1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 #include "lfsampling.h"
19 #include "protocols.h"
20 #include "usb_cdc.h" // for usb_poll_validate_length
23 # define SHORT_COIL() LOW(GPIO_SSC_DOUT)
26 # define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
30 * Function to do a modulation and then get samples.
32 * @param periods 0xFFFF0000 is period_0, 0x0000FFFF is period_1
36 void ModThenAcquireRawAdcSamples125k(uint32_t delay_off
, uint32_t periods
, uint32_t useHighFreq
, uint8_t *command
)
38 /* Make sure the tag is reset */
39 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
40 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
43 uint16_t period_0
= periods
>> 16;
44 uint16_t period_1
= periods
& 0xFFFF;
46 // 95 == 125 KHz 88 == 124.8 KHz
47 int divisor_used
= (useHighFreq
) ? 88 : 95;
48 sample_config sc
= { 0,0,1, divisor_used
, 0};
49 setSamplingConfig(&sc
);
52 BigBuf_Clear_keep_EM();
54 LFSetupFPGAForADC(sc
.divisor
, 1);
56 // And a little more time for the tag to fully power up
59 // now modulate the reader field
60 while(*command
!= '\0' && *command
!= ' ') {
61 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
64 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
66 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
68 if(*(command
++) == '0')
73 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
76 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
77 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
80 DoAcquisition_config(false);
83 /* blank r/w tag data stream
84 ...0000000000000000 01111111
85 1010101010101010101010101010101010101010101010101010101010101010
88 101010101010101[0]000...
90 [5555fe852c5555555555555555fe0000]
95 // some hardcoded initial params
96 // when we read a TI tag we sample the zerocross line at 2Mhz
97 // TI tags modulate a 1 as 16 cycles of 123.2Khz
98 // TI tags modulate a 0 as 16 cycles of 134.2Khz
99 #define FSAMPLE 2000000
100 #define FREQLO 123200
101 #define FREQHI 134200
103 signed char *dest
= (signed char *)BigBuf_get_addr();
104 uint16_t n
= BigBuf_max_traceLen();
105 // 128 bit shift register [shift3:shift2:shift1:shift0]
106 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
108 int i
, cycles
=0, samples
=0;
109 // how many sample points fit in 16 cycles of each frequency
110 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
111 // when to tell if we're close enough to one freq or another
112 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
114 // TI tags charge at 134.2Khz
115 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
116 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
118 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
119 // connects to SSP_DIN and the SSP_DOUT logic level controls
120 // whether we're modulating the antenna (high)
121 // or listening to the antenna (low)
122 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
124 // get TI tag data into the buffer
127 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
129 for (i
=0; i
<n
-1; i
++) {
130 // count cycles by looking for lo to hi zero crossings
131 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
133 // after 16 cycles, measure the frequency
136 samples
=i
-samples
; // number of samples in these 16 cycles
138 // TI bits are coming to us lsb first so shift them
139 // right through our 128 bit right shift register
140 shift0
= (shift0
>>1) | (shift1
<< 31);
141 shift1
= (shift1
>>1) | (shift2
<< 31);
142 shift2
= (shift2
>>1) | (shift3
<< 31);
145 // check if the cycles fall close to the number
146 // expected for either the low or high frequency
147 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
148 // low frequency represents a 1
150 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
151 // high frequency represents a 0
153 // probably detected a gay waveform or noise
154 // use this as gaydar or discard shift register and start again
155 shift3
= shift2
= shift1
= shift0
= 0;
159 // for each bit we receive, test if we've detected a valid tag
161 // if we see 17 zeroes followed by 6 ones, we might have a tag
162 // remember the bits are backwards
163 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
164 // if start and end bytes match, we have a tag so break out of the loop
165 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
166 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
174 // if flag is set we have a tag
176 DbpString("Info: No valid tag detected.");
178 // put 64 bit data into shift1 and shift0
179 shift0
= (shift0
>>24) | (shift1
<< 8);
180 shift1
= (shift1
>>24) | (shift2
<< 8);
182 // align 16 bit crc into lower half of shift2
183 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
185 // if r/w tag, check ident match
186 if (shift3
& (1<<15) ) {
187 DbpString("Info: TI tag is rewriteable");
188 // only 15 bits compare, last bit of ident is not valid
189 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
190 DbpString("Error: Ident mismatch!");
192 DbpString("Info: TI tag ident is valid");
195 DbpString("Info: TI tag is readonly");
198 // WARNING the order of the bytes in which we calc crc below needs checking
199 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
200 // bytes in reverse or something
204 crc
= update_crc16(crc
, (shift0
)&0xff);
205 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
206 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
207 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
208 crc
= update_crc16(crc
, (shift1
)&0xff);
209 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
210 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
211 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
213 Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
214 if (crc
!= (shift2
&0xffff)) {
215 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
217 DbpString("Info: CRC is good");
223 void WriteTIbyte(uint8_t b
)
227 // modulate 8 bits out to the antenna
230 if ( b
& ( 1 << i
) ) {
231 // stop modulating antenna 1ms
234 // modulate antenna 1ms
238 // stop modulating antenna 1ms
241 // modulate antenna 1m
248 void AcquireTiType(void)
251 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
252 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
253 #define TIBUFLEN 1250
256 uint32_t *buf
= (uint32_t *)BigBuf_get_addr();
258 //clear buffer now so it does not interfere with timing later
259 BigBuf_Clear_ext(false);
261 // Set up the synchronous serial port
262 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
263 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
265 // steal this pin from the SSP and use it to control the modulation
266 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
267 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
269 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
270 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
272 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
273 // 48/2 = 24 MHz clock must be divided by 12
274 AT91C_BASE_SSC
->SSC_CMR
= 12;
276 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
277 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
278 AT91C_BASE_SSC
->SSC_TCMR
= 0;
279 AT91C_BASE_SSC
->SSC_TFMR
= 0;
280 // iceman, FpgaSetupSsc() ?? the code above? can it be replaced?
