 uint8_t fcHigh
= arg1
>> 8;
608 uint8_t fcLow
= arg1
& 0xFF;
610 uint8_t clk
= arg2
& 0xFF;
611 uint8_t invert
= (arg2
>> 8) & 1;
613 for (i
=0; i
<size
; i
++){
615 if (BitStream
[i
] == invert
)
616 fcAll(fcLow
, &n
, clk
, &modCnt
);
618 fcAll(fcHigh
, &n
, clk
, &modCnt
);
622 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d", fcHigh
, fcLow
, clk
, invert
, n
);
624 if (ledcontrol
) LED_A_ON();
625 SimulateTagLowFrequency(n
, 0, ledcontrol
);
626 if (ledcontrol
) LED_A_OFF();
629 // compose ask waveform for one bit(ASK)
630 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
)
632 uint8_t *dest
= BigBuf_get_addr();
633 uint8_t halfClk
= clock
/2;
634 // c = current bit 1 or 0
636 memset(dest
+(*n
), c
, halfClk
);
637 memset(dest
+(*n
) + halfClk
, c
^1, halfClk
);
639 memset(dest
+(*n
), c
, clock
);
644 static void biphaseSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t *phase
)
646 uint8_t *dest
= BigBuf_get_addr();
647 uint8_t halfClk
= clock
/2;
649 memset(dest
+(*n
), c
^ 1 ^ *phase
, halfClk
);
650 memset(dest
+(*n
) + halfClk
, c
^ *phase
, halfClk
);
652 memset(dest
+(*n
), c
^ *phase
, clock
);
658 static void stAskSimBit(int *n
, uint8_t clock
) {
659 uint8_t *dest
= BigBuf_get_addr();
660 uint8_t halfClk
= clock
/2;
661 //ST = .5 high .5 low 1.5 high .5 low 1 high
662 memset(dest
+(*n
), 1, halfClk
);
663 memset(dest
+(*n
) + halfClk
, 0, halfClk
);
664 memset(dest
+(*n
) + clock
, 1, clock
+ halfClk
);
665 memset(dest
+(*n
) + clock
*2 + halfClk
, 0, halfClk
);
666 memset(dest
+(*n
) + clock
*3, 1, clock
);
670 // args clock, ask/man or askraw, invert, transmission separator
671 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
673 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
676 int ledcontrol
= 1, n
= 0, i
= 0;
677 uint8_t clk
= (arg1
>> 8) & 0xFF;
678 uint8_t encoding
= arg1
& 0xFF;
679 uint8_t separator
= arg2
& 1;
680 uint8_t invert
= (arg2
>> 8) & 1;
682 if (encoding
== 2){ //biphase
684 for (i
=0; i
<size
; i
++){
685 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
687 if (phase
== 1) { //run a second set inverted to keep phase in check
688 for (i
=0; i
<size
; i
++){
689 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
692 } else { // ask/manchester || ask/raw
693 for (i
=0; i
<size
; i
++){
694 askSimBit(BitStream
[i
]^invert
, &n
, clk
, encoding
);
696 if (encoding
==0 && BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted (for biphase phase)
697 for (i
=0; i
<size
; i
++){
698 askSimBit(BitStream
[i
]^invert
^1, &n
, clk
, encoding
);
702 if (separator
==1 && encoding
== 1)
703 stAskSimBit(&n
, clk
);
704 else if (separator
==1)
705 Dbprintf("sorry but separator option not yet available");
709 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk
, invert
, encoding
, separator
, n
);
711 if (ledcontrol
) LED_A_ON();
712 SimulateTagLowFrequency(n
, 0, ledcontrol
);
713 if (ledcontrol
) LED_A_OFF();
716 //carrier can be 2,4 or 8
717 static void pskSimBit(uint8_t waveLen
, int *n
, uint8_t clk
, uint8_t *curPhase
, bool phaseChg
)
719 uint8_t *dest
= BigBuf_get_addr();
720 uint8_t halfWave
= waveLen
/2;
724 // write phase change
725 memset(dest
+(*n
), *curPhase
^1, halfWave
);
726 memset(dest
+(*n
) + halfWave
, *curPhase
, halfWave
);
731 //write each normal clock wave for the clock duration
732 for (; i
< clk
; i
+=waveLen
){
733 memset(dest
+(*n
), *curPhase
, halfWave
);
734 memset(dest
+(*n
) + halfWave
, *curPhase
^1, halfWave
);
739 // args clock, carrier, invert,
740 void CmdPSKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
742 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
745 int ledcontrol
= 1, n
= 0, i
