]> cvs.zerfleddert.de Git - proxmark3-svn/blob - client/cmdlfem4x.c
Merge pull request #274 from marshmellow42/master
[proxmark3-svn] / client / cmdlfem4x.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Low frequency EM4x commands
9 //-----------------------------------------------------------------------------
10
11 #include <stdio.h>
12 #include <string.h>
13 #include <inttypes.h>
14 #include "cmdlfem4x.h"
15 #include "proxmark3.h"
16 #include "ui.h"
17 #include "util.h"
18 #include "data.h"
19 #include "graph.h"
20 #include "cmdparser.h"
21 #include "cmddata.h"
22 #include "cmdlf.h"
23 #include "cmdmain.h"
24 #include "lfdemod.h"
25 #include "protocols.h"
26
27 uint64_t g_em410xId=0;
28
29 static int CmdHelp(const char *Cmd);
30
31 int CmdEMdemodASK(const char *Cmd)
32 {
33 char cmdp = param_getchar(Cmd, 0);
34 int findone = (cmdp == '1') ? 1 : 0;
35 UsbCommand c={CMD_EM410X_DEMOD};
36 c.arg[0]=findone;
37 SendCommand(&c);
38 return 0;
39 }
40
41 //by marshmellow
42 //print 64 bit EM410x ID in multiple formats
43 void printEM410x(uint32_t hi, uint64_t id)
44 {
45 if (id || hi){
46 uint64_t iii=1;
47 uint64_t id2lo=0;
48 uint32_t ii=0;
49 uint32_t i=0;
50 for (ii=5; ii>0;ii--){
51 for (i=0;i<8;i++){
52 id2lo=(id2lo<<1LL) | ((id & (iii << (i+((ii-1)*8)))) >> (i+((ii-1)*8)));
53 }
54 }
55 if (hi){
56 //output 88 bit em id
57 PrintAndLog("\nEM TAG ID : %06X%016" PRIX64, hi, id);
58 } else{
59 //output 40 bit em id
60 PrintAndLog("\nEM TAG ID : %010" PRIX64, id);
61 PrintAndLog("\nPossible de-scramble patterns");
62 PrintAndLog("Unique TAG ID : %010" PRIX64, id2lo);
63 PrintAndLog("HoneyWell IdentKey {");
64 PrintAndLog("DEZ 8 : %08" PRIu64,id & 0xFFFFFF);
65 PrintAndLog("DEZ 10 : %010" PRIu64,id & 0xFFFFFFFF);
66 PrintAndLog("DEZ 5.5 : %05lld.%05" PRIu64,(id>>16LL) & 0xFFFF,(id & 0xFFFF));
67 PrintAndLog("DEZ 3.5A : %03lld.%05" PRIu64,(id>>32ll),(id & 0xFFFF));
68 PrintAndLog("DEZ 3.5B : %03lld.%05" PRIu64,(id & 0xFF000000) >> 24,(id & 0xFFFF));
69 PrintAndLog("DEZ 3.5C : %03lld.%05" PRIu64,(id & 0xFF0000) >> 16,(id & 0xFFFF));
70 PrintAndLog("DEZ 14/IK2 : %014" PRIu64,id);
71 PrintAndLog("DEZ 15/IK3 : %015" PRIu64,id2lo);
72 PrintAndLog("DEZ 20/ZK : %02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64,
73 (id2lo & 0xf000000000) >> 36,
74 (id2lo & 0x0f00000000) >> 32,
75 (id2lo & 0x00f0000000) >> 28,
76 (id2lo & 0x000f000000) >> 24,
77 (id2lo & 0x0000f00000) >> 20,
78 (id2lo & 0x00000f0000) >> 16,
79 (id2lo & 0x000000f000) >> 12,
80 (id2lo & 0x0000000f00) >> 8,
81 (id2lo & 0x00000000f0) >> 4,
82 (id2lo & 0x000000000f)
83 );
84 uint64_t paxton = (((id>>32) << 24) | (id & 0xffffff)) + 0x143e00;
85 PrintAndLog("}\nOther : %05" PRIu64 "_%03" PRIu64 "_%08" PRIu64 "",(id&0xFFFF),((id>>16LL) & 0xFF),(id & 0xFFFFFF));
86 PrintAndLog("Pattern Paxton : %" PRIu64 " [0x%" PRIX64 "]", paxton, paxton);
87
88 uint32_t p1id = (id & 0xFFFFFF);
89 uint8_t arr[32] = {0x00};
90 int i =0;
91 int j = 23;
92 for (; i < 24; ++i, --j ){
93 arr[i] = (p1id >> i) & 1;
94 }
95
96 uint32_t p1 = 0;
97
98 p1 |= arr[23] << 21;
99 p1 |= arr[22] << 23;
100 p1 |= arr[21] << 20;
101 p1 |= arr[20] << 22;
102
103 p1 |= arr[19] << 18;
104 p1 |= arr[18] << 16;
105 p1 |= arr[17] << 19;
106 p1 |= arr[16] << 17;
107
108 p1 |= arr[15] << 13;
109 p1 |= arr[14] << 15;
110 p1 |= arr[13] << 12;
111 p1 |= arr[12] << 14;
112
113 p1 |= arr[11] << 6;
114 p1 |= arr[10] << 2;
115 p1 |= arr[9] << 7;
116 p1 |= arr[8] << 1;
117
118 p1 |= arr[7] << 0;
119 p1 |= arr[6] << 8;
120 p1 |= arr[5] << 11;
121 p1 |= arr[4] << 3;
122
123 p1 |= arr[3] << 10;
124 p1 |= arr[2] << 4;
125 p1 |= arr[1] << 5;
126 p1 |= arr[0] << 9;
127 PrintAndLog("Pattern 1 : %d [0x%X]", p1, p1);
128
129 uint16_t sebury1 = id & 0xFFFF;
130 uint8_t sebury2 = (id >> 16) & 0x7F;
131 uint32_t sebury3 = id & 0x7FFFFF;
132 PrintAndLog("Pattern Sebury : %d %d %d [0x%X 0x%X 0x%X]", sebury1, sebury2, sebury3, sebury1, sebury2, sebury3);
133 }
134 }
135 return;
136 }
137
138 /* Read the ID of an EM410x tag.