286 // Charge TI tag for 50ms.
289 // stop modulating antenna and listen
296 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
297 buf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
298 i
++; if(i
>= TIBUFLEN
) break;
303 // return stolen pin to SSP
304 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
305 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
307 char *dest
= (char *)BigBuf_get_addr();
311 for (i
= TIBUFLEN
-1; i
>= 0; i
--) {
312 for (j
= 0; j
< 32; j
++) {
313 if(buf
[i
] & (1 << j
)) {
322 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
323 // if crc provided, it will be written with the data verbatim (even if bogus)
324 // if not provided a valid crc will be computed from the data and written.
325 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
328 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
330 crc
= update_crc16(crc
, (idlo
)&0xff);
331 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
332 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
333 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
334 crc
= update_crc16(crc
, (idhi
)&0xff);
335 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
336 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
337 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
339 Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi
, (unsigned int) idlo
, crc
);
341 // TI tags charge at 134.2Khz
342 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
343 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
344 // connects to SSP_DIN and the SSP_DOUT logic level controls
345 // whether we're modulating the antenna (high)
346 // or listening to the antenna (low)
347 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
350 // steal this pin from the SSP and use it to control the modulation
351 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
352 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
354 // writing algorithm:
355 // a high bit consists of a field off for 1ms and field on for 1ms
356 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
357 // initiate a charge time of 50ms (field on) then immediately start writing bits
358 // start by writing 0xBB (keyword) and 0xEB (password)
359 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
360 // finally end with 0x0300 (write frame)
361 // all data is sent lsb first
362 // finish with 15ms programming time
366 WaitMS(50); // charge time
368 WriteTIbyte(0xbb); // keyword
369 WriteTIbyte(0xeb); // password
370 WriteTIbyte( (idlo
)&0xff );
371 WriteTIbyte( (idlo
>>8 )&0xff );
372 WriteTIbyte( (idlo
>>16)&0xff );
373 WriteTIbyte( (idlo
>>24)&0xff );
374 WriteTIbyte( (idhi
)&0xff );
375 WriteTIbyte( (idhi
>>8 )&0xff );
376 WriteTIbyte( (idhi
>>16)&0xff );
377 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
378 WriteTIbyte( (crc
)&0xff ); // crc lo
379 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
380 WriteTIbyte(0x00); // write frame lo
381 WriteTIbyte(0x03); // write frame hi
383 WaitMS(50); // programming time
387 // get TI tag data into the buffer
390 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
391 DbpString("Now use `lf ti read` to check");
395 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
398 uint8_t *buf
= BigBuf_get_addr();
400 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
401 //FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
402 //FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE );
404 // set frequency, get values from 'lf config' command
405 sample_config
*sc
= getSamplingConfig();
407 if ( (sc
->divisor
== 1) || (sc
->divisor
< 0) || (sc
->divisor
> 255) )
408 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
409 else if (sc
->divisor
== 0)
410 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
412 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
->divisor
);
414 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
416 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
417 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
418 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
427 if (ledcontrol
) LED_D_ON();
429 // wait until SSC_CLK goes HIGH
430 // used as a simple detection of a reader field?
431 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
433 if ( usb_poll_validate_length() || BUTTON_PRESS() )
442 //wait until SSC_CLK goes LOW
443 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
445 if ( usb_poll_validate_length() || BUTTON_PRESS() )
459 if (ledcontrol
) LED_D_OFF();
462 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
464 DbpString("Simulation stopped");
468 #define DEBUG_FRAME_CONTENTS 1
469 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
473 // compose fc/8 fc/10 waveform (FSK2)
474 static void fc(int c
, int *n
)
476 uint8_t *dest
= BigBuf_get_addr();
479 // for when we want an fc8 pattern every 4 logical bits
491 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
493 for (idx
=0; idx
<6; idx
++) {
505 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
507 for (idx
=0; idx
<5; idx
++) {
521 // compose fc/X fc/Y waveform (FSKx)
522 static void fcAll(uint8_t fc
, int *n
, uint8_t clock
, uint16_t *modCnt
)
524 uint8_t *dest
= BigBuf_get_addr();
525 uint8_t halfFC
= fc
/2;
526 uint8_t wavesPerClock
= clock
/fc
;
527 uint8_t mod
= clock
% fc
; //modifier
528 uint8_t modAdj
= fc
/mod
; //how often to apply modifier
529 bool modAdjOk
= !(fc
% mod
); //if (fc % mod==0) modAdjOk=TRUE;
530 // loop through clock - step field clock
531 for (uint8_t idx
=0; idx
< wavesPerClock
; idx
++){
532 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