= 0;
746 uint8_t clk
= arg1
>> 8;
747 uint8_t carrier
= arg1
& 0xFF;
748 uint8_t invert
= arg2
& 0xFF;
749 uint8_t curPhase
= 0;
750 for (i
=0; i
<size
; i
++){
751 if (BitStream
[i
] == curPhase
){
752 pskSimBit(carrier
, &n
, clk
, &curPhase
, FALSE
);
754 pskSimBit(carrier
, &n
, clk
, &curPhase
, TRUE
);
760 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier
, clk
, invert
, n
);
762 if (ledcontrol
) LED_A_ON();
763 SimulateTagLowFrequency(n
, 0, ledcontrol
);
764 if (ledcontrol
) LED_A_OFF();
767 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
768 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
770 uint8_t *dest
= BigBuf_get_addr();
772 uint32_t hi2
=0, hi
=0, lo
=0;
774 // Configure to go in 125Khz listen mode
775 LFSetupFPGAForADC(95, true);
778 BigBuf_Clear_keep_EM();
780 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
783 if (ledcontrol
) LED_A_ON();
785 DoAcquisition_default(-1,true);
787 size
= 50*128*2; //big enough to catch 2 sequences of largest format
788 idx
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
);
790 if (idx
>0 && lo
>0 && (size
==96 || size
==192)){
791 // go over previously decoded manchester data and decode into usable tag ID
792 if (hi2
!= 0){ //extra large HID tags 88/192 bits
793 Dbprintf("TAG ID: %x%08x%08x (%d)",
797 (unsigned int) (lo
>>1) & 0xFFFF
799 } else { //standard HID tags 44/96 bits
802 uint32_t cardnum
= 0;
804 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
806 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
808 while(lo2
> 1){ //find last bit set to 1 (format len bit)
816 cardnum
= (lo
>>1)&0xFFFF;
820 cardnum
= (lo
>>1)&0x7FFFF;
821 fc
= ((hi
&0xF)<<12)|(lo
>>20);
824 cardnum
= (lo
>>1)&0xFFFF;
825 fc
= ((hi
&1)<<15)|(lo
>>17);
828 cardnum
= (lo
>>1)&0xFFFFF;
829 fc
= ((hi
&1)<<11)|(lo
>>21);
832 else { //if bit 38 is not set then 37 bit format is used
837 cardnum
= (lo
>>1)&0x7FFFF;
838 fc
= ((hi
&0xF)<<12)|(lo
>>20);
841 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
844 (unsigned int) (lo
>>1) & 0xFFFF,
845 (unsigned int) bitlen
,
847 (unsigned int) cardnum
);
850 if (ledcontrol
) LED_A_OFF();
857 hi2
= hi
= lo
= idx
= 0;
860 DbpString("Stopped");
861 if (ledcontrol
) LED_A_OFF();
864 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
865 void CmdAWIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
867 uint8_t *dest
= BigBuf_get_addr();
871 BigBuf_Clear_keep_EM();
872 // Configure to go in 125Khz listen mode
873 LFSetupFPGAForADC(95, true);
875 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
878 if (ledcontrol
) LED_A_ON();
880 DoAcquisition_default(-1,true);
882 size
= 50*128*2; //big enough to catch 2 sequences of largest format
883 idx
= AWIDdemodFSK(dest
, &size
);
885 if (idx
<=0 || size
!=96) continue;
887 // 0 10 20 30 40 50 60
889 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
890 // -----------------------------------------------------------------------------
891 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
892 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
893 // |---26 bit---| |-----117----||-------------142-------------|
894 // b = format bit len, o = odd parity of last 3 bits
895 // f = facility code, c = card number
896 // w = wiegand parity
897 // (26 bit format shown)
899 //get raw ID before removing parities
900 uint32_t rawLo
= bytebits_to_byte(dest
+idx
+64,32);
901 uint32_t rawHi
= bytebits_to_byte(dest
+idx
+32,32);
902 uint32_t rawHi2
= bytebits_to_byte(dest
+idx
,32);
904 size
= removeParity(dest
, idx
+8, 4, 1, 88);
905 if (size
!= 66) continue;
908 // 0 10 20 30 40 50 60
910 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