139 * Format:
140 * 1111 1111 1 <-- standard non-repeatable header
141 * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID
142 * ....
143 * CCCC <-- each bit here is parity for the 10 bits above in corresponding column
144 * 0 <-- stop bit, end of tag
145 */
146 int AskEm410xDecode(bool verbose, uint32_t *hi, uint64_t *lo )
147 {
148 size_t idx = 0;
149 uint8_t BitStream[512]={0};
150 size_t BitLen = sizeof(BitStream);
151 if ( !getDemodBuf(BitStream, &BitLen) ) return 0;
152
153 if (Em410xDecode(BitStream, &BitLen, &idx, hi, lo)) {
154 //set GraphBuffer for clone or sim command
155 setDemodBuf(BitStream, BitLen, idx);
156 if (g_debugMode) {
157 PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, BitLen);
158 printDemodBuff();
159 }
160 if (verbose) {
161 PrintAndLog("EM410x pattern found: ");
162 printEM410x(*hi, *lo);
163 g_em410xId = *lo;
164 }
165 return 1;
166 }
167 return 0;
168 }
169
170 //askdemod then call Em410xdecode
171 int AskEm410xDemod(const char *Cmd, uint32_t *hi, uint64_t *lo, bool verbose)
172 {
173 bool st = true;
174 if (!ASKDemod_ext(Cmd, false, false, 1, &st)) return 0;
175 return AskEm410xDecode(verbose, hi, lo);
176 }
177
178 //by marshmellow
179 //takes 3 arguments - clock, invert and maxErr as integers
180 //attempts to demodulate ask while decoding manchester
181 //prints binary found and saves in graphbuffer for further commands
182 int CmdAskEM410xDemod(const char *Cmd)
183 {
184 char cmdp = param_getchar(Cmd, 0);
185 if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
186 PrintAndLog("Usage: lf em 410xdemod [clock] <0|1> [maxError]");
187 PrintAndLog(" [set clock as integer] optional, if not set, autodetect.");
188 PrintAndLog(" <invert>, 1 for invert output");
189 PrintAndLog(" [set maximum allowed errors], default = 100.");
190 PrintAndLog("");
191 PrintAndLog(" sample: lf em 410xdemod = demod an EM410x Tag ID from GraphBuffer");
192 PrintAndLog(" : lf em 410xdemod 32 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32");
193 PrintAndLog(" : lf em 410xdemod 32 1 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32 and inverting data");
194 PrintAndLog(" : lf em 410xdemod 1 = demod an EM410x Tag ID from GraphBuffer while inverting data");
195 PrintAndLog(" : lf em 410xdemod 64 1 0 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/64 and inverting data and allowing 0 demod errors");
196 return 0;
197 }
198 uint64_t lo = 0;
199 uint32_t hi = 0;
200 return AskEm410xDemod(Cmd, &hi, &lo, true);
201 }
202
203 int usage_lf_em410x_sim(void) {
204 PrintAndLog("Simulating EM410x tag");
205 PrintAndLog("");
206 PrintAndLog("Usage: lf em 410xsim [h] <uid> <clock>");
207 PrintAndLog("Options:");
208 PrintAndLog(" h - this help");
209 PrintAndLog(" uid - uid (10 HEX symbols)");
210 PrintAndLog(" clock - clock (32|64) (optional)");
211 PrintAndLog("samples:");
212 PrintAndLog(" lf em 410xsim 0F0368568B");
213 PrintAndLog(" lf em 410xsim 0F0368568B 32");
214 return 0;
215 }
216
217 // emulate an EM410X tag
218 int CmdEM410xSim(const char *Cmd)
219 {
220 int i, n, j, binary[4], parity[4];
221
222 char cmdp = param_getchar(Cmd, 0);
223 uint8_t uid[5] = {0x00};
224
225 if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_sim();
226 /* clock is 64 in EM410x tags */
227 uint8_t clock = 64;
228
229 if (param_gethex(Cmd, 0, uid, 10)) {
230 PrintAndLog("UID must include 10 HEX symbols");
231 return 0;
232 }
233 param_getdec(Cmd,1, &clock);
234
235 PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock);
236 PrintAndLog("Press pm3-button to about simulation");
237
238
239 /* clear our graph */
240 ClearGraph(0);
241
242 /* write 9 start bits */
243 for (i = 0; i < 9; i++)
244 AppendGraph(0, clock, 1);
245
246 /* for each hex char */
247 parity[0] = parity[1] = parity[2] = parity[3] = 0;
248 for (i = 0; i < 10; i++)
249 {
250 /* read each hex char */
251 sscanf(&Cmd[i], "%1x", &n);
252 for (j = 3; j >= 0; j--, n/= 2)
253 binary[j] = n % 2;
254
255 /* append each bit */
256 AppendGraph(0, clock, binary[0]);
257 AppendGraph(0, clock, binary[1]);
258 AppendGraph(0, clock, binary[2]);
259 AppendGraph(0, clock, binary[3]);
260
261 /* append parity bit */
262 AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
263
264 /* keep track of column parity */
265 parity[0] ^= binary[0];
266 parity[1] ^= binary[1];
267 parity[2] ^= binary[2];
268 parity[3] ^= binary[3];
269 }
270
271 /* parity columns */
272 AppendGraph(0, clock, parity[0]);
273 AppendGraph(0, clock, parity[1]);
274 AppendGraph(0, clock, parity[2]);
275 AppendGraph(0, clock, parity[3]);
276
277 /* stop bit */
278 AppendGraph(1, clock, 0);
279
280 CmdLFSim("0"); //240 start_gap.
281 return 0;
282 }
283
284 /* Function is equivalent of lf read + data samples + em410xread
285 * looped until an EM410x tag is detected
286 *
287 * Why is CmdSamples("16000")?
