1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Routines to support ISO 14443B. This includes both the reader software and
9 // the `fake tag' modes.
10 //-----------------------------------------------------------------------------
12 #include "proxmark3.h"
17 #include "iso14443crc.h"
19 #define RECEIVE_SAMPLES_TIMEOUT 2000
20 #define ISO14443B_DMA_BUFFER_SIZE 256
22 // PCB Block number for APDUs
23 static uint8_t pcb_blocknum
= 0;
25 //=============================================================================
26 // An ISO 14443 Type B tag. We listen for commands from the reader, using
27 // a UART kind of thing that's implemented in software. When we get a
28 // frame (i.e., a group of bytes between SOF and EOF), we check the CRC.
29 // If it's good, then we can do something appropriate with it, and send
31 //=============================================================================
33 //-----------------------------------------------------------------------------
34 // Code up a string of octets at layer 2 (including CRC, we don't generate
35 // that here) so that they can be transmitted to the reader. Doesn't transmit
36 // them yet, just leaves them ready to send in ToSend[].
37 //-----------------------------------------------------------------------------
38 static void CodeIso14443bAsTag(const uint8_t *cmd
, int len
)
44 // Transmit a burst of ones, as the initial thing that lets the
45 // reader get phase sync. This (TR1) must be > 80/fs, per spec,
46 // but tag that I've tried (a Paypass) exceeds that by a fair bit,
48 for(i
= 0; i
< 20; i
++) {
56 for(i
= 0; i
< 10; i
++) {
62 for(i
= 0; i
< 2; i
++) {
69 for(i
= 0; i
< len
; i
++) {
80 for(j
= 0; j
< 8; j
++) {
103 for(i
= 0; i
< 10; i
++) {
109 for(i
= 0; i
< 2; i
++) {
116 // Convert from last byte pos to length
120 //-----------------------------------------------------------------------------
121 // The software UART that receives commands from the reader, and its state
123 //-----------------------------------------------------------------------------
127 STATE_GOT_FALLING_EDGE_OF_SOF
,
128 STATE_AWAITING_START_BIT
,
139 /* Receive & handle a bit coming from the reader.
141 * This function is called 4 times per bit (every 2 subcarrier cycles).
142 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
145 * LED A -> ON once we have received the SOF and are expecting the rest.
146 * LED A -> OFF once we have received EOF or are in error state or unsynced
148 * Returns: true if we received a EOF
149 * false if we are still waiting for some more
151 static RAMFUNC
int Handle14443bUartBit(uint8_t bit
)
156 // we went low, so this could be the beginning
158 Uart
.state
= STATE_GOT_FALLING_EDGE_OF_SOF
;
164 case STATE_GOT_FALLING_EDGE_OF_SOF
:
166 if(Uart
.posCnt
== 2) { // sample every 4 1/fs in the middle of a bit
168 if(Uart
.bitCnt
> 9) {
169 // we've seen enough consecutive
170 // zeros that it's a valid SOF
173 Uart
.state
= STATE_AWAITING_START_BIT
;
174 LED_A_ON(); // Indicate we got a valid SOF
176 // didn't stay down long enough
177 // before going high, error
178 Uart
.state
= STATE_UNSYNCD
;
181 // do nothing, keep waiting
185 if(Uart
.posCnt
>= 4) Uart
.posCnt
= 0;
186 if(Uart
.bitCnt
> 12) {
187 // Give up if we see too many zeros without
190 Uart
.state
= STATE_UNSYNCD
;
194 case STATE_AWAITING_START_BIT
:
197 if(Uart
.posCnt
> 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
198 // stayed high for too long between
200 Uart
.state
= STATE_UNSYNCD
;
203 // falling edge, this starts the data byte
207 Uart
.state
= STATE_RECEIVING_DATA
;
211 case STATE_RECEIVING_DATA
:
213 if(Uart
.posCnt
== 2) {
214 // time to sample a bit
217 Uart
.shiftReg
|= 0x200;
221 if(Uart
.posCnt
>= 4) {
224 if(Uart
.bitCnt