911 // -----------------------------------------------------------------------------
912 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
913 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
914 // |26 bit| |-117--| |-----142------|
916 // 00110010 0 0000011111010000000000000001000100101000100001111 0 00000000
917 // bbbbbbbb w ffffffffffffffffccccccccccccccccccccccccccccccccc w xxxxxxxx
918 // |50 bit| |----4000------||-----------2248975-------------|
920 // b = format bit len, o = odd parity of last 3 bits
921 // f = facility code, c = card number
922 // w = wiegand parity
925 uint32_t cardnum
= 0;
928 uint8_t fmtLen
= bytebits_to_byte(dest
,8);
931 fc
= bytebits_to_byte(dest
+ 9, 8);
932 cardnum
= bytebits_to_byte(dest
+ 17, 16);
933 code1
= bytebits_to_byte(dest
+ 8,fmtLen
);
934 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, fc
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
937 fc
= bytebits_to_byte(dest
+ 9, 16);
938 cardnum
= bytebits_to_byte(dest
+ 25, 32);
939 code1
= bytebits_to_byte(dest
+ 8, (fmtLen
-32) );
940 code2
= bytebits_to_byte(dest
+ 8 + (fmtLen
-32), 32);
941 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen
, fc
, cardnum
, code1
, code2
, rawHi2
, rawHi
, rawLo
);
945 cardnum
= bytebits_to_byte(dest
+8+(fmtLen
-17), 16);
946 code1
= bytebits_to_byte(dest
+8,fmtLen
-32);
947 code2
= bytebits_to_byte(dest
+8+(fmtLen
-32),32);
948 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, code2
, rawHi2
, rawHi
, rawLo
);
950 cardnum
= bytebits_to_byte(dest
+8+(fmtLen
-17), 16);
951 code1
= bytebits_to_byte(dest
+8,fmtLen
);
952 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
957 if (ledcontrol
) LED_A_OFF();
963 DbpString("Stopped");
964 if (ledcontrol
) LED_A_OFF();
967 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
969 uint8_t *dest
= BigBuf_get_addr();
971 size_t size
=0, idx
=0;
972 int clk
=0, invert
=0, errCnt
=0, maxErr
=20;
976 BigBuf_Clear_keep_EM();
977 // Configure to go in 125Khz listen mode
978 LFSetupFPGAForADC(95, true);
980 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
983 if (ledcontrol
) LED_A_ON();
985 DoAcquisition_default(-1,true);
986 size
= BigBuf_max_traceLen();
987 //askdemod and manchester decode
988 if (size
> 16385) size
= 16385; //big enough to catch 2 sequences of largest format
989 errCnt
= askdemod(dest
, &size
, &clk
, &invert
, maxErr
, 0, 1);
992 if (errCnt
<0) continue;
994 errCnt
= Em410xDecode(dest
, &size
, &idx
, &hi
, &lo
);
997 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
1001 (uint32_t)(lo
&0xFFFF),
1002 (uint32_t)((lo
>>16LL) & 0xFF),
1003 (uint32_t)(lo
& 0xFFFFFF));
1005 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
1008 (uint32_t)(lo
&0xFFFF),
1009 (uint32_t)((lo
>>16LL) & 0xFF),
1010 (uint32_t)(lo
& 0xFFFFFF));
1014 if (ledcontrol
) LED_A_OFF();
1016 *low
=lo
& 0xFFFFFFFF;
1021 hi
= lo
= size
= idx
= 0;
1022 clk
= invert
= errCnt
= 0;
1024 DbpString("Stopped");
1025 if (ledcontrol
) LED_A_OFF();
1028 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
1030 uint8_t *dest
= BigBuf_get_addr();
1032 uint32_t code
=0, code2
=0;
1034 uint8_t facilitycode
=0;
1037 uint16_t calccrc
= 0;
1040 BigBuf_Clear_keep_EM();
1042 // Configure to go in 125Khz listen mode
1043 LFSetupFPGAForADC(95, true);
1045 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1047 if (ledcontrol
) LED_A_ON();
1048 DoAcquisition_default(-1,true);
1049 //fskdemod and get start index
1051 idx
= IOdemodFSK(dest
, BigBuf_max_traceLen());
1052 if (idx
<0) continue;
1056 //0 10 20 30 40 50 60
1058 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1059 //-----------------------------------------------------------------------------