288 * TBD: Auto-grow sample size based on detected sample rate. IE: If the
289 * rate gets lower, then grow the number of samples
290 * Changed by martin, 4000 x 4 = 16000,
291 * see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235
292 *
293 * EDIT -- capture enough to get 2 complete preambles at the slowest data rate known to be used (rf/64) (64*64*2+9 = 8201) marshmellow
294 */
295 int CmdEM410xWatch(const char *Cmd)
296 {
297 do {
298 if (ukbhit()) {
299 printf("\naborted via keyboard!\n");
300 break;
301 }
302 lf_read(true, 8201);
303 } while (!CmdAskEM410xDemod(""));
304
305 return 0;
306 }
307
308 //currently only supports manchester modulations
309 int CmdEM410xWatchnSpoof(const char *Cmd)
310 {
311 CmdEM410xWatch(Cmd);
312 PrintAndLog("# Replaying captured ID: %010"PRIx64, g_em410xId);
313 CmdLFaskSim("");
314 return 0;
315 }
316
317 int CmdEM410xWrite(const char *Cmd)
318 {
319 uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value
320 int card = 0xFF; // invalid card value
321 unsigned int clock = 0; // invalid clock value
322
323 sscanf(Cmd, "%" SCNx64 " %d %d", &id, &card, &clock);
324
325 // Check ID
326 if (id == 0xFFFFFFFFFFFFFFFF) {
327 PrintAndLog("Error! ID is required.\n");
328 return 0;
329 }
330 if (id >= 0x10000000000) {
331 PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n");
332 return 0;
333 }
334
335 // Check Card
336 if (card == 0xFF) {
337 PrintAndLog("Error! Card type required.\n");
338 return 0;
339 }
340 if (card < 0) {
341 PrintAndLog("Error! Bad card type selected.\n");
342 return 0;
343 }
344
345 // Check Clock
346 // Default: 64
347 if (clock == 0)
348 clock = 64;
349
350 // Allowed clock rates: 16, 32, 40 and 64
351 if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) {
352 PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock);
353 return 0;
354 }
355
356 if (card == 1) {
357 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock);
358 // NOTE: We really should pass the clock in as a separate argument, but to
359 // provide for backwards-compatibility for older firmware, and to avoid
360 // having to add another argument to CMD_EM410X_WRITE_TAG, we just store
361 // the clock rate in bits 8-15 of the card value
362 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
363 } else if (card == 0) {
364 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock);
365 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
366 } else {
367 PrintAndLog("Error! Bad card type selected.\n");
368 return 0;
369 }
370
371 UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}};
372 SendCommand(&c);
373
374 return 0;
375 }
376
377 //**************** Start of EM4x50 Code ************************
378 bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
379 {
380 if (rows*cols>size) return false;
381 uint8_t colP=0;
382 //assume last col is a parity and do not test
383 for (uint8_t colNum = 0; colNum < cols-1; colNum++) {
384 for (uint8_t rowNum = 0; rowNum < rows; rowNum++) {
385 colP ^= BitStream[(rowNum*cols)+colNum];
386 }
387 if (colP != pType) return false;
388 }
389 return true;
390 }
391
392 bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
393 {
394 if (rows*cols>size) return false;
395 uint8_t rowP=0;
396 //assume last row is a parity row and do not test
397 for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) {
398 for (uint8_t colNum = 0; colNum < cols; colNum++) {
399 rowP ^= BitStream[(rowNum*cols)+colNum];
400 }
401 if (rowP != pType) return false;
402 }
403 return true;
404 }
405
406 uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest)
407 {
408 if (size<45) return 0;
409 uint32_t code = bytebits_to_byte(BitStream,8);
410 code = code<<8 | bytebits_to_byte(BitStream+9,8);
411 code = code<<8 | bytebits_to_byte(BitStream+18,8);
412 code = code<<8 | bytebits_to_byte(BitStream+27,8);
413 if (verbose || g_debugMode){
414 for (uint8_t i = 0; i<5; i++){
415 if (i == 4) PrintAndLog(""); //parity byte spacer
416 PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x",
417 BitStream[i*9],
418 BitStream[i*9+1],
419 BitStream[i*9+2],
420 BitStream[i*9+3],
421 BitStream[i*9+4],
422 BitStream[i*9+5],
423 BitStream[i*9+6],
424 BitStream[i*9+7],
425 BitStream[i*9+8],
426 bytebits_to_byte(BitStream+i*9,8)
427 );
428 }
429 if (pTest)
430 PrintAndLog("Parity Passed");
431 else
432 PrintAndLog("Parity Failed");
433 }
434 return code;
435 }
436 /* Read the transmitted data of an EM4x50 tag from the graphbuffer
437 * Format:
438 *
439 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
440 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
441 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
442 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
443 * CCCCCCCC <- column parity bits
444 * 0 <- stop bit
445 * LW <- Listen Window
446 *
447 * This pattern repeats for every block of data being transmitted.
448 * Transmission starts with two Listen Windows (LW - a modulated
449 * pattern of 320 cycles each (32/32/128/64/64)).
450 *
451 * Note that this data may or may not be the UID. It is whatever data
452 * is stored in the blocks defined in the control word First and Last
453 * Word Read values. UID is stored in block 32.