533 memset(dest
+(*n
), 0, fc
-halfFC
); //in case of odd number use extra here
534 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
537 if (mod
>0) (*modCnt
)++;
538 if ((mod
>0) && modAdjOk
){ //fsk2
539 if ((*modCnt
% modAdj
) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
540 memset(dest
+(*n
), 0, fc
-halfFC
);
541 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
545 if (mod
>0 && !modAdjOk
){ //fsk1
546 memset(dest
+(*n
), 0, mod
-(mod
/2));
547 memset(dest
+(*n
)+(mod
-(mod
/2)), 1, mod
/2);
552 // prepare a waveform pattern in the buffer based on the ID given then
553 // simulate a HID tag until the button is pressed
554 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
556 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
561 HID tag bitstream format
562 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
563 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
564 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
565 A fc8 is inserted before every 4 bits
566 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
567 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
571 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
575 // special start of frame marker containing invalid bit sequences
576 fc(8, &n
); fc(8, &n
); // invalid
577 fc(8, &n
); fc(10, &n
); // logical 0
578 fc(10, &n
); fc(10, &n
); // invalid
579 fc(8, &n
); fc(10, &n
); // logical 0
582 // manchester encode bits 43 to 32
583 for (i
=11; i
>=0; i
--) {
584 if ((i
%4)==3) fc(0,&n
);
586 fc(10, &n
); fc(8, &n
); // low-high transition
588 fc(8, &n
); fc(10, &n
); // high-low transition
593 // manchester encode bits 31 to 0
594 for (i
=31; i
>=0; i
--) {
595 if ((i
%4)==3) fc(0,&n
);
597 fc(10, &n
); fc(8, &n
); // low-high transition
599 fc(8, &n
); fc(10, &n
); // high-low transition
604 if (ledcontrol
) LED_A_ON();
605 SimulateTagLowFrequency(n
, 0, ledcontrol
);
606 if (ledcontrol
) LED_A_OFF();
609 // prepare a waveform pattern in the buffer based on the ID given then
610 // simulate a FSK tag until the button is pressed
611 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
612 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
614 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
616 // free eventually allocated BigBuf memory
617 BigBuf_free(); BigBuf_Clear_ext(false);
621 int ledcontrol
= 1, n
= 0, i
= 0;
622 uint8_t fcHigh
= arg1
>> 8;
623 uint8_t fcLow
= arg1
& 0xFF;
625 uint8_t clk
= arg2
& 0xFF;
626 uint8_t invert
= (arg2
>> 8) & 1;
628 for (i
=0; i
<size
; i
++){
630 if (BitStream
[i
] == invert
)
631 fcAll(fcLow
, &n
, clk
, &modCnt
);
633 fcAll(fcHigh
, &n
, clk
, &modCnt
);
637 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d", fcHigh
, fcLow
, clk
, invert
, n
);
639 if (ledcontrol
) LED_A_ON();
640 SimulateTagLowFrequency(n
, 0, ledcontrol
);
641 if (ledcontrol
) LED_A_OFF();
644 // compose ask waveform for one bit(ASK)
645 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
)
647 uint8_t *dest
= BigBuf_get_addr();
648 uint8_t halfClk
= clock
/2;
649 // c = current bit 1 or 0
651 memset(dest
+(*n
), c
, halfClk
);
652 memset(dest
+(*n
) + halfClk
, c
^1, halfClk
);
654 memset(dest
+(*n
), c
, clock
);
659 static void biphaseSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t *phase
)
661 uint8_t *dest
= BigBuf_get_addr();
662 uint8_t halfClk
= clock
/2;
664 memset(dest
+(*n
), c
^ 1 ^ *phase
, halfClk
);
665 memset(dest
+(*n
) + halfClk
, c
^ *phase
, halfClk
);
667 memset(dest
+(*n
), c
^ *phase
, clock
);
673 static void stAskSimBit(int *n
, uint8_t clock
) {
674 uint8_t *dest
= BigBuf_get_addr();
675 uint8_t halfClk
= clock
/2;
676 //ST = .5 high .5 low 1.5 high .5 low 1 high
677 memset(dest
+(*n
), 1, halfClk
);
678 memset(dest
+(*n
) + halfClk
, 0, halfClk
);
679 memset(dest
+(*n
) + clock
, 1, clock
+ halfClk
);
680 memset(dest
+(*n
) + clock
*2 + halfClk
, 0, halfClk
);
681 memset(dest
+(*n
) + clock
*3, 1, clock
);
685 // args clock, ask/man or askraw, invert, transmission separator
686 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
688 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
691 int ledcontrol
= 1, n
= 0, i
= 0;
692 uint8_t clk
= (arg1
>> 8) & 0xFF;
693 uint8_t encoding
= arg1
& 0xFF;
694 uint8_t separator
= arg2
& 1;
695 uint8_t invert
= (arg2
>> 8) & 1;
697 if (encoding
== 2){ //biphase
699 for (i
=0; i
<size
; i
++){
700 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
702 if (phase
== 1) { //run a second set inverted to keep phase in check
703 for (i
=0; i
<size
; i
++){
704 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
707 } else { // ask/manchester || ask/raw
708 for (i
=0; i
<size
; i
++){
709 askSimBit(BitStream
[i
]^invert
, &n
, clk
, encoding
);
711 if (encoding
==0 && BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted (for biphase phase)
712 for (i
=0; i
<size
; i
++){
713 askSimBit(BitStream
[i
]^invert
^1, &n
, clk
, encoding
);
717 if (separator
==1 && encoding
== 1)
718 stAskSimBit(&n
, clk
);
719 else if (separator
==1)
720 Dbprintf("sorry but separator option not yet available");
724 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk
, invert
, encoding
, separator
, n
);
726 if (ledcontrol
) LED_A_ON();
727 SimulateTagLowFrequency(n
, 0, ledcontrol
);
728 if (ledcontrol
) LED_A_OFF();
731 //carrier can be 2,4 or 8
732 static void pskSimBit(uint8_t waveLen
, int *n
, uint8_t clk
, uint8_t *curPhase
, bool phaseChg
)
734 uint8_t *dest
= BigBuf_get_addr();
735 uint8_t halfWave
= waveLen
/2;
739 // write phase change
740 memset(dest
+(*n
), *curPhase