1060 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
1063 //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
1064 //preamble F0 E0 01 03 B6 75
1065 // How to calc checksum,
1066 // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
1067 // F0 + E0 + 01 + 03 + B6 = 28A
1071 //XSF(version)facility:codeone+codetwo
1073 if(findone
){ //only print binary if we are doing one
1074 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
1075 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
1076 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
1077 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
1078 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
1079 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
1080 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
1082 code
= bytebits_to_byte(dest
+idx
,32);
1083 code2
= bytebits_to_byte(dest
+idx
+32,32);
1084 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
1085 facilitycode
= bytebits_to_byte(dest
+idx
+18,8);
1086 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
1088 crc
= bytebits_to_byte(dest
+idx
+54,8);
1089 for (uint8_t i
=1; i
<6; ++i
)
1090 calccrc
+= bytebits_to_byte(dest
+idx
+9*i
,8);
1092 calccrc
= 0xff - calccrc
;
1094 char *crcStr
= (crc
== calccrc
) ? "ok":"!crc";
1096 Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version
,facilitycode
,number
,code
,code2
, crc
, crcStr
);
1097 // if we're only looking for one tag
1099 if (ledcontrol
) LED_A_OFF();
1105 version
=facilitycode
=0;
1111 DbpString("Stopped");
1112 if (ledcontrol
) LED_A_OFF();
1115 /*------------------------------
1116 * T5555/T5557/T5567/T5577 routines
1117 *------------------------------
1118 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1120 * Relevant communication times in microsecond
1121 * To compensate antenna falling times shorten the write times
1122 * and enlarge the gap ones.
1123 * Q5 tags seems to have issues when these values changes.
1126 #define START_GAP 50*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (15fc)
1127 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (10fc)
1128 #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (24fc)
1129 #define WRITE_1 54*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (56fc) 432 for T55x7; 448 for E5550
1130 #define READ_GAP 15*8
1132 // VALUES TAKEN FROM EM4x function: SendForward
1133 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1134 // WRITE_GAP = 128; (16*8)
1135 // WRITE_1 = 256 32*8; (32*8)
1137 // These timings work for 4469/4269/4305 (with the 55*8 above)
1138 // WRITE_0 = 23*8 , 9*8
1140 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
1141 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
1142 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
1143 // T0 = TIMER_CLOCK1 / 125000 = 192
1144 // 1 Cycle = 8 microseconds(us) == 1 field clock
1148 // 1fc = 8us = 12ticks
1149 void TurnReadLFOn(uint32_t delay
) {
1150 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1152 // measure antenna strength.
1153 //int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
1155 // Give it a bit of time for the resonant antenna to settle.
1159 // Write one bit to card
1160 void T55xxWriteBit(int bit
) {
1162 TurnReadLFOn(WRITE_0
);
1164 TurnReadLFOn(WRITE_1
);
1165 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1169 // Send T5577 reset command then read stream (see if we can identify the start of the stream)
1170 void T55xxResetRead(void) {
1172 //clear buffer now so it does not interfere with timing later
1173 BigBuf_Clear_keep_EM();
1175 // Set up FPGA, 125kHz
1176 LFSetupFPGAForADC(95, true);
1178 // Trigger T55x7 in mode.