== 10) {
225 if((Uart
.shiftReg
& 0x200) && !(Uart
.shiftReg
& 0x001))
227 // this is a data byte, with correct
228 // start and stop bits
229 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
>> 1) & 0xff;
232 if(Uart
.byteCnt
>= Uart
.byteCntMax
) {
233 // Buffer overflowed, give up
235 Uart
.state
= STATE_UNSYNCD
;
237 // so get the next byte now
239 Uart
.state
= STATE_AWAITING_START_BIT
;
241 } else if (Uart
.shiftReg
== 0x000) {
242 // this is an EOF byte
243 LED_A_OFF(); // Finished receiving
244 Uart
.state
= STATE_UNSYNCD
;
245 if (Uart
.byteCnt
!= 0) {
251 Uart
.state
= STATE_UNSYNCD
;
258 Uart
.state
= STATE_UNSYNCD
;
266 static void UartReset()
268 Uart
.byteCntMax
= MAX_FRAME_SIZE
;
269 Uart
.state
= STATE_UNSYNCD
;
275 static void UartInit(uint8_t *data
)
282 //-----------------------------------------------------------------------------
283 // Receive a command (from the reader to us, where we are the simulated tag),
284 // and store it in the given buffer, up to the given maximum length. Keeps
285 // spinning, waiting for a well-framed command, until either we get one
286 // (returns TRUE) or someone presses the pushbutton on the board (FALSE).
288 // Assume that we're called with the SSC (to the FPGA) and ADC path set
290 //-----------------------------------------------------------------------------
291 static int GetIso14443bCommandFromReader(uint8_t *received
, uint16_t *len
)
293 // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen
294 // only, since we are receiving, not transmitting).
295 // Signal field is off with the appropriate LED
297 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
299 // Now run a `software UART' on the stream of incoming samples.
305 if(BUTTON_PRESS()) return FALSE
;
307 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
308 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
309 for(uint8_t mask
= 0x80; mask
!= 0x00; mask
>>= 1) {
310 if(Handle14443bUartBit(b
& mask
)) {
321 //-----------------------------------------------------------------------------
322 // Main loop of simulated tag: receive commands from reader, decide what
323 // response to send, and send it.
324 //-----------------------------------------------------------------------------
325 void SimulateIso14443bTag(void)
327 // the only commands we understand is REQB, AFI=0, Select All, N=0:
328 static const uint8_t cmd1
[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
329 // ... and REQB, AFI=0, Normal Request, N=0:
330 static const uint8_t cmd2
[] = { 0x05, 0x00, 0x00, 0x71, 0xFF };
332 // ... and we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922,
333 // supports only 106kBit/s in both directions, max frame size = 32Bytes,
334 // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported:
335 static const uint8_t response1
[] = {
336 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22,
337 0x00, 0x21, 0x85, 0x5e, 0xd7
340 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
347 uint16_t respLen
, respCodeLen
;
349 // allocate command receive buffer
351 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
354 uint16_t cmdsRecvd
= 0;
356 // prepare the (only one) tag answer:
357 CodeIso14443bAsTag(response1
, sizeof(response1
));
358 uint8_t *resp1Code
= BigBuf_malloc(ToSendMax
);
359 memcpy(resp1Code
, ToSend
, ToSendMax
);
360 uint16_t resp1CodeLen
= ToSendMax
;
362 // We need to listen to the high-frequency, peak-detected path.
363 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
370 if(!GetIso14443bCommandFromReader(receivedCmd
, &len
)) {
371 Dbprintf("button pressed, received %d commands", cmdsRecvd
);
376 uint8_t parity
[MAX_PARITY_SIZE
];
377 LogTrace(receivedCmd
, len
, 0, 0, parity
, TRUE
);
380 // Good, look at the command now.