454 */
455 //completed by Marshmellow
456 int EM4x50Read(const char *Cmd, bool verbose)
457 {
458 uint8_t fndClk[] = {8,16,32,40,50,64,128};
459 int clk = 0;
460 int invert = 0;
461 int tol = 0;
462 int i, j, startblock, skip, block, start, end, low, high, minClk;
463 bool complete = false;
464 int tmpbuff[MAX_GRAPH_TRACE_LEN / 64];
465 uint32_t Code[6];
466 char tmp[6];
467 char tmp2[20];
468 int phaseoff;
469 high = low = 0;
470 memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64);
471
472 // get user entry if any
473 sscanf(Cmd, "%i %i", &clk, &invert);
474
475 // save GraphBuffer - to restore it later
476 save_restoreGB(1);
477
478 // first get high and low values
479 for (i = 0; i < GraphTraceLen; i++) {
480 if (GraphBuffer[i] > high)
481 high = GraphBuffer[i];
482 else if (GraphBuffer[i] < low)
483 low = GraphBuffer[i];
484 }
485
486 i = 0;
487 j = 0;
488 minClk = 255;
489 // get to first full low to prime loop and skip incomplete first pulse
490 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
491 ++i;
492 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
493 ++i;
494 skip = i;
495
496 // populate tmpbuff buffer with pulse lengths
497 while (i < GraphTraceLen) {
498 // measure from low to low
499 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
500 ++i;
501 start= i;
502 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
503 ++i;
504 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
505 ++i;
506 if (j>=(MAX_GRAPH_TRACE_LEN/64)) {
507 break;
508 }
509 tmpbuff[j++]= i - start;
510 if (i-start < minClk && i < GraphTraceLen) {
511 minClk = i - start;
512 }
513 }
514 // set clock
515 if (!clk) {
516 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
517 tol = fndClk[clkCnt]/8;
518 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
519 clk=fndClk[clkCnt];
520 break;
521 }
522 }
523 if (!clk) return 0;
524 } else tol = clk/8;
525
526 // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2)
527 start = -1;
528 for (i= 0; i < j - 4 ; ++i) {
529 skip += tmpbuff[i];
530 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
531 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
532 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
533 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
534 {
535 start= i + 4;
536 break;
537 }
538 }
539 startblock = i + 4;
540
541 // skip over the remainder of LW
542 skip += tmpbuff[i+1] + tmpbuff[i+2] + clk;
543 if (tmpbuff[i+3]>clk)
544 phaseoff = tmpbuff[i+3]-clk;
545 else
546 phaseoff = 0;
547 // now do it again to find the end
548 end = skip;
549 for (i += 3; i < j - 4 ; ++i) {
550 end += tmpbuff[i];
551 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
552 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
553 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
554 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
555 {
556 complete= true;
557 break;
558 }
559 }
560 end = i;
561 // report back
562 if (verbose || g_debugMode) {
563 if (start >= 0) {
564 PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)");
565 } else {
566 PrintAndLog("No data found!, clock tried:%d",clk);
567 PrintAndLog("Try again with more samples.");
568 PrintAndLog(" or after a 'data askedge' command to clean up the read");
569 return 0;
570 }
571 } else if (start < 0) return 0;
572 start = skip;
573 snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47);
574 // get rid of leading crap
575 snprintf(tmp, sizeof(tmp), "%i", skip);
576 CmdLtrim(tmp);
577 bool pTest;
578 bool AllPTest = true;
579 // now work through remaining buffer printing out data blocks
580 block = 0;
581 i = startblock;
582 while (block < 6) {
583 if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block);
584 skip = phaseoff;
585
586 // look for LW before start of next block
587 for ( ; i < j - 4 ; ++i) {
588 skip += tmpbuff[i];
589 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)
590 if (tmpbuff[i+1] >= clk-tol)
591 break;
592 }
593 if (i >= j-4) break; //next LW not found
594 skip += clk;
595 if (tmpbuff[i+1]>clk)
596 phaseoff = tmpbuff[i+1]-clk;
597 else
598 phaseoff = 0;
599 i += 2;
600 if (ASKDemod(tmp2, false, false, 1) < 1) {
601 save_restoreGB(0);
602 return 0;
603 }
604 //set DemodBufferLen to just one block
605 DemodBufferLen = skip/clk;
606 //test parities
607 pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0);
608 pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0);
609 AllPTest &= pTest;
610 //get output
611 Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest);
612 if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk);
613 //skip to start of next block
614 snprintf(tmp,sizeof(tmp),"%i",skip);
615 CmdLtrim(tmp);
616 block++;
617 if (i >= end) break; //in case chip doesn't output 6 blocks
618 }
619 //print full code:
620 if (verbose || g_debugMode || AllPTest){
621 if (!complete) {
622 PrintAndLog("*** Warning!");
623 PrintAndLog("Partial data - no end found!");
624 PrintAndLog("Try again with more samples.");
625 }
626 PrintAndLog("Found data at sample: %i - using clock: %i", start, clk);