1179 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1182 // reset tag - op code 00
1186 // Turn field on to read the response
1187 TurnReadLFOn(READ_GAP
);
1190 doT55x7Acquisition(BigBuf_max_traceLen());
1192 // Turn the field off
1193 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1194 cmd_send(CMD_ACK
,0,0,0,0,0);
1198 // Write one card block in page 0, no lock
1199 void T55xxWriteBlockExt(uint32_t Data
, uint8_t Block
, uint32_t Pwd
, uint8_t arg
) {
1201 bool PwdMode
= arg
& 0x1;
1202 uint8_t Page
= (arg
& 0x2)>>1;
1205 // Set up FPGA, 125kHz
1206 LFSetupFPGAForADC(95, true);
1208 // Trigger T55x7 in mode.
1209 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1214 T55xxWriteBit(Page
); //Page 0
1217 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1218 T55xxWriteBit(Pwd
& i
);
1224 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1225 T55xxWriteBit(Data
& i
);
1227 // Send Block number
1228 for (i
= 0x04; i
!= 0; i
>>= 1)
1229 T55xxWriteBit(Block
& i
);
1231 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1232 // so wait a little more)
1233 TurnReadLFOn(20 * 1000);
1235 //could attempt to do a read to confirm write took
1236 // as the tag should repeat back the new block
1237 // until it is reset, but to confirm it we would
1238 // need to know the current block 0 config mode
1241 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1245 // Write one card block in page 0, no lock
1246 void T55xxWriteBlock(uint32_t Data
, uint8_t Block
, uint32_t Pwd
, uint8_t arg
) {
1247 T55xxWriteBlockExt(Data
, Block
, Pwd
, arg
);
1248 cmd_send(CMD_ACK
,0,0,0,0,0);
1251 // Read one card block in page [page]
1252 void T55xxReadBlock(uint16_t arg0
, uint8_t Block
, uint32_t Pwd
) {
1254 bool PwdMode
= arg0
& 0x1;
1255 uint8_t Page
= (arg0
& 0x2) >> 1;
1257 bool RegReadMode
= (Block
== 0xFF);
1259 //clear buffer now so it does not interfere with timing later
1260 BigBuf_Clear_keep_EM();
1262 //make sure block is at max 7
1265 // Set up FPGA, 125kHz to power up the tag
1266 LFSetupFPGAForADC(95, true);
1269 // Trigger T55x7 Direct Access Mode with start gap
1270 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1275 T55xxWriteBit(Page
); //Page 0
1279 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1280 T55xxWriteBit(Pwd
& i
);
1282 // Send a zero bit separation
1285 // Send Block number (if direct access mode)
1287 for (i
= 0x04; i
!= 0; i
>>= 1)
1288 T55xxWriteBit(Block
& i
);
1290 // Turn field on to read the response
1291 TurnReadLFOn(READ_GAP
);
1294 doT55x7Acquisition(12000);
1296 // Turn the field off
1297 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1298 cmd_send(CMD_ACK
,0,0,0,0,0);
1302 void T55xxWakeUp(uint32_t Pwd
){
1306 // Set up FPGA, 125kHz
1307 LFSetupFPGAForADC(95, true);
1309 // Trigger T55x7 Direct Access Mode
1310 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1315 T55xxWriteBit(0); //Page 0
1318 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1319 T55xxWriteBit(Pwd
& i
);
1321 // Turn and leave field on to let the begin repeating transmission
1322 TurnReadLFOn(20*1000);
1325 /*-------------- Cloning routines -----------*/
1326 void WriteT55xx(uint32_t *blockdata
, uint8_t startblock
, uint8_t numblocks
) {
1327 // write last block first and config block last (if included)
1328 for (uint8_t i
= numblocks
+startblock
; i
> startblock
; i
--)
1329 T55xxWriteBlockExt(blockdata
[i
-1], i
-1, 0, 0);
1332 // Copy HID id to card and setup block 0 config
1333 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
) {
1334 uint32_t data
[] = {0,0,0,0,0,0,0};
1335 uint8_t last_block
= 0;
1338 // Ensure no more than 84 bits supplied
1339 if (hi2
> 0xFFFFF) {
1340 DbpString("Tags can only have 84 bits.");
1343 // Build the 6 data blocks for supplied 84bit ID
1345 // load preamble (1D) & long format identifier (9E manchester encoded)
1346 data
[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2
>> 16) & 0xF) & 0xFF);
1347 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1348 data
[2] = manchesterEncode2Bytes(hi2
& 0xFFFF);
1349 data