381 if ( (len
== sizeof(cmd1
) && memcmp(receivedCmd
, cmd1
, len
) == 0)
382 || (len
== sizeof(cmd2
) && memcmp(receivedCmd
, cmd2
, len
) == 0) ) {
384 respLen
= sizeof(response1
);
385 respCode
= resp1Code
;
386 respCodeLen
= resp1CodeLen
;
388 Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len
, cmdsRecvd
);
389 // And print whether the CRC fails, just for good measure
391 ComputeCrc14443(CRC_14443_B
, receivedCmd
, len
-2, &b1
, &b2
);
392 if(b1
!= receivedCmd
[len
-2] || b2
!= receivedCmd
[len
-1]) {
393 // Not so good, try again.
394 DbpString("+++CRC fail");
396 DbpString("CRC passes");
403 if(cmdsRecvd
> 0x30) {
404 DbpString("many commands later...");
408 if(respCodeLen
<= 0) continue;
411 // Signal field is off with the appropriate LED
413 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_BPSK
);
414 AT91C_BASE_SSC
->SSC_THR
= 0xff;
417 // Transmit the response.
420 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
421 uint8_t b
= respCode
[i
];
423 AT91C_BASE_SSC
->SSC_THR
= b
;
426 if(i
> respCodeLen
) {
430 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
431 volatile uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
436 // trace the response:
438 uint8_t parity
[MAX_PARITY_SIZE
];
439 LogTrace(resp
, respLen
, 0, 0, parity
, FALSE
);
445 //=============================================================================
446 // An ISO 14443 Type B reader. We take layer two commands, code them
447 // appropriately, and then send them to the tag. We then listen for the
448 // tag's response, which we leave in the buffer to be demodulated on the
450 //=============================================================================
455 DEMOD_PHASE_REF_TRAINING
,
456 DEMOD_AWAITING_FALLING_EDGE_OF_SOF
,
457 DEMOD_GOT_FALLING_EDGE_OF_SOF
,
458 DEMOD_AWAITING_START_BIT
,
464 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
476 * Handles reception of a bit from the tag
478 * This function is called 2 times per bit (every 4 subcarrier cycles).
479 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us
482 * LED C -> ON once we have received the SOF and are expecting the rest.
483 * LED C -> OFF once we have received EOF or are unsynced
485 * Returns: true if we received a EOF
486 * false if we are still waiting for some more
489 static RAMFUNC
int Handle14443bSamplesDemod(int ci
, int cq
)
493 // The soft decision on the bit uses an estimate of just the
494 // quadrant of the reference angle, not the exact angle.
495 #define MAKE_SOFT_DECISION() { \
496 if(Demod.sumI > 0) { \
501 if(Demod.sumQ > 0) { \
508 #define SUBCARRIER_DETECT_THRESHOLD 8
510 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by abs(ci) + abs(cq)
511 /* #define CHECK_FOR_SUBCARRIER() { \
521 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
522 #define CHECK_FOR_SUBCARRIER() { \
524 if(cq < 0) { /* ci < 0, cq < 0 */ \
526 v = -cq - (ci >> 1); \
528 v = -ci - (cq >> 1); \
530 } else { /* ci < 0, cq >= 0 */ \
532 v = -ci + (cq >> 1); \
534 v = cq - (ci >> 1); \
538 if(cq < 0) { /* ci >= 0, cq < 0 */ \
540 v = ci - (cq >> 1); \
542 v = -cq + (ci >> 1); \
544 } else { /* ci >= 0, cq >= 0 */ \
546 v = ci + (cq >> 1); \
548 v = cq + (ci >> 1); \
554 switch(Demod
.state
) {
556 CHECK_FOR_SUBCARRIER();
557 if(v