^1, halfWave
);
741 memset(dest
+(*n
) + halfWave
, *curPhase
, halfWave
);
746 //write each normal clock wave for the clock duration
747 for (; i
< clk
; i
+=waveLen
){
748 memset(dest
+(*n
), *curPhase
, halfWave
);
749 memset(dest
+(*n
) + halfWave
, *curPhase
^1, halfWave
);
754 // args clock, carrier, invert,
755 void CmdPSKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
757 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
760 int ledcontrol
= 1, n
= 0, i
= 0;
761 uint8_t clk
= arg1
>> 8;
762 uint8_t carrier
= arg1
& 0xFF;
763 uint8_t invert
= arg2
& 0xFF;
764 uint8_t curPhase
= 0;
765 for (i
=0; i
<size
; i
++){
766 if (BitStream
[i
] == curPhase
){
767 pskSimBit(carrier
, &n
, clk
, &curPhase
, FALSE
);
769 pskSimBit(carrier
, &n
, clk
, &curPhase
, TRUE
);
775 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier
, clk
, invert
, n
);
777 if (ledcontrol
) LED_A_ON();
778 SimulateTagLowFrequency(n
, 0, ledcontrol
);
779 if (ledcontrol
) LED_A_OFF();
782 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
783 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
785 uint8_t *dest
= BigBuf_get_addr();
787 uint32_t hi2
=0, hi
=0, lo
=0;
789 // Configure to go in 125Khz listen mode
790 LFSetupFPGAForADC(95, true);
793 BigBuf_Clear_keep_EM();
795 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
798 if (ledcontrol
) LED_A_ON();
800 DoAcquisition_default(-1,true);
802 size
= 50*128*2; //big enough to catch 2 sequences of largest format
803 idx
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
);
805 if (idx
>0 && lo
>0 && (size
==96 || size
==192)){
806 // go over previously decoded manchester data and decode into usable tag ID
807 if (hi2
!= 0){ //extra large HID tags 88/192 bits
808 Dbprintf("TAG ID: %x%08x%08x (%d)",
812 (unsigned int) (lo
>>1) & 0xFFFF
814 } else { //standard HID tags 44/96 bits
817 uint32_t cardnum
= 0;
819 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
821 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
823 while(lo2
> 1){ //find last bit set to 1 (format len bit)
831 cardnum
= (lo
>>1)&0xFFFF;
835 cardnum
= (lo
>>1)&0x7FFFF;
836 fc
= ((hi
&0xF)<<12)|(lo
>>20);
839 cardnum
= (lo
>>1)&0xFFFF;
840 fc
= ((hi
&1)<<15)|(lo
>>17);
843 cardnum
= (lo
>>1)&0xFFFFF;
844 fc
= ((hi
&1)<<11)|(lo
>>21);
847 else { //if bit 38 is not set then 37 bit format is used
852 cardnum
= (lo
>>1)&0x7FFFF;
853 fc
= ((hi
&0xF)<<12)|(lo
>>20);
856 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
859 (unsigned int) (lo
>>1) & 0xFFFF,
860 (unsigned int) bitlen
,
862 (unsigned int) cardnum
);
865 if (ledcontrol
) LED_A_OFF();
872 hi2
= hi
= lo
= idx
= 0;
875 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
876 DbpString("Stopped");
877 if (ledcontrol
) LED_A_OFF();
880 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
881 void CmdAWIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
883 uint8_t *dest
= BigBuf_get_addr();
887 BigBuf_Clear_keep_EM();
888 // Configure to go in 125Khz listen mode
889 LFSetupFPGAForADC(95, true);
891 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
894 if (ledcontrol
) LED_A_ON();
896 DoAcquisition_default(-1,true);
898 size
= 50*128*2; //big enough to catch 2 sequences of largest format
899 idx
= AWIDdemodFSK(dest
, &size
);
901 if (idx
<=0 || size
!=96) continue;
903 // 0 10 20 30 40 50 60
905 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
906 // -----------------------------------------------------------------------------
907 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
908 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
909 // |---26 bit---| |-----117----||-------------142-------------|
910 // b = format bit len, o = odd parity of last 3 bits
911 // f = facility code, c = card number
912 // w = wiegand parity
913 // (26 bit format shown)
915 //get raw ID before removing parities
916 uint32_t rawLo
= bytebits_to_byte(dest
+idx
+64,32);
917 uint32_t rawHi
= bytebits_to_byte(dest
+idx
+32,32);
918 uint32_t rawHi2
= bytebits_to_byte(dest
+idx
,32);
920 size
= removeParity(dest
, idx
+8, 4, 1, 88);
921 if (size
!= 66) continue;
924 // 0 10 20 30 40 50 60
926 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
927 // -----------------------------------------------------------------------------
928 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
929 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
930 // |26 bit| |-117--| |-----142------|
932 // 00110010 0 0000011111010000000000000001000100101000100001111 0 00000000
933 // bbbbbbbb w ffffffffffffffffccccccccccccccccccccccccccccccccc w xxxxxxxx
934 // |50 bit| |----4000------||-----------2248975-------------|
936 // b = format bit len, o = odd parity of last 3 bits
937 // f = facility code, c = card number
938 // w = wiegand parity
941 uint32_t cardnum
= 0;
944 uint8_t fmtLen
= bytebits_to_byte(dest
,8);
947 fc
= bytebits_to_byte(dest
+ 9, 8);
948 cardnum
= bytebits_to_byte(dest
+ 17, 16);
949 code1
= bytebits_to_byte(dest
+ 8,fmtLen
);
950 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, fc
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
953 fc
= bytebits_to_byte(dest
+ 9, 16);
954 cardnum
= bytebits_to_byte(dest
+ 25, 32);
955 code1
= bytebits_to_byte(dest
+ 8, (fmtLen
-32) );
956 code2
= bytebits_to_byte(dest
+ 8 + (fmtLen
-32), 32);
957 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen
, fc
, cardnum
, code1
, code2
, rawHi2
, rawHi
, rawLo
);
961 cardnum
= bytebits_to_byte(dest
+8+(fmtLen
-17), 16);
962 code1
= bytebits_to_byte(dest
+8,fmtLen
-32);
963 code2
= bytebits_to_byte(dest
+8+(fmtLen
-32),32);