[3] = manchesterEncode2Bytes(hi
>> 16);
1350 data
[4] = manchesterEncode2Bytes(hi
& 0xFFFF);
1351 data
[5] = manchesterEncode2Bytes(lo
>> 16);
1352 data
[6] = manchesterEncode2Bytes(lo
& 0xFFFF);
1354 // Ensure no more than 44 bits supplied
1356 DbpString("Tags can only have 44 bits.");
1359 // Build the 3 data blocks for supplied 44bit ID
1362 data
[1] = 0x1D000000 | (manchesterEncode2Bytes(hi
) & 0xFFFFFF);
1363 data
[2] = manchesterEncode2Bytes(lo
>> 16);
1364 data
[3] = manchesterEncode2Bytes(lo
& 0xFFFF);
1366 // load chip config block
1367 data
[0] = T55x7_BITRATE_RF_50
| T55x7_MODULATION_FSK2a
| last_block
<< T55x7_MAXBLOCK_SHIFT
;
1369 //TODO add selection of chip for Q5 or T55x7
1370 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1373 // Program the data blocks for supplied ID
1374 // and the block 0 for HID format
1375 WriteT55xx(data
, 0, last_block
+1);
1382 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
) {
1383 uint32_t data
[] = {T55x7_BITRATE_RF_64
| T55x7_MODULATION_FSK2a
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
};
1384 //TODO add selection of chip for Q5 or T55x7
1385 //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
1386 // data[0] = (64 << T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1389 // Program the data blocks for supplied ID
1390 // and the block 0 config
1391 WriteT55xx(data
, 0, 3);
1396 // Clone Indala 64-bit tag by UID to T55x7
1397 void CopyIndala64toT55x7(uint32_t hi
, uint32_t lo
) {
1398 //Program the 2 data blocks for supplied 64bit UID
1399 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1400 uint32_t data
[] = { T55x7_BITRATE_RF_32
| T55x7_MODULATION_PSK1
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
};
1401 //TODO add selection of chip for Q5 or T55x7
1402 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1404 WriteT55xx(data
, 0, 3);
1405 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1406 // T5567WriteBlock(0x603E1042,0);
1409 // Clone Indala 224-bit tag by UID to T55x7
1410 void CopyIndala224toT55x7(uint32_t uid1
, uint32_t uid2
, uint32_t uid3
, uint32_t uid4
, uint32_t uid5
, uint32_t uid6
, uint32_t uid7
) {
1411 //Program the 7 data blocks for supplied 224bit UID
1412 uint32_t data
[] = {0, uid1
, uid2
, uid3
, uid4
, uid5
, uid6
, uid7
};
1413 // and the block 0 for Indala224 format
1414 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1415 data
[0] = T55x7_BITRATE_RF_32
| T55x7_MODULATION_PSK1
| (7 << T55x7_MAXBLOCK_SHIFT
);
1416 //TODO add selection of chip for Q5 or T55x7
1417 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
1418 WriteT55xx(data
, 0, 8);
1419 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1420 // T5567WriteBlock(0x603E10E2,0);
1423 // clone viking tag to T55xx
1424 void CopyVikingtoT55xx(uint32_t block1
, uint32_t block2
, uint8_t Q5
) {
1425 uint32_t data
[] = {T55x7_BITRATE_RF_32
| T55x7_MODULATION_MANCHESTER
| (2 << T55x7_MAXBLOCK_SHIFT
), block1
, block2
};
1426 //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
1427 if (Q5
) data
[0] = (32 << T5555_BITRATE_SHIFT
) | T5555_MODULATION_MANCHESTER
| 2 << T5555_MAXBLOCK_SHIFT
;
1428 // Program the data blocks for supplied ID and the block 0 config
1429 WriteT55xx(data
, 0, 3);
1431 cmd_send(CMD_ACK
,0,0,0,0,0);
1434 // Define 9bit header for EM410x tags
1435 #define EM410X_HEADER 0x1FF
1436 #define EM410X_ID_LENGTH 40
1438 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
) {
1440 uint64_t id
= EM410X_HEADER
;
1441 uint64_t rev_id
= 0; // reversed ID
1442 int c_parity
[4]; // column parity
1443 int r_parity
= 0; // row parity
1446 // Reverse ID bits given as parameter (for simpler operations)
1447 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1449 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1452 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1457 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1458 id_bit
= rev_id
& 1;
1461 // Don't write row parity bit at start of parsing
1463 id
= (id
<< 1) | r_parity
;
1464 // Start counting parity for new row
1471 // First elements in column?