> SUBCARRIER_DETECT_THRESHOLD
) { // subcarrier detected
558 Demod
.state
= DEMOD_PHASE_REF_TRAINING
;
565 case DEMOD_PHASE_REF_TRAINING
:
566 if(Demod
.posCount
< 8) {
567 CHECK_FOR_SUBCARRIER();
568 if (v
> SUBCARRIER_DETECT_THRESHOLD
) {
569 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
570 // note: synchronization time > 80 1/fs
574 } else { // subcarrier lost
575 Demod
.state
= DEMOD_UNSYNCD
;
578 Demod
.state
= DEMOD_AWAITING_FALLING_EDGE_OF_SOF
;
582 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF
:
583 MAKE_SOFT_DECISION();
584 if(v
< 0) { // logic '0' detected
585 Demod
.state
= DEMOD_GOT_FALLING_EDGE_OF_SOF
;
586 Demod
.posCount
= 0; // start of SOF sequence
588 if(Demod
.posCount
> 200/4) { // maximum length of TR1 = 200 1/fs
589 Demod
.state
= DEMOD_UNSYNCD
;
595 case DEMOD_GOT_FALLING_EDGE_OF_SOF
:
597 MAKE_SOFT_DECISION();
599 if(Demod
.posCount
< 9*2) { // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
600 Demod
.state
= DEMOD_UNSYNCD
;
602 LED_C_ON(); // Got SOF
603 Demod
.state
= DEMOD_AWAITING_START_BIT
;
606 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
612 if(Demod
.posCount
> 12*2) { // low phase of SOF too long (> 12 etu)
613 Demod
.state
= DEMOD_UNSYNCD
;
619 case DEMOD_AWAITING_START_BIT
:
621 MAKE_SOFT_DECISION();
623 if(Demod
.posCount
> 3*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
624 Demod
.state
= DEMOD_UNSYNCD
;
627 } else { // start bit detected
629 Demod
.posCount
= 1; // this was the first half
632 Demod
.state
= DEMOD_RECEIVING_DATA
;
636 case DEMOD_RECEIVING_DATA
:
637 MAKE_SOFT_DECISION();
638 if(Demod
.posCount
== 0) { // first half of bit
641 } else { // second half of bit
644 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
645 if(Demod.thisBit > 0) {
646 Demod.metric += Demod.thisBit;
648 Demod.metric -= Demod.thisBit;
653 Demod
.shiftReg
>>= 1;
654 if(Demod
.thisBit
> 0) { // logic '1'
655 Demod
.shiftReg
|= 0x200;
659 if(Demod
.bitCount
== 10) {
660 uint16_t s
= Demod
.shiftReg
;
661 if((s
& 0x200) && !(s
& 0x001)) { // stop bit == '1', start bit == '0'
662 uint8_t b
= (s
>> 1);
663 Demod
.output
[Demod
.len
] = b
;
665 Demod
.state
= DEMOD_AWAITING_START_BIT
;
667 Demod
.state
= DEMOD_UNSYNCD
;
670 // This is EOF (start, stop and all data bits == '0'
680 Demod
.state
= DEMOD_UNSYNCD
;
689 static void DemodReset()
691 // Clear out the state of the "UART" that receives from the tag.
693 Demod
.state
= DEMOD_UNSYNCD
;
695 memset(Demod
.output
, 0x00, MAX_FRAME_SIZE
);
699 static void DemodInit(uint8_t *data
)
707 * Demodulate the samples we received from the tag, also log to tracebuffer
708 * quiet: set to 'TRUE' to disable debug output
710 static void GetSamplesFor14443bDemod(int n
, bool quiet
)
713 bool gotFrame
= FALSE
;
714 int lastRxCounter
, ci
, cq
, samples
= 0;
716 // Allocate memory from BigBuf for some buffers
717 // free all previous allocations first
720 // The response (tag -> reader) that we're receiving.
721 uint8_t *receivedResponse
= BigBuf_malloc(MAX_FRAME_SIZE
);
723 // The DMA buffer, used to stream samples from the FPGA
724 int8_t *dmaBuf
= (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE
);
726 // Set up the demodulator for tag -> reader responses.
727 DemodInit(receivedResponse
);
729 // Setup and start DMA.