627 end = block;
628 for (block=0; block < end; block++){
629 PrintAndLog("Block %d: %08x",block,Code[block]);
630 }
631 if (AllPTest) {
632 PrintAndLog("Parities Passed");
633 } else {
634 PrintAndLog("Parities Failed");
635 PrintAndLog("Try cleaning the read samples with 'data askedge'");
636 }
637 }
638
639 //restore GraphBuffer
640 save_restoreGB(0);
641 return (int)AllPTest;
642 }
643
644 int CmdEM4x50Read(const char *Cmd)
645 {
646 return EM4x50Read(Cmd, true);
647 }
648
649 //**************** Start of EM4x05/EM4x69 Code ************************
650 int usage_lf_em_read(void) {
651 PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. ");
652 PrintAndLog("");
653 PrintAndLog("Usage: lf em 4x05readword [h] <address> <pwd>");
654 PrintAndLog("Options:");
655 PrintAndLog(" h - this help");
656 PrintAndLog(" address - memory address to read. (0-15)");
657 PrintAndLog(" pwd - password (hex) (optional)");
658 PrintAndLog("samples:");
659 PrintAndLog(" lf em 4x05readword 1");
660 PrintAndLog(" lf em 4x05readword 1 11223344");
661 return 0;
662 }
663
664 // for command responses from em4x05 or em4x69
665 // download samples from device and copy them to the Graphbuffer
666 bool downloadSamplesEM() {
667 // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples)
668 uint8_t got[6000];
669 GetFromBigBuf(got, sizeof(got), 0);
670 if ( !WaitForResponseTimeout(CMD_ACK, NULL, 4000) ) {
671 PrintAndLog("command execution time out");
672 return false;
673 }
674 setGraphBuf(got, sizeof(got));
675 return true;
676 }
677
678 bool EM4x05testDemodReadData(uint32_t *word, bool readCmd) {
679 // em4x05/em4x69 command response preamble is 00001010
680 // skip first two 0 bits as they might have been missed in the demod
681 uint8_t preamble[] = {0,0,1,0,1,0};
682 size_t startIdx = 0;
683
684 // set size to 20 to only test first 14 positions for the preamble or less if not a read command
685 size_t size = (readCmd) ? 20 : 11;
686 // sanity check
687 size = (size > DemodBufferLen) ? DemodBufferLen : size;
688 // test preamble
689 if ( !preambleSearchEx(DemodBuffer, preamble, sizeof(preamble), &size, &startIdx, true) ) {
690 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", startIdx);
691 return false;
692 }
693 // if this is a readword command, get the read bytes and test the parities
694 if (readCmd) {
695 if (!EM_EndParityTest(DemodBuffer + startIdx + sizeof(preamble), 45, 5, 9, 0)) {
696 if (g_debugMode) PrintAndLog("DEBUG: Error - End Parity check failed");
697 return false;
698 }
699 // test for even parity bits and remove them. (leave out the end row of parities so 36 bits)
700 if ( removeParity(DemodBuffer, startIdx + sizeof(preamble),9,0,36) == 0 ) {
701 if (g_debugMode) PrintAndLog("DEBUG: Error - Parity not detected");
702 return false;
703 }
704
705 setDemodBuf(DemodBuffer, 32, 0);
706 *word = bytebits_to_byteLSBF(DemodBuffer, 32);
707 }
708 return true;
709 }
710
711 // FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE
712 // should cover 90% of known used configs
713 // the rest will need to be manually demoded for now...
714 int demodEM4x05resp(uint32_t *word, bool readCmd) {
715 int ans = 0;
716
717 // test for FSK wave (easiest to 99% ID)
718 if (GetFskClock("", false, false)) {
719 //valid fsk clocks found
720 ans = FSKrawDemod("0 0", false);
721 if (!ans) {
722 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: FSK Demod failed, ans: %d", ans);
723 } else {
724 if (EM4x05testDemodReadData(word, readCmd)) {
725 return 1;
726 }
727 }
728 }
729 // PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... )
730 ans = GetPskClock("", false, false);
731 if (ans>0) {
732 //try psk1
733 ans = PSKDemod("0 0 6", false);
734 if (!ans) {
735 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans);
736 } else {
737 if (EM4x05testDemodReadData(word, readCmd)) {
738 return 1;
739 } else {
740 //try psk2
741 psk1TOpsk2(DemodBuffer, DemodBufferLen);
742 if (EM4x05testDemodReadData(word, readCmd)) {
743 return 1;
744 }
745 }
746 //try psk1 inverted
747 ans = PSKDemod("0 1 6", false);
748 if (!ans) {
749 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans);
750 } else {
751 if (EM4x05testDemodReadData(word, readCmd)) {
752 return 1;
753 } else {
754 //try psk2
755 psk1TOpsk2(DemodBuffer, DemodBufferLen);
756 if (EM4x05testDemodReadData(word, readCmd)) {
757 return 1;
758 }
759 }
760 }
761 }
762 }
763
764 // manchester is more common than biphase... try first
765 bool stcheck = false;
766 // try manchester - NOTE: ST only applies to T55x7 tags.
767 ans = ASKDemod_ext("0,0,1", false, false, 1, &stcheck);
768 if (!ans) {
769 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/Manchester Demod failed, ans: %d", ans);
770 } else {
771 if (EM4x05testDemodReadData(word, readCmd)) {
772 return 1;
773 }
774 }
775
776 //try biphase
777 ans = ASKbiphaseDemod("0 0 1", false);
778 if (!ans) {
779 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans);
780 } else {
781 if (EM4x05testDemodReadData(word, readCmd)) {
782 return 1;