964 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, code2
, rawHi2
, rawHi
, rawLo
);
966 cardnum
= bytebits_to_byte(dest
+8+(fmtLen
-17), 16);
967 code1
= bytebits_to_byte(dest
+8,fmtLen
);
968 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
979 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
980 DbpString("Stopped");
981 if (ledcontrol
) LED_A_OFF();
984 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
986 uint8_t *dest
= BigBuf_get_addr();
988 size_t size
=0, idx
=0;
989 int clk
=0, invert
=0, errCnt
=0, maxErr
=20;
993 BigBuf_Clear_keep_EM();
994 // Configure to go in 125Khz listen mode
995 LFSetupFPGAForADC(95, true);
997 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1000 if (ledcontrol
) LED_A_ON();
1002 DoAcquisition_default(-1,true);
1003 size
= BigBuf_max_traceLen();
1004 //askdemod and manchester decode
1005 if (size
> 16385) size
= 16385; //big enough to catch 2 sequences of largest format
1006 errCnt
= askdemod(dest
, &size
, &clk
, &invert
, maxErr
, 0, 1);
1009 if (errCnt
<0) continue;
1011 errCnt
= Em410xDecode(dest
, &size
, &idx
, &hi
, &lo
);
1014 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
1018 (uint32_t)(lo
&0xFFFF),
1019 (uint32_t)((lo
>>16LL) & 0xFF),
1020 (uint32_t)(lo
& 0xFFFFFF));
1022 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
1025 (uint32_t)(lo
&0xFFFF),
1026 (uint32_t)((lo
>>16LL) & 0xFF),
1027 (uint32_t)(lo
& 0xFFFFFF));
1031 if (ledcontrol
) LED_A_OFF();
1033 *low
=lo
& 0xFFFFFFFF;
1038 hi
= lo
= size
= idx
= 0;
1039 clk
= invert
= errCnt
= 0;
1041 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1042 DbpString("Stopped");
1043 if (ledcontrol
) LED_A_OFF();
1046 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
1048 uint8_t *dest
= BigBuf_get_addr();
1050 uint32_t code
=0, code2
=0;
1052 uint8_t facilitycode
=0;
1055 uint16_t calccrc
= 0;
1058 BigBuf_Clear_keep_EM();
1060 // Configure to go in 125Khz listen mode
1061 LFSetupFPGAForADC(95, true);
1063 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1065 if (ledcontrol
) LED_A_ON();
1066 DoAcquisition_default(-1,true);
1067 //fskdemod and get start index
1069 idx
= IOdemodFSK(dest
, BigBuf_max_traceLen());
1070 if (idx
<0) continue;
1074 //0 10 20 30 40 50 60
1076 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1077 //-----------------------------------------------------------------------------
1078 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
1081 //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
1082 //preamble F0 E0 01 03 B6 75
1083 // How to calc checksum,
1084 // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
1085 // F0 + E0 + 01 + 03 + B6 = 28A
1089 //XSF(version)facility:codeone+codetwo
1091 // if(findone){ //only print binary if we are doing one
1092 // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1093 // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1094 // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1095 // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1096 // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1097 // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1098 // Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1100 code
= bytebits_to_byte(dest
+idx
,32);
1101 code2
= bytebits_to_byte(dest
+idx
+32,32);
1102 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
1103 facilitycode
= bytebits_to_byte(dest
+idx
+18,8);
1104 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
1106 crc
= bytebits_to_byte(dest
+idx
+54,8);
1107 for (uint8_t i
=1; i
<6; ++i
)
1108 calccrc
+= bytebits_to_byte(dest
+idx
+9*i
,8);
1110 calccrc
= 0xff - calccrc
;
1112 char *crcStr
= (crc
== calccrc
) ? "ok":"!crc";
1114 Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version
,facilitycode
,number
,code
,code2
, crc
, crcStr
);
1115 // if we're only looking for one tag
1117 if (ledcontrol
) LED_A_OFF();
1123 version
=facilitycode
=0;
1129 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1130 DbpString("Stopped");
1131 if (ledcontrol
) LED_A_OFF();
1134 /*------------------------------
1135 * T5555/T5557/T5567/T5577 routines
1136 *------------------------------
1137 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1139 * Relevant communication times in microsecond
1140 * To compensate antenna falling times shorten the write times
1141 * and enlarge the gap ones.
1142 * Q5 tags seems to have issues when these values changes.
1145 #define START_GAP 50*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (15fc)
1146 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (10fc)
1147 #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (24fc)
1148 #define WRITE_1 54*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (56fc) 432 for T55x7; 448 for E5550
1149 #define READ_GAP 15*8
1151 // VALUES TAKEN FROM EM4x function: SendForward
1152 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1153 // WRITE_GAP = 128; (16*8)
1154 // WRITE_1 = 256 32*8; (32*8)
1156 // These timings work for 4469/4269/4305 (with the 55*8 above)
1157 // WRITE_0 = 23*8 , 9*8
1159 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
1160 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
1161 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
1162 // T0 = TIMER_CLOCK1 / 125000 = 192
1163 // 1 Cycle = 8 microseconds(us) == 1 field clock
1167 // 1fc = 8us = 12ticks
1168 void TurnReadLFOn(uint32_t delay
) {
1169 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1171 // measure antenna strength.
1172 //int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
1174 // Give it a bit of time for the resonant antenna to settle.