730 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO14443B_DMA_BUFFER_SIZE
);
732 int8_t *upTo
= dmaBuf
;
733 lastRxCounter
= ISO14443B_DMA_BUFFER_SIZE
;
735 // Signal field is ON with the appropriate LED:
737 // And put the FPGA in the appropriate mode
738 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
);
741 int behindBy
= lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
742 if(behindBy
> max
) max
= behindBy
;
744 while(((lastRxCounter
-AT91C_BASE_PDC_SSC
->PDC_RCR
) & (ISO14443B_DMA_BUFFER_SIZE
-1)) > 2) {
748 if(upTo
>= dmaBuf
+ ISO14443B_DMA_BUFFER_SIZE
) {
750 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
751 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO14443B_DMA_BUFFER_SIZE
;
754 if(lastRxCounter
<= 0) {
755 lastRxCounter
+= ISO14443B_DMA_BUFFER_SIZE
;
760 if(Handle14443bSamplesDemod(ci
, cq
)) {
766 if(samples
> n
|| gotFrame
) {
771 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
773 if (!quiet
) Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", max
, samples
, gotFrame
, Demod
.len
, Demod
.sumI
, Demod
.sumQ
);
775 if (tracing
&& Demod
.len
> 0) {
776 uint8_t parity
[MAX_PARITY_SIZE
];
777 LogTrace(Demod
.output
, Demod
.len
, 0, 0, parity
, FALSE
);
782 //-----------------------------------------------------------------------------
783 // Transmit the command (to the tag) that was placed in ToSend[].
784 //-----------------------------------------------------------------------------
785 static void TransmitFor14443b(void)
791 while(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
792 AT91C_BASE_SSC
->SSC_THR
= 0xff;
795 // Signal field is ON with the appropriate Red LED
797 // Signal we are transmitting with the Green LED
799 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
| FPGA_HF_READER_TX_SHALLOW_MOD
);
801 for(c
= 0; c
< 10;) {
802 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
803 AT91C_BASE_SSC
->SSC_THR
= 0xff;
806 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
807 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
815 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
816 AT91C_BASE_SSC
->SSC_THR
= ToSend
[c
];
822 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
823 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
828 LED_B_OFF(); // Finished sending
832 //-----------------------------------------------------------------------------
833 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
834 // so that it is ready to transmit to the tag using TransmitFor14443b().
835 //-----------------------------------------------------------------------------
836 static void CodeIso14443bAsReader(const uint8_t *cmd
, int len
)
843 // Establish initial reference level
844 for(i
= 0; i
< 40; i
++) {
848 for(i
= 0; i
< 10; i
++) {
852 for(i
= 0; i
< len
; i
++) {
860 for(j
= 0; j
< 8; j
++) {
871 for(i
= 0; i
< 10; i
++) {
874 for(i
= 0; i
< 8; i
++) {
878 // And then a little more, to make sure that the last character makes
879 // it out before we switch to rx mode.
880 for(i
= 0; i
< 24; i
++) {
884 // Convert from last character reference to length
890 Convenience function to encode, transmit and trace iso 14443b comms
892 static void CodeAndTransmit14443bAsReader(const uint8_t *cmd
, int len
)
894 CodeIso14443bAsReader(cmd
, len
);
897 uint8_t parity
[MAX_PARITY_SIZE
];
898 LogTrace(cmd
,len
, 0, 0, parity
, TRUE
);
902 /* Sends an APDU to the tag
903 * TODO: check CRC and preamble
905 int iso14443b_apdu(uint8_t const *message
, size_t message_length
, uint8_t *response
)
907 uint8_t message_frame
[message_length
+ 4];
909 message_frame
[0] = 0x0A | pcb_blocknum
;
912 message_frame
[1] = 0;
914 memcpy(message_frame
+ 2, message
, message_length
);
916 ComputeCrc14443(CRC_14443_B
, message_frame
, message_length
+ 2, &message_frame
[message_length
+ 2], &message_frame
[message_length
+ 3]);
918 CodeAndTransmit14443bAsReader(message_frame
, message_length
+ 4);
920 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
*100, TRUE
);
926 // copy response contents
929 memcpy(response
, Demod
.output
, Demod
.len
);
934 /* Perform the ISO 14443 B Card Selection procedure
935 * Currently does NOT do any collision handling.
936 * It expects 0-1 cards in the device's range.