783 }
784 }
785
786 //try diphase (differential biphase or inverted)
787 ans = ASKbiphaseDemod("0 1 1", false);
788 if (!ans) {
789 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans);
790 } else {
791 if (EM4x05testDemodReadData(word, readCmd)) {
792 return 1;
793 }
794 }
795
796 return -1;
797 }
798
799 int EM4x05ReadWord_ext(uint8_t addr, uint32_t pwd, bool usePwd, uint32_t *wordData) {
800 UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}};
801 clearCommandBuffer();
802 SendCommand(&c);
803 UsbCommand resp;
804 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){
805 PrintAndLog("Command timed out");
806 return -1;
807 }
808 if ( !downloadSamplesEM() ) {
809 return -1;
810 }
811 int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000;
812 if (graphJustNoise(GraphBuffer, testLen)) {
813 PrintAndLog("no tag not found");
814 return -1;
815 }
816 //attempt demod:
817 return demodEM4x05resp(wordData, true);
818 }
819
820 int EM4x05ReadWord(uint8_t addr, uint32_t pwd, bool usePwd) {
821 uint32_t wordData = 0;
822 int success = EM4x05ReadWord_ext(addr, pwd, usePwd, &wordData);
823 if (success == 1)
824 PrintAndLog("%s Address %02d | %08X", (addr>13) ? "Lock":" Got",addr,wordData);
825 else
826 PrintAndLog("Read Address %02d | failed",addr);
827
828 return success;
829 }
830
831 int CmdEM4x05ReadWord(const char *Cmd) {
832 uint8_t addr;
833 uint32_t pwd;
834 bool usePwd = false;
835 uint8_t ctmp = param_getchar(Cmd, 0);
836 if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_read();
837
838 addr = param_get8ex(Cmd, 0, 50, 10);
839 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
840 pwd = param_get32ex(Cmd, 1, 1, 16);
841
842 if ( (addr > 15) ) {
843 PrintAndLog("Address must be between 0 and 15");
844 return 1;
845 }
846 if ( pwd == 1 ) {
847 PrintAndLog("Reading address %02u", addr);
848 } else {
849 usePwd = true;
850 PrintAndLog("Reading address %02u | password %08X", addr, pwd);
851 }
852
853 return EM4x05ReadWord(addr, pwd, usePwd);
854 }
855
856 int usage_lf_em_dump(void) {
857 PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. ");
858 PrintAndLog("");
859 PrintAndLog("Usage: lf em 4x05dump [h] <pwd>");
860 PrintAndLog("Options:");
861 PrintAndLog(" h - this help");
862 PrintAndLog(" pwd - password (hex) (optional)");
863 PrintAndLog("samples:");
864 PrintAndLog(" lf em 4x05dump");
865 PrintAndLog(" lf em 4x05dump 11223344");
866 return 0;
867 }
868
869 int CmdEM4x05dump(const char *Cmd) {
870 uint8_t addr = 0;
871 uint32_t pwd;
872 bool usePwd = false;
873 uint8_t ctmp = param_getchar(Cmd, 0);
874 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump();
875
876 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
877 pwd = param_get32ex(Cmd, 0, 1, 16);
878
879 if ( pwd != 1 ) {
880 usePwd = true;
881 }
882 int success = 1;
883 for (; addr < 16; addr++) {
884 if (addr == 2) {
885 if (usePwd) {
886 PrintAndLog(" PWD Address %02u | %08X",addr,pwd);
887 } else {
888 PrintAndLog(" PWD Address 02 | cannot read");
889 }
890 } else {
891 success &= EM4x05ReadWord(addr, pwd, usePwd);
892 }
893 }
894
895 return success;
896 }
897
898
899 int usage_lf_em_write(void) {
900 PrintAndLog("Write EM4x05/EM4x69. Tag must be on antenna. ");
901 PrintAndLog("");
902 PrintAndLog("Usage: lf em 4x05writeword [h] a <address> d <data> p <pwd> [s] [i]");
903 PrintAndLog("Options:");
904 PrintAndLog(" h - this help");
905 PrintAndLog(" a <address> - memory address to write to. (0-15)");
906 PrintAndLog(" d <data> - data to write (hex)");
907 PrintAndLog(" p <pwd> - password (hex) (optional)");
908 PrintAndLog(" s - swap the data bit order before write");
909 PrintAndLog(" i - invert the data bits before write");
910 PrintAndLog("samples:");
911 PrintAndLog(" lf em 4x05writeword a 5 d 11223344");
912 PrintAndLog(" lf em 4x05writeword a 5 p deadc0de d 11223344 s i");
913 return 0;
914 }
915
916 // note: em4x05 doesn't have a way to invert data output so we must invert the data prior to writing
917 // it if invertion is needed. (example FSK2a vs FSK)
918 // also em4x05 requires swapping word data when compared to the data used for t55xx chips.
919 int EM4x05WriteWord(uint8_t addr, uint32_t data, uint32_t pwd, bool usePwd, bool swap, bool invert) {
920 if (swap) data = SwapBits(data, 32);
921
922 if (invert) data ^= 0xFFFFFFFF;
923
924 if ( (addr > 15) ) {
925 PrintAndLog("Address must be between 0 and 15");
926 return -1;
927 }
928 if ( !usePwd ) {
929 PrintAndLog("Writing address %d data %08X", addr, data);
930 } else {
931 PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd);
932 }
933
934 uint16_t flag = (addr << 8 ) | usePwd;
935
936 UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}};
937 clearCommandBuffer();
938 SendCommand(&c);
939 UsbCommand resp;
940 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){
941 PrintAndLog("Error occurred, device did not respond during write operation.");
942 return -1;
943 }
944 if ( !downloadSamplesEM() ) {
945 return -1;
946 }
947 //check response for 00001010 for write confirmation!