1178 // Write one bit to card
1179 void T55xxWriteBit(int bit
) {
1181 TurnReadLFOn(WRITE_0
);
1183 TurnReadLFOn(WRITE_1
);
1184 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1188 // Send T5577 reset command then read stream (see if we can identify the start of the stream)
1189 void T55xxResetRead(void) {
1191 //clear buffer now so it does not interfere with timing later
1192 BigBuf_Clear_keep_EM();
1194 // Set up FPGA, 125kHz
1195 LFSetupFPGAForADC(95, true);
1197 // Trigger T55x7 in mode.
1198 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1201 // reset tag - op code 00
1205 // Turn field on to read the response
1206 TurnReadLFOn(READ_GAP
);
1209 doT55x7Acquisition(BigBuf_max_traceLen());
1211 // Turn the field off
1212 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1213 cmd_send(CMD_ACK
,0,0,0,0,0);
1217 // Write one card block in page 0, no lock
1218 void T55xxWriteBlockExt(uint32_t Data
, uint8_t Block
, uint32_t Pwd
, uint8_t arg
) {
1220 bool PwdMode
= arg
& 0x1;
1221 uint8_t Page
= (arg
& 0x2)>>1;
1224 // Set up FPGA, 125kHz
1225 LFSetupFPGAForADC(95, true);
1227 // Trigger T55x7 in mode.
1228 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1233 T55xxWriteBit(Page
); //Page 0
1236 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1237 T55xxWriteBit(Pwd
& i
);
1243 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1244 T55xxWriteBit(Data
& i
);
1246 // Send Block number
1247 for (i
= 0x04; i
!= 0; i
>>= 1)
1248 T55xxWriteBit(Block
& i
);
1250 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1251 // so wait a little more)
1252 TurnReadLFOn(20 * 1000);
1254 //could attempt to do a read to confirm write took
1255 // as the tag should repeat back the new block
1256 // until it is reset, but to confirm it we would
1257 // need to know the current block 0 config mode
1260 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1264 // Write one card block in page 0, no lock
1265 void T55xxWriteBlock(uint32_t Data
, uint8_t Block
, uint32_t Pwd
, uint8_t arg
) {
1266 T55xxWriteBlockExt(Data
, Block
, Pwd
, arg
);
1267 cmd_send(CMD_ACK
,0,0,0,0,0);
1270 // Read one card block in page [page]
1271 void T55xxReadBlock(uint16_t arg0
, uint8_t Block
, uint32_t Pwd
) {
1273 bool PwdMode
= arg0
& 0x1;
1274 uint8_t Page
= (arg0
& 0x2) >> 1;
1276 bool RegReadMode
= (Block
== 0xFF);
1278 //clear buffer now so it does not interfere with timing later
1279 BigBuf_Clear_keep_EM();
1281 //make sure block is at max 7
1284 // Set up FPGA, 125kHz to power up the tag
1285 LFSetupFPGAForADC(95, true);
1288 // Trigger T55x7 Direct Access Mode with start gap
1289 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1294 T55xxWriteBit(Page
); //Page 0
1298 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1299 T55xxWriteBit(Pwd
& i
);
1301 // Send a zero bit separation
1304 // Send Block number (if direct access mode)
1306 for (i
= 0x04; i
!= 0; i
>>= 1)
1307 T55xxWriteBit(Block
& i
);
1309 // Turn field on to read the response
1310 TurnReadLFOn(READ_GAP
);
1313 doT55x7Acquisition(7679);
1315 // Turn the field off
1316 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1317 cmd_send(CMD_ACK
,0,0,0,0,0);
1321 void T55xxWakeUp(uint32_t Pwd
){
1325 // Set up FPGA, 125kHz
1326 LFSetupFPGAForADC(95, true);
1328 // Trigger T55x7 Direct Access Mode
1329 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1334 T55xxWriteBit(0); //Page 0
1337 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1338 T55xxWriteBit(Pwd
& i
);
1340 // Turn and leave field on to let the begin repeating transmission
1341 TurnReadLFOn(20*1000);
1344 /*-------------- Cloning routines -----------*/
1345 void WriteT55xx(uint32_t *blockdata
, uint8_t startblock
, uint8_t numblocks
) {
1346 // write last block first and config block last (if included)
1347 for (uint8_t i
= numblocks
+startblock
; i
> startblock
; i
--)
1348 T55xxWriteBlockExt(blockdata
[i
-1], i
-1, 0, 0);
1351 // Copy HID id to card and setup block 0 config
1352 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
) {
1353 uint32_t data
[] = {0,0,0,0,0,0,0};
1354 uint8_t last_block
= 0;
1357 // Ensure no more than 84 bits supplied
1358 if (hi2
> 0xFFFFF) {
1359 DbpString("Tags can only have 84 bits.");
1362 // Build the 6 data blocks for supplied 84bit ID
1364 // load preamble (1D) & long format identifier (9E manchester encoded)
1365 data
[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2
>> 16) & 0xF) & 0xFF);
1366 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1367 data
[2] = manchesterEncode2Bytes(hi2
& 0xFFFF);
1368 data
[3] = manchesterEncode2Bytes(hi
>> 16);
1369 data
[4] = manchesterEncode2Bytes(hi
& 0xFFFF);
1370 data
[5] = manchesterEncode2Bytes(lo
>> 16);
1371 data
[6] = manchesterEncode2Bytes(lo
& 0xFFFF);
1373 // Ensure no more than 44 bits supplied
1375 DbpString("Tags can only have 44 bits.");
1378 // Build the 3 data blocks for supplied 44bit ID
1381 data
[1] = 0x1D000000 | (manchesterEncode2Bytes(hi
) & 0xFFFFFF);
1382 data
[2] = manchesterEncode2Bytes(lo
>> 16);
1383 data
[3] = manchesterEncode2Bytes(lo
& 0xFFFF);
1385 // load chip config block
1386 data
[0] = T55x7_BITRATE_RF_50
| T55x7_MODULATION_FSK2a
| last_block
<< T55x7_MAXBLOCK_SHIFT
;
1388 //TODO add selection of chip for Q5 or T55x7
1389 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1392 WriteT55xx(data
, 0, last_block
+1);
1396 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
) {
1397 uint32_t data