937 * TODO: Support multiple cards (perform anticollision)
938 * TODO: Verify CRC checksums
940 int iso14443b_select_card()
942 // WUPB command (including CRC)
943 // Note: WUPB wakes up all tags, REQB doesn't wake up tags in HALT state
944 static const uint8_t wupb
[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
945 // ATTRIB command (with space for CRC)
946 uint8_t attrib
[] = { 0x1D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00};
948 // first, wake up the tag
949 CodeAndTransmit14443bAsReader(wupb
, sizeof(wupb
));
950 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
958 // copy the PUPI to ATTRIB
959 memcpy(attrib
+ 1, Demod
.output
+ 1, 4);
960 /* copy the protocol info from ATQB (Protocol Info -> Protocol_Type) into
962 attrib
[7] = Demod
.output
[10] & 0x0F;
963 ComputeCrc14443(CRC_14443_B
, attrib
, 9, attrib
+ 9, attrib
+ 10);
964 CodeAndTransmit14443bAsReader(attrib
, sizeof(attrib
));
965 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
966 // Answer to ATTRIB too short?
971 // reset PCB block number
976 // Set up ISO 14443 Type B communication (similar to iso14443a_setup)
977 void iso14443b_setup() {
978 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
979 // Set up the synchronous serial port
981 // connect Demodulated Signal to ADC:
982 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
984 // Signal field is on with the appropriate LED
986 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
| FPGA_HF_READER_TX_SHALLOW_MOD
);
995 //-----------------------------------------------------------------------------
996 // Read a SRI512 ISO 14443B tag.
998 // SRI512 tags are just simple memory tags, here we're looking at making a dump
999 // of the contents of the memory. No anticollision algorithm is done, we assume
1000 // we have a single tag in the field.
1002 // I tried to be systematic and check every answer of the tag, every CRC, etc...
1003 //-----------------------------------------------------------------------------
1004 void ReadSTMemoryIso14443b(uint32_t dwLast
)
1008 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1009 // Make sure that we start from off, since the tags are stateful;
1010 // confusing things will happen if we don't reset them between reads.
1012 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1015 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1018 // Now give it time to spin up.
1019 // Signal field is on with the appropriate LED
1021 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
);
1027 // First command: wake up the tag using the INITIATE command
1028 uint8_t cmd1
[] = {0x06, 0x00, 0x97, 0x5b};
1029 CodeAndTransmit14443bAsReader(cmd1
, sizeof(cmd1
));
1030 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
1032 if (Demod
.len
== 0) {
1033 DbpString("No response from tag");
1036 Dbprintf("Randomly generated Chip ID (+ 2 byte CRC): %02x %02x %02x",
1037 Demod
.output
[0], Demod
.output
[1], Demod
.output
[2]);
1040 // There is a response, SELECT the uid
1041 DbpString("Now SELECT tag:");
1042 cmd1
[0] = 0x0E; // 0x0E is SELECT
1043 cmd1
[1] = Demod
.output
[0];
1044 ComputeCrc14443(CRC_14443_B
, cmd1
, 2, &cmd1
[2], &cmd1
[3]);
1045 CodeAndTransmit14443bAsReader(cmd1
, sizeof(cmd1
));
1046 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
1047 if (Demod
.len
!= 3) {
1048 Dbprintf("Expected 3 bytes from tag, got %d", Demod
.len
);
1051 // Check the CRC of the answer:
1052 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 1 , &cmd1
[2], &cmd1
[3]);
1053 if(cmd1
[2] != Demod
.output
[1] || cmd1
[3] != Demod
.output
[2]) {
1054 DbpString("CRC Error reading select response.");
1057 // Check response from the tag: should be the same UID as the command we just sent:
1058 if (cmd1
[1] != Demod
.output
[0]) {
1059 Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1
[1], Demod
.output
[0]);
1063 // Tag is now selected,
1064 // First get the tag's UID:
1066 ComputeCrc14443(CRC_14443_B
, cmd1
, 1 , &cmd1
[1], &cmd1
[2]);
1067 CodeAndTransmit14443bAsReader(cmd1
, 3); // Only first three bytes for this one
1068 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
1069 if (Demod
.len
!= 10) {
1070 Dbprintf("Expected 10 bytes from tag, got %d", Demod
.len
);
1073 // The check the CRC of the answer (use cmd1 as temporary variable):
1074 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 8, &cmd1
[2], &cmd1
[3]);
1075 if(cmd1
[2] != Demod
.output
[8] || cmd1
[3] != Demod
.output
[9]) {
1076 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
1077 (cmd1
[2]<<8)+cmd1
[3], (Demod
.output
[8]<<8)+Demod
.output
[9]);
1078 // Do not return;, let's go on... (we should retry, maybe ?)