1473 // Fill out first elements
1474 c_parity
[i
] = id_bit
;
1476 // Count column parity
1477 c_parity
[i
% 4] ^= id_bit
;
1480 id
= (id
<< 1) | id_bit
;
1484 // Insert parity bit of last row
1485 id
= (id
<< 1) | r_parity
;
1487 // Fill out column parity at the end of tag
1488 for (i
= 0; i
< 4; ++i
)
1489 id
= (id
<< 1) | c_parity
[i
];
1494 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1498 uint32_t data
[] = {0, (uint32_t)(id
>>32), (uint32_t)(id
& 0xFFFFFFFF)};
1500 clock
= (card
& 0xFF00) >> 8;
1501 clock
= (clock
== 0) ? 64 : clock
;
1502 Dbprintf("Clock rate: %d", clock
);
1503 if (card
& 0xFF) { //t55x7
1504 clock
= GetT55xxClockBit(clock
);
1506 Dbprintf("Invalid clock rate: %d", clock
);
1509 data
[0] = clock
| T55x7_MODULATION_MANCHESTER
| (2 << T55x7_MAXBLOCK_SHIFT
);
1510 } else { //t5555 (Q5)
1511 clock
= (clock
-2)>>1; //n = (RF-2)/2
1512 data
[0] = (clock
<< T5555_BITRATE_SHIFT
) | T5555_MODULATION_MANCHESTER
| (2 << T5555_MAXBLOCK_SHIFT
);
1515 WriteT55xx(data
, 0, 3);
1518 Dbprintf("Tag %s written with 0x%08x%08x\n",
1519 card
? "T55x7":"T5555",
1520 (uint32_t)(id
>> 32),
1524 //-----------------------------------
1525 // EM4469 / EM4305 routines
1526 //-----------------------------------
1527 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1528 #define FWD_CMD_WRITE 0xA
1529 #define FWD_CMD_READ 0x9
1530 #define FWD_CMD_DISABLE 0x5
1532 uint8_t forwardLink_data
[64]; //array of forwarded bits
1533 uint8_t * forward_ptr
; //ptr for forward message preparation
1534 uint8_t fwd_bit_sz
; //forwardlink bit counter
1535 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1537 //====================================================================
1538 // prepares command bits
1540 //====================================================================
1541 //--------------------------------------------------------------------
1542 // VALUES TAKEN FROM EM4x function: SendForward
1543 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1544 // WRITE_GAP = 128; (16*8)
1545 // WRITE_1 = 256 32*8; (32*8)
1547 // These timings work for 4469/4269/4305 (with the 55*8 above)
1548 // WRITE_0 = 23*8 , 9*8
1550 uint8_t Prepare_Cmd( uint8_t cmd
) {
1552 *forward_ptr
++ = 0; //start bit
1553 *forward_ptr
++ = 0; //second pause for 4050 code
1555 *forward_ptr
++ = cmd
;
1557 *forward_ptr
++ = cmd
;
1559 *forward_ptr
++ = cmd
;
1561 *forward_ptr
++ = cmd
;
1563 return 6; //return number of emited bits
1566 //====================================================================
1567 // prepares address bits
1569 //====================================================================
1570 uint8_t Prepare_Addr( uint8_t addr
) {
1572 register uint8_t line_parity
;
1577 *forward_ptr
++ = addr
;
1578 line_parity
^= addr
;
1582 *forward_ptr
++ = (line_parity
& 1);
1584 return 7; //return number of emited bits
1587 //====================================================================
1588 // prepares data bits intreleaved with parity bits
1590 //====================================================================
1591 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1593 register uint8_t line_parity
;
1594 register uint8_t column_parity
;
1595 register uint8_t i
, j
;
1596 register uint16_t data
;
1601 for(i
=0; i
<4; i
++) {
1603 for(j
=0; j
<8; j
++) {
1604 line_parity
^= data
;
1605 column_parity
^= (data
& 1) << j
;
1606 *forward_ptr
++ = data
;
1609 *forward_ptr