948 //attempt demod:
949 uint32_t dummy = 0;
950 int result = demodEM4x05resp(&dummy,false);
951 if (result == 1) {
952 PrintAndLog("Write Verified");
953 } else {
954 PrintAndLog("Write could not be verified");
955 }
956 return result;
957 }
958
959 int CmdEM4x05WriteWord(const char *Cmd) {
960 bool errors = false;
961 bool usePwd = false;
962 uint32_t data = 0xFFFFFFFF;
963 uint32_t pwd = 0xFFFFFFFF;
964 bool swap = false;
965 bool invert = false;
966 uint8_t addr = 16; // default to invalid address
967 bool gotData = false;
968 char cmdp = 0;
969 while(param_getchar(Cmd, cmdp) != 0x00)
970 {
971 switch(param_getchar(Cmd, cmdp))
972 {
973 case 'h':
974 case 'H':
975 return usage_lf_em_write();
976 case 'a':
977 case 'A':
978 addr = param_get8ex(Cmd, cmdp+1, 16, 10);
979 cmdp += 2;
980 break;
981 case 'd':
982 case 'D':
983 data = param_get32ex(Cmd, cmdp+1, 0, 16);
984 gotData = true;
985 cmdp += 2;
986 break;
987 case 'i':
988 case 'I':
989 invert = true;
990 cmdp++;
991 break;
992 case 'p':
993 case 'P':
994 pwd = param_get32ex(Cmd, cmdp+1, 1, 16);
995 if (pwd == 1) {
996 PrintAndLog("invalid pwd");
997 errors = true;
998 }
999 usePwd = true;
1000 cmdp += 2;
1001 break;
1002 case 's':
1003 case 'S':
1004 swap = true;
1005 cmdp++;
1006 break;
1007 default:
1008 PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
1009 errors = true;
1010 break;
1011 }
1012 if(errors) break;
1013 }
1014 //Validations
1015 if(errors) return usage_lf_em_write();
1016
1017 if ( strlen(Cmd) == 0 ) return usage_lf_em_write();
1018
1019 if (!gotData) {
1020 PrintAndLog("You must enter the data you want to write");
1021 return usage_lf_em_write();
1022 }
1023 return EM4x05WriteWord(addr, data, pwd, usePwd, swap, invert);
1024 }
1025
1026 void printEM4x05config(uint32_t wordData) {
1027 uint16_t datarate = EM4x05_GET_BITRATE(wordData);
1028 uint8_t encoder = ((wordData >> 6) & 0xF);
1029 char enc[14];
1030 memset(enc,0,sizeof(enc));
1031
1032 uint8_t PSKcf = (wordData >> 10) & 0x3;
1033 char cf[10];
1034 memset(cf,0,sizeof(cf));
1035 uint8_t delay = (wordData >> 12) & 0x3;
1036 char cdelay[33];
1037 memset(cdelay,0,sizeof(cdelay));
1038 uint8_t numblks = EM4x05_GET_NUM_BLOCKS(wordData);
1039 uint8_t LWR = numblks+5-1; //last word read
1040 switch (encoder) {
1041 case 0: snprintf(enc,sizeof(enc),"NRZ"); break;
1042 case 1: snprintf(enc,sizeof(enc),"Manchester"); break;
1043 case 2: snprintf(enc,sizeof(enc),"Biphase"); break;
1044 case 3: snprintf(enc,sizeof(enc),"Miller"); break;
1045 case 4: snprintf(enc,sizeof(enc),"PSK1"); break;
1046 case 5: snprintf(enc,sizeof(enc),"PSK2"); break;
1047 case 6: snprintf(enc,sizeof(enc),"PSK3"); break;
1048 case 7: snprintf(enc,sizeof(enc),"Unknown"); break;
1049 case 8: snprintf(enc,sizeof(enc),"FSK1"); break;
1050 case 9: snprintf(enc,sizeof(enc),"FSK2"); break;
1051 default: snprintf(enc,sizeof(enc),"Unknown"); break;
1052 }
1053
1054 switch (PSKcf) {
1055 case 0: snprintf(cf,sizeof(cf),"RF/2"); break;
1056 case 1: snprintf(cf,sizeof(cf),"RF/8"); break;
1057 case 2: snprintf(cf,sizeof(cf),"RF/4"); break;
1058 case 3: snprintf(cf,sizeof(cf),"unknown"); break;
1059 }
1060
1061 switch (delay) {
1062 case 0: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
1063 case 1: snprintf(cdelay, sizeof(cdelay),"BP/8 or 1/8th bit period delay"); break;
1064 case 2: snprintf(cdelay, sizeof(cdelay),"BP/4 or 1/4th bit period delay"); break;
1065 case 3: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
1066 }
1067 uint8_t readLogin = (wordData & EM4x05_READ_LOGIN_REQ)>>18;
1068 uint8_t readHKL = (wordData & EM4x05_READ_HK_LOGIN_REQ)>>19;
1069 uint8_t writeLogin = (wordData & EM4x05_WRITE_LOGIN_REQ)>>20;
1070 uint8_t writeHKL = (wordData & EM4x05_WRITE_HK_LOGIN_REQ)>>21;
1071 uint8_t raw = (wordData & EM4x05_READ_AFTER_WRITE)>>22;
1072 uint8_t disable = (wordData & EM4x05_DISABLE_ALLOWED)>>23;
1073 uint8_t rtf = (wordData & EM4x05_READER_TALK_FIRST)>>24;
1074 uint8_t pigeon = (wordData & (1<<26))>>26;
1075 PrintAndLog("ConfigWord: %08X (Word 4)\n", wordData);
1076 PrintAndLog("Config Breakdown:");
1077 PrintAndLog(" Data Rate: %02u | RF/%u", wordData & 0x3F, datarate);
1078 PrintAndLog(" Encoder: %u | %s", encoder, enc);
1079 PrintAndLog(" PSK CF: %u | %s", PSKcf, cf);
1080 PrintAndLog(" Delay: %u | %s", delay, cdelay);
1081 PrintAndLog(" LastWordR: %02u | Address of last word for default read - meaning %u blocks are output", LWR, numblks);
1082 PrintAndLog(" ReadLogin: %u | Read Login is %s", readLogin, readLogin ? "Required" : "Not Required");
1083 PrintAndLog(" ReadHKL: %u | Read Housekeeping Words Login is %s", readHKL, readHKL ? "Required" : "Not Required");
1084 PrintAndLog("WriteLogin: %u | Write Login is %s", writeLogin, writeLogin ? "Required" : "Not Required");
1085 PrintAndLog(" WriteHKL: %u | Write Housekeeping Words Login is %s", writeHKL, writeHKL ? "Required" : "Not Required");
1086 PrintAndLog(" R.A.W.: %u | Read After Write is %s", raw, raw ? "On" : "Off");