1080 Dbprintf("Tag UID (64 bits): %08x %08x",
1081 (Demod
.output
[7]<<24) + (Demod
.output
[6]<<16) + (Demod
.output
[5]<<8) + Demod
.output
[4],
1082 (Demod
.output
[3]<<24) + (Demod
.output
[2]<<16) + (Demod
.output
[1]<<8) + Demod
.output
[0]);
1084 // Now loop to read all 16 blocks, address from 0 to last block
1085 Dbprintf("Tag memory dump, block 0 to %d", dwLast
);
1091 DbpString("System area block (0xff):");
1095 ComputeCrc14443(CRC_14443_B
, cmd1
, 2, &cmd1
[2], &cmd1
[3]);
1096 CodeAndTransmit14443bAsReader(cmd1
, sizeof(cmd1
));
1097 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
1098 if (Demod
.len
!= 6) { // Check if we got an answer from the tag
1099 DbpString("Expected 6 bytes from tag, got less...");
1102 // The check the CRC of the answer (use cmd1 as temporary variable):
1103 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 4, &cmd1
[2], &cmd1
[3]);
1104 if(cmd1
[2] != Demod
.output
[4] || cmd1
[3] != Demod
.output
[5]) {
1105 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
1106 (cmd1
[2]<<8)+cmd1
[3], (Demod
.output
[4]<<8)+Demod
.output
[5]);
1107 // Do not return;, let's go on... (we should retry, maybe ?)
1109 // Now print out the memory location:
1110 Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i
,
1111 (Demod
.output
[3]<<24) + (Demod
.output
[2]<<16) + (Demod
.output
[1]<<8) + Demod
.output
[0],
1112 (Demod
.output
[4]<<8)+Demod
.output
[5]);
1121 //=============================================================================
1122 // Finally, the `sniffer' combines elements from both the reader and
1123 // simulated tag, to show both sides of the conversation.
1124 //=============================================================================
1126 //-----------------------------------------------------------------------------
1127 // Record the sequence of commands sent by the reader to the tag, with
1128 // triggering so that we start recording at the point that the tag is moved
1130 //-----------------------------------------------------------------------------
1132 * Memory usage for this function, (within BigBuf)
1133 * Last Received command (reader->tag) - MAX_FRAME_SIZE
1134 * Last Received command (tag->reader) - MAX_FRAME_SIZE
1135 * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE
1136 * Demodulated samples received - all the rest
1138 void RAMFUNC
SnoopIso14443b(void)
1140 // We won't start recording the frames that we acquire until we trigger;
1141 // a good trigger condition to get started is probably when we see a
1142 // response from the tag.
1143 int triggered
= TRUE
; // TODO: set and evaluate trigger condition
1145 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1151 // The DMA buffer, used to stream samples from the FPGA
1152 int8_t *dmaBuf
= (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE
);
1156 int maxBehindBy
= 0;
1158 // Count of samples received so far, so that we can include timing
1159 // information in the trace buffer.
1162 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE
));
1163 UartInit(BigBuf_malloc(MAX_FRAME_SIZE
));
1165 // Print some debug information about the buffer sizes
1166 Dbprintf("Snooping buffers initialized:");
1167 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1168 Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE
);
1169 Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE
);
1170 Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE
);
1172 // Signal field is off, no reader signal, no tag signal
1175 // And put the FPGA in the appropriate mode
1176 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
1177 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1179 // Setup for the DMA.