++ = line_parity
;
1614 for(j
=0; j
<8; j
++) {
1615 *forward_ptr
++ = column_parity
;
1616 column_parity
>>= 1;
1620 return 45; //return number of emited bits
1623 //====================================================================
1624 // Forward Link send function
1625 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1626 // fwd_bit_count set with number of bits to be sent
1627 //====================================================================
1628 void SendForward(uint8_t fwd_bit_count
) {
1630 fwd_write_ptr
= forwardLink_data
;
1631 fwd_bit_sz
= fwd_bit_count
;
1635 // Set up FPGA, 125kHz
1636 LFSetupFPGAForADC(95, true);
1638 // force 1st mod pulse (start gap must be longer for 4305)
1639 fwd_bit_sz
--; //prepare next bit modulation
1641 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1642 WaitUS(55*8); //55 cycles off (8us each)for 4305 // ICEMAN: problem with (us) clock is 21.3us increments
1643 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1644 WaitUS(16*8); //16 cycles on (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
1646 // now start writting
1647 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1648 if(((*fwd_write_ptr
++) & 1) == 1)
1649 WaitUS(32*8); //32 cycles at 125Khz (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
1651 //These timings work for 4469/4269/4305 (with the 55*8 above)
1652 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1653 WaitUS(16*8); //16-4 cycles off (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
1654 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1655 WaitUS(16*8); //16 cycles on (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
1660 void EM4xLogin(uint32_t Password
) {
1662 uint8_t fwd_bit_count
;
1663 forward_ptr
= forwardLink_data
;
1664 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1665 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1666 SendForward(fwd_bit_count
);
1668 //Wait for command to complete
1672 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1674 uint8_t fwd_bit_count
;
1675 uint8_t *dest
= BigBuf_get_addr();
1676 uint16_t bufsize
= BigBuf_max_traceLen(); // ICEMAN: this tries to fill up all tracelog space
1679 // Clear destination buffer before sending the command
1680 BigBuf_Clear_ext(false);
1682 //If password mode do login
1683 if (PwdMode
== 1) EM4xLogin(Pwd
);
1685 forward_ptr
= forwardLink_data
;
1686 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1687 fwd_bit_count
+= Prepare_Addr( Address
);
1689 SendForward(fwd_bit_count
);
1691 // Now do the acquisition
1692 // ICEMAN, change to the one in lfsampling.c
1695 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1696 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1698 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1699 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1701 if (i
>= bufsize
) break;
1705 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1706 cmd_send(CMD_ACK
,0,0,0,0,0);
1710 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1712 uint8_t fwd_bit_count
;
1714 //If password mode do login
1715 if (PwdMode
== 1) EM4xLogin(Pwd
);
1717 forward_ptr
= forwardLink_data
;
1718 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1719 fwd_bit_count
+= Prepare_Addr( Address
);
1720 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1722 SendForward(fwd_bit_count
);
1724 //Wait for write to complete
1726 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off