[] = {T55x7_BITRATE_RF_64
| T55x7_MODULATION_FSK2a
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
};
1398 //TODO add selection of chip for Q5 or T55x7
1399 //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
1400 // data[0] = (64 << T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1403 // Program the data blocks for supplied ID
1404 // and the block 0 config
1405 WriteT55xx(data
, 0, 3);
1409 // Clone Indala 64-bit tag by UID to T55x7
1410 void CopyIndala64toT55x7(uint32_t hi
, uint32_t lo
) {
1411 //Program the 2 data blocks for supplied 64bit UID
1412 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1413 uint32_t data
[] = { T55x7_BITRATE_RF_32
| T55x7_MODULATION_PSK1
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
};
1414 //TODO add selection of chip for Q5 or T55x7
1415 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1417 WriteT55xx(data
, 0, 3);
1418 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1419 // T5567WriteBlock(0x603E1042,0);
1421 // Clone Indala 224-bit tag by UID to T55x7
1422 void CopyIndala224toT55x7(uint32_t uid1
, uint32_t uid2
, uint32_t uid3
, uint32_t uid4
, uint32_t uid5
, uint32_t uid6
, uint32_t uid7
) {
1423 //Program the 7 data blocks for supplied 224bit UID
1424 uint32_t data
[] = {0, uid1
, uid2
, uid3
, uid4
, uid5
, uid6
, uid7
};
1425 // and the block 0 for Indala224 format
1426 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1427 data
[0] = T55x7_BITRATE_RF_32
| T55x7_MODULATION_PSK1
| (7 << T55x7_MAXBLOCK_SHIFT
);
1428 //TODO add selection of chip for Q5 or T55x7
1429 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
1430 WriteT55xx(data
, 0, 8);
1431 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1432 // T5567WriteBlock(0x603E10E2,0);
1434 // clone viking tag to T55xx
1435 void CopyVikingtoT55xx(uint32_t block1
, uint32_t block2
, uint8_t Q5
) {
1436 uint32_t data
[] = {T55x7_BITRATE_RF_32
| T55x7_MODULATION_MANCHESTER
| (2 << T55x7_MAXBLOCK_SHIFT
), block1
, block2
};
1437 //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
1438 if (Q5
) data
[0] = (32 << T5555_BITRATE_SHIFT
) | T5555_MODULATION_MANCHESTER
| 2 << T5555_MAXBLOCK_SHIFT
;
1439 // Program the data blocks for supplied ID and the block 0 config
1440 WriteT55xx(data
, 0, 3);
1442 cmd_send(CMD_ACK
,0,0,0,0,0);
1445 // Define 9bit header for EM410x tags
1446 #define EM410X_HEADER 0x1FF
1447 #define EM410X_ID_LENGTH 40
1449 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
) {
1451 uint64_t id
= EM410X_HEADER
;
1452 uint64_t rev_id
= 0; // reversed ID
1453 int c_parity
[4]; // column parity
1454 int r_parity
= 0; // row parity
1457 // Reverse ID bits given as parameter (for simpler operations)
1458 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1460 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1463 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1468 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1469 id_bit
= rev_id
& 1;
1472 // Don't write row parity bit at start of parsing
1474 id
= (id
<< 1) | r_parity
;
1475 // Start counting parity for new row
1482 // First elements in column?
1484 // Fill out first elements
1485 c_parity
[i
] = id_bit
;
1487 // Count column parity
1488 c_parity
[i
% 4] ^= id_bit
;
1491 id
= (id
<< 1) | id_bit
;
1495 // Insert parity bit of last row
1496 id
= (id
<< 1) | r_parity
;
1498 // Fill out column parity at the end of tag
1499 for (i
= 0; i
< 4; ++i
)
1500 id
= (id
<< 1) | c_parity
[i
];
1505 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1509 uint32_t data
[] = {0, (uint32_t)(id
>>32), (uint32_t)(id
& 0xFFFFFFFF)};
1511 clock
= (card
& 0xFF00) >> 8;
1512 clock
= (clock
== 0) ? 64 : clock
;
1513 Dbprintf("Clock rate: %d", clock
);
1514 if (card
& 0xFF) { //t55x7
1515 clock
= GetT55xxClockBit(clock
);
1517 Dbprintf("Invalid clock rate: %d", clock
);
1520 data
[0] = clock
| T55x7_MODULATION_MANCHESTER
| (2 << T55x7_MAXBLOCK_SHIFT
);
1521 } else { //t5555 (Q5)
1522 clock
= (clock
-2)>>1; //n = (RF-2)/2
1523 data
[0] = (clock
<< T5555_BITRATE_SHIFT
) | T5555_MODULATION_MANCHESTER
| (2 << T5555_MAXBLOCK_SHIFT
);
1526 WriteT55xx(data
, 0, 3);
1529 Dbprintf("Tag %s written with 0x%08x%08x\n",
1530 card
? "T55x7":"T5555",
1531 (uint32_t)(id
>> 32),
1535 //-----------------------------------
1536 // EM4469 / EM4305 routines
1537 //-----------------------------------
1538 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1539 #define FWD_CMD_WRITE 0xA
1540 #define FWD_CMD_READ 0x9
1541 #define FWD_CMD_DISABLE 0x5
1543 uint8_t forwardLink_data
[64]; //array of forwarded bits
1544 uint8_t * forward_ptr
; //ptr for forward message preparation
1545 uint8_t fwd_bit_sz
; //forwardlink bit counter
1546 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1548 //====================================================================
1549 // prepares command bits
1551 //====================================================================
1552 //--------------------------------------------------------------------
1553 // VALUES TAKEN FROM EM4x function: SendForward
1554 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1555 // WRITE_GAP = 128; (16*8)
1556 // WRITE_1 = 256 32*8; (32*8)
1558 // These timings work for 4469/4269/4305 (with the 55*8 above)
1559 // WRITE_0 = 23*8 , 9*8
1561 uint8_t Prepare_Cmd( uint8_t cmd
) {
1563 *forward_ptr
++ = 0; //start bit
1564 *forward_ptr
++ = 0; //second pause for 4050 code
1566 *forward_ptr
++ = cmd
;
1568 *forward_ptr
++ = cmd
;