1182 lastRxCounter
= ISO14443B_DMA_BUFFER_SIZE
;
1183 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO14443B_DMA_BUFFER_SIZE
);
1184 uint8_t parity
[MAX_PARITY_SIZE
];
1186 bool TagIsActive
= FALSE
;
1187 bool ReaderIsActive
= FALSE
;
1189 // And now we loop, receiving samples.
1191 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) &
1192 (ISO14443B_DMA_BUFFER_SIZE
-1);
1193 if(behindBy
> maxBehindBy
) {
1194 maxBehindBy
= behindBy
;
1197 if(behindBy
< 2) continue;
1203 if(upTo
>= dmaBuf
+ ISO14443B_DMA_BUFFER_SIZE
) {
1205 lastRxCounter
+= ISO14443B_DMA_BUFFER_SIZE
;
1206 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
1207 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO14443B_DMA_BUFFER_SIZE
;
1209 if(behindBy
> (9*ISO14443B_DMA_BUFFER_SIZE
/10)) { // TODO: understand whether we can increase/decrease as we want or not?
1210 Dbprintf("blew circular buffer! behindBy=%d", behindBy
);
1214 DbpString("Reached trace limit");
1217 if(BUTTON_PRESS()) {
1218 DbpString("cancelled");
1225 if (!TagIsActive
) { // no need to try decoding reader data if the tag is sending
1226 if(Handle14443bUartBit(ci
& 0x01)) {
1227 if(triggered
&& tracing
) {
1228 LogTrace(Uart
.output
, Uart
.byteCnt
, samples
, samples
, parity
, TRUE
);
1230 /* And ready to receive another command. */
1232 /* And also reset the demod code, which might have been */
1233 /* false-triggered by the commands from the reader. */
1236 if(Handle14443bUartBit(cq
& 0x01)) {
1237 if(triggered
&& tracing
) {
1238 LogTrace(Uart
.output
, Uart
.byteCnt
, samples
, samples
, parity
, TRUE
);
1240 /* And ready to receive another command. */
1242 /* And also reset the demod code, which might have been */
1243 /* false-triggered by the commands from the reader. */
1246 ReaderIsActive
= (Uart
.state
> STATE_GOT_FALLING_EDGE_OF_SOF
);
1249 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
1250 if(Handle14443bSamplesDemod(ci
| 0x01, cq
| 0x01)) {
1252 //Use samples as a time measurement
1255 uint8_t parity
[MAX_PARITY_SIZE
];
1256 LogTrace(Demod
.output
, Demod
.len
, samples
, samples
, parity
, FALSE
);
1260 // And ready to receive another response.
1263 TagIsActive
= (Demod
.state
> DEMOD_GOT_FALLING_EDGE_OF_SOF
);
1268 FpgaDisableSscDma();
1270 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
1271 DbpString("Snoop statistics:");
1272 Dbprintf(" Max behind by: %i", maxBehindBy
);
1273 Dbprintf(" Uart State: %x", Uart
.state
);
1274 Dbprintf(" Uart ByteCnt: %i", Uart
.byteCnt
);
1275 Dbprintf(" Uart ByteCntMax: %i", Uart
.byteCntMax
);
1276 Dbprintf(" Trace length: %i", BigBuf_get_traceLen());
1281 * Send raw command to tag ISO14443B
1283 * datalen len of buffer data
1284 * recv bool when true wait for data from tag and send to client
1285 * powerfield bool leave the field on when true
1286 * data buffer with byte to send
1292 void SendRawCommand14443B(uint32_t datalen
, uint32_t recv
, uint8_t powerfield
, uint8_t data
[])
1294 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1295 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1300 CodeAndTransmit14443bAsReader(data
, datalen
);
1303 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
1304 uint16_t iLen
= MIN(Demod
.len
, USB_CMD_DATA_SIZE
);
1305 cmd_send(CMD_ACK
, iLen
, 0, 0, Demod
.output
, iLen
);
1309 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);