1087 PrintAndLog(" Disable: %u | Disable Command is %s", disable, disable ? "Accepted" : "Not Accepted");
1088 PrintAndLog(" R.T.F.: %u | Reader Talk First is %s", rtf, rtf ? "Enabled" : "Disabled");
1089 PrintAndLog(" Pigeon: %u | Pigeon Mode is %s\n", pigeon, pigeon ? "Enabled" : "Disabled");
1090 }
1091
1092 void printEM4x05info(uint8_t chipType, uint8_t cap, uint16_t custCode, uint32_t serial) {
1093 switch (chipType) {
1094 case 9: PrintAndLog("\n Chip Type: %u | EM4305", chipType); break;
1095 case 4: PrintAndLog(" Chip Type: %u | Unknown", chipType); break;
1096 case 2: PrintAndLog(" Chip Type: %u | EM4469", chipType); break;
1097 //add more here when known
1098 default: PrintAndLog(" Chip Type: %u Unknown", chipType); break;
1099 }
1100
1101 switch (cap) {
1102 case 3: PrintAndLog(" Cap Type: %u | 330pF",cap); break;
1103 case 2: PrintAndLog(" Cap Type: %u | %spF",cap, (chipType==2)? "75":"210"); break;
1104 case 1: PrintAndLog(" Cap Type: %u | 250pF",cap); break;
1105 case 0: PrintAndLog(" Cap Type: %u | no resonant capacitor",cap); break;
1106 default: PrintAndLog(" Cap Type: %u | unknown",cap); break;
1107 }
1108
1109 PrintAndLog(" Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default": "Unknown");
1110 if (serial != 0) {
1111 PrintAndLog("\n Serial #: %08X\n", serial);
1112 }
1113 }
1114
1115 void printEM4x05ProtectionBits(uint32_t wordData) {
1116 for (uint8_t i = 0; i < 15; i++) {
1117 PrintAndLog(" Word: %02u | %s", i, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
1118 if (i==14) {
1119 PrintAndLog(" Word: %02u | %s", i+1, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
1120 }
1121 }
1122 }
1123
1124 //quick test for EM4x05/EM4x69 tag
1125 bool EM4x05Block0Test(uint32_t *wordData) {
1126 if (EM4x05ReadWord_ext(0,0,false,wordData) == 1) {
1127 return true;
1128 }
1129 return false;
1130 }
1131
1132 int CmdEM4x05info(const char *Cmd) {
1133 //uint8_t addr = 0;
1134 uint32_t pwd;
1135 uint32_t wordData = 0;
1136 bool usePwd = false;
1137 uint8_t ctmp = param_getchar(Cmd, 0);
1138 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump();
1139
1140 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
1141 pwd = param_get32ex(Cmd, 0, 1, 16);
1142
1143 if ( pwd != 1 ) {
1144 usePwd = true;
1145 }
1146
1147 // read word 0 (chip info)
1148 // block 0 can be read even without a password.
1149 if ( !EM4x05Block0Test(&wordData) )
1150 return -1;
1151
1152 uint8_t chipType = (wordData >> 1) & 0xF;
1153 uint8_t cap = (wordData >> 5) & 3;
1154 uint16_t custCode = (wordData >> 9) & 0x3FF;
1155
1156 // read word 1 (serial #) doesn't need pwd
1157 wordData = 0;
1158 if (EM4x05ReadWord_ext(1, 0, false, &wordData) != 1) {
1159 //failed, but continue anyway...
1160 }
1161 printEM4x05info(chipType, cap, custCode, wordData);
1162
1163 // read word 4 (config block)
1164 // needs password if one is set
1165 wordData = 0;
1166 if ( EM4x05ReadWord_ext(4, pwd, usePwd, &wordData) != 1 ) {
1167 //failed
1168 PrintAndLog("Config block read failed - might be password protected.");
1169 return 0;
1170 }
1171 printEM4x05config(wordData);
1172
1173 // read word 14 and 15 to see which is being used for the protection bits
1174 wordData = 0;
1175 if ( EM4x05ReadWord_ext(14, pwd, usePwd, &wordData) != 1 ) {
1176 //failed
1177 return 0;
1178 }
1179 // if status bit says this is not the used protection word
1180 if (!(wordData & 0x8000)) {
1181 if ( EM4x05ReadWord_ext(15, pwd, usePwd, &wordData) != 1 ) {
1182 //failed
1183 return 0;
1184 }
1185 }
1186 if (!(wordData & 0x8000)) {
1187 //something went wrong
1188 return 0;
1189 }
1190 printEM4x05ProtectionBits(wordData);
1191
1192 return 1;
1193 }
1194
1195
1196 static command_t CommandTable[] =
1197 {
1198 {"help", CmdHelp, 1, "This help"},
1199 {"410xread", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},
1200 {"410xdemod", CmdAskEM410xDemod, 1, "[clock] [invert<0|1>] [maxErr] -- Demodulate an EM410x tag from GraphBuffer (args optional)"},
1201 {"410xsim", CmdEM410xSim, 0, "<UID> [clock rate] -- Simulate EM410x tag"},
1202 {"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
1203 {"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
1204 {"410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
1205 {"4x05dump", CmdEM4x05dump, 0, "(pwd) -- Read EM4x05/EM4x69 all word data"},
1206 {"4x05info", CmdEM4x05info, 0, "(pwd) -- Get info from EM4x05/EM4x69 tag"},
1207 {"4x05readword", CmdEM4x05ReadWord, 0, "<Word> (pwd) -- Read EM4x05/EM4x69 word data"},
1208 {"4x05writeword", CmdEM4x05WriteWord, 0, "<Word> <data> (pwd) -- Write EM4x05/EM4x69 word data"},
1209 {"4x50read", CmdEM4x50Read, 1, "demod data from EM4x50 tag from the graph buffer"},
1210 {NULL, NULL, 0, NULL}
1211 };
1212
1213 int CmdLFEM4X(const char *Cmd)
1214 {
1215 CmdsParse(CommandTable, Cmd);
1216 return 0;
1217 }
1218
1219 int CmdHelp(const char *Cmd)
1220 {
1221 CmdsHelp(CommandTable);
1222 return 0;
1223 }
Impressum, Datenschutz