1570 *forward_ptr
++ = cmd
;
1572 *forward_ptr
++ = cmd
;
1574 return 6; //return number of emited bits
1577 //====================================================================
1578 // prepares address bits
1580 //====================================================================
1581 uint8_t Prepare_Addr( uint8_t addr
) {
1583 register uint8_t line_parity
;
1588 *forward_ptr
++ = addr
;
1589 line_parity
^= addr
;
1593 *forward_ptr
++ = (line_parity
& 1);
1595 return 7; //return number of emited bits
1598 //====================================================================
1599 // prepares data bits intreleaved with parity bits
1601 //====================================================================
1602 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1604 register uint8_t line_parity
;
1605 register uint8_t column_parity
;
1606 register uint8_t i
, j
;
1607 register uint16_t data
;
1612 for(i
=0; i
<4; i
++) {
1614 for(j
=0; j
<8; j
++) {
1615 line_parity
^= data
;
1616 column_parity
^= (data
& 1) << j
;
1617 *forward_ptr
++ = data
;
1620 *forward_ptr
++ = line_parity
;
1625 for(j
=0; j
<8; j
++) {
1626 *forward_ptr
++ = column_parity
;
1627 column_parity
>>= 1;
1631 return 45; //return number of emited bits
1634 //====================================================================
1635 // Forward Link send function
1636 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1637 // fwd_bit_count set with number of bits to be sent
1638 //====================================================================
1639 void SendForward(uint8_t fwd_bit_count
) {
1641 fwd_write_ptr
= forwardLink_data
;
1642 fwd_bit_sz
= fwd_bit_count
;
1646 // Set up FPGA, 125kHz
1647 LFSetupFPGAForADC(95, true);
1649 // force 1st mod pulse (start gap must be longer for 4305)
1650 fwd_bit_sz
--; //prepare next bit modulation
1652 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1653 WaitUS(55*8); //55 cycles off (8us each)for 4305 // ICEMAN: problem with (us) clock is 21.3us increments
1654 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1655 WaitUS(16*8); //16 cycles on (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
1657 // now start writting
1658 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1659 if(((*fwd_write_ptr
++) & 1) == 1)
1660 WaitUS(32*8); //32 cycles at 125Khz (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
1662 //These timings work for 4469/4269/4305 (with the 55*8 above)
1663 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1664 WaitUS(16*8); //16-4 cycles off (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
1665 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1666 WaitUS(16*8); //16 cycles on (8us each) // ICEMAN: problem with (us) clock is 21.3us increments
1671 void EM4xLogin(uint32_t Password
) {
1673 uint8_t fwd_bit_count
;
1674 forward_ptr
= forwardLink_data
;
1675 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1676 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1677 SendForward(fwd_bit_count
);
1679 //Wait for command to complete
1683 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1685 uint8_t fwd_bit_count
;
1686 uint8_t *dest
= BigBuf_get_addr();
1687 uint16_t bufsize
= BigBuf_max_traceLen(); // ICEMAN: this tries to fill up all tracelog space
1690 // Clear destination buffer before sending the command
1691 BigBuf_Clear_ext(false);
1693 //If password mode do login
1694 if (PwdMode
== 1) EM4xLogin(Pwd
);
1696 forward_ptr
= forwardLink_data
;
1697 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1698 fwd_bit_count
+= Prepare_Addr( Address
);
1700 SendForward(fwd_bit_count
);
1702 // Now do the acquisition
1703 // ICEMAN, change to the one in lfsampling.c
1706 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1707 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1709 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1710 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1712 if (i
>= bufsize
) break;
1716 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1717 cmd_send(CMD_ACK
,0,0,0,0,0);
1721 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1723 uint8_t fwd_bit_count
;
1725 //If password mode do login
1726 if (PwdMode
== 1) EM4xLogin(Pwd
);
1728 forward_ptr
= forwardLink_data
;
1729 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1730 fwd_bit_count
+= Prepare_Addr( Address
);
1731 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1733 SendForward(fwd_bit_count
);
1735 //Wait for write to complete
1737 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1743 #define WAIT2200 { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2200); }
1747 //clear buffer now so it does not interfere with timing later
1748 BigBuf_Clear_keep_EM();
1750 // Set up FPGA, 132kHz to power up the tag
1751 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1752 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 89);
1753 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1755 // Connect the A/D to the peak-detected low-frequency path.
1756 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1758 // 50ms for the resonant antenna to settle.
1761 // Now set up the SSC to get the ADC samples that are now streaming at us.
1763 // start a 1.5ticks is 1us
1775 // Turn field on to read the response
1776 TurnReadLFOn(READ_GAP
);
1779 doT55x7Acquisition(20000);
1781 // Turn the field off
1782 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1783 cmd_send(CMD_ACK
,0,0,0,0,0);