]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
Added @marshmellow42 "hf search"
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "../common/usb_cdc.h"
14 #include "../common/cmd.h"
15 #include "../include/proxmark3.h"
16 #include "../include/hitag2.h"
17 #include "apps.h"
18 #include "util.h"
19 #include "printf.h"
20 #include "string.h"
21 #include <stdarg.h>
22 #include "legicrf.h"
23 #include "lfsampling.h"
24 #include "BigBuf.h"
25
26 #ifdef WITH_LCD
27 #include "LCD.h"
28 #endif
29
30 #define abs(x) ( ((x)<0) ? -(x) : (x) )
31
32 //=============================================================================
33 // A buffer where we can queue things up to be sent through the FPGA, for
34 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
35 // is the order in which they go out on the wire.
36 //=============================================================================
37
38 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
39 uint8_t ToSend[TOSEND_BUFFER_SIZE];
40 int ToSendMax;
41 static int ToSendBit;
42 struct common_area common_area __attribute__((section(".commonarea")));
43
44 void ToSendReset(void)
45 {
46 ToSendMax = -1;
47 ToSendBit = 8;
48 }
49
50 void ToSendStuffBit(int b)
51 {
52 if(ToSendBit >= 8) {
53 ToSendMax++;
54 ToSend[ToSendMax] = 0;
55 ToSendBit = 0;
56 }
57
58 if(b) {
59 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
60 }
61
62 ToSendBit++;
63
64 if(ToSendMax >= sizeof(ToSend)) {
65 ToSendBit = 0;
66 DbpString("ToSendStuffBit overflowed!");
67 }
68 }
69
70 //=============================================================================
71 // Debug print functions, to go out over USB, to the usual PC-side client.
72 //=============================================================================
73
74 void DbpString(char *str)
75 {
76 byte_t len = strlen(str);
77 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
78 }
79
80 #if 0
81 void DbpIntegers(int x1, int x2, int x3)
82 {
83 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
84 }
85 #endif
86
87 void Dbprintf(const char *fmt, ...) {
88 // should probably limit size here; oh well, let's just use a big buffer
89 char output_string[128];
90 va_list ap;
91
92 va_start(ap, fmt);
93 kvsprintf(fmt, output_string, 10, ap);
94 va_end(ap);
95
96 DbpString(output_string);
97 }
98
99 // prints HEX & ASCII
100 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
101 int l=0,i;
102 char ascii[9];
103
104 while (len>0) {
105 if (len>8) l=8;
106 else l=len;
107
108 memcpy(ascii,d,l);
109 ascii[l]=0;
110
111 // filter safe ascii
112 for (i=0;i<l;i++)
113 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
114
115 if (bAsci) {
116 Dbprintf("%-8s %*D",ascii,l,d," ");
117 } else {
118 Dbprintf("%*D",l,d," ");
119 }
120
121 len-=8;
122 d+=8;
123 }
124 }
125
126 //-----------------------------------------------------------------------------
127 // Read an ADC channel and block till it completes, then return the result
128 // in ADC units (0 to 1023). Also a routine to average 32 samples and
129 // return that.
130 //-----------------------------------------------------------------------------
131 static int ReadAdc(int ch)
132 {
133 uint32_t d;
134
135 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
136 AT91C_BASE_ADC->ADC_MR =
137 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
138 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
139 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
140
141 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
142 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
143 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
144 //
145 // The maths are:
146 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
147 //
148 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
149 //
150 // Note: with the "historic" values in the comments above, the error was 34% !!!
151
152 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
153
154 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
155
156 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
157 ;
158 d = AT91C_BASE_ADC->ADC_CDR[ch];
159
160 return d;
161 }
162
163 int AvgAdc(int ch) // was static - merlok
164 {
165 int i;
166 int a = 0;
167
168 for(i = 0; i < 32; i++) {
169 a += ReadAdc(ch);
170 }
171
172 return (a + 15) >> 5;
173 }
174
175 void MeasureAntennaTuning(void)
176 {
177 uint8_t LF_Results[256];
178 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
179 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
180
181 LED_B_ON();
182
183 /*
184 * Sweeps the useful LF range of the proxmark from
185 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
186 * read the voltage in the antenna, the result left
187 * in the buffer is a graph which should clearly show
188 * the resonating frequency of your LF antenna
189 * ( hopefully around 95 if it is tuned to 125kHz!)
190 */
191
192 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
193 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
194 for (i=255; i>=19; i--) {
195 WDT_HIT();
196 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
197 SpinDelay(20);
198 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
199 if (i==95) vLf125 = adcval; // voltage at 125Khz
200 if (i==89) vLf134 = adcval; // voltage at 134Khz
201
202 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
203 if(LF_Results[i] > peak) {
204 peakv = adcval;
205 peak = LF_Results[i];
206 peakf = i;
207 //ptr = i;
208 }
209 }
210
211 for (i=18; i >= 0; i--) LF_Results[i] = 0;
212
213 LED_A_ON();
214 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
215 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
216 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
217 SpinDelay(20);
218 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
219
220 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
221 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
222 LED_A_OFF();
223 LED_B_OFF();
224 return;
225 }
226
227 void MeasureAntennaTuningHf(void)
228 {
229 int vHf = 0; // in mV
230
231 DbpString("Measuring HF antenna, press button to exit");
232
233 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
234 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
235 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
236
237 for (;;) {
238 SpinDelay(20);
239 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
240
241 Dbprintf("%d mV",vHf);
242 if (BUTTON_PRESS()) break;
243 }
244 DbpString("cancelled");
245
246 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
247
248 }
249
250
251 void SimulateTagHfListen(void)
252 {
253 // ToDo: historically this used the free buffer, which was 2744 Bytes long.
254 // There might be a better size to be defined:
255 #define HF_14B_SNOOP_BUFFER_SIZE 2744
256 uint8_t *dest = BigBuf_malloc(HF_14B_SNOOP_BUFFER_SIZE);
257 uint8_t v = 0;
258 int i;
259 int p = 0;
260
261 // We're using this mode just so that I can test it out; the simulated
262 // tag mode would work just as well and be simpler.
263 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
264 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
265
266 // We need to listen to the high-frequency, peak-detected path.
267 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
268
269 FpgaSetupSsc();
270
271 i = 0;
272 for(;;) {
273 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
274 AT91C_BASE_SSC->SSC_THR = 0xff;
275 }
276 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
277 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
278
279 v <<= 1;
280 if(r & 1) {
281 v |= 1;
282 }
283 p++;
284
285 if(p >= 8) {
286 dest[i] = v;
287 v = 0;
288 p = 0;
289 i++;
290
291 if(i >= HF_14B_SNOOP_BUFFER_SIZE) {
292 break;
293 }
294 }
295 }
296 }
297 DbpString("simulate tag (now type bitsamples)");
298 }
299
300 void ReadMem(int addr)
301 {
302 const uint8_t *data = ((uint8_t *)addr);
303
304 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
305 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
306 }
307
308 /* osimage version information is linked in */
309 extern struct version_information version_information;
310 /* bootrom version information is pointed to from _bootphase1_version_pointer */
311 extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
312 void SendVersion(void)
313 {
314 char temp[512]; /* Limited data payload in USB packets */
315 DbpString("Prox/RFID mark3 RFID instrument");
316
317 /* Try to find the bootrom version information. Expect to find a pointer at
318 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
319 * pointer, then use it.
320 */
321 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
322 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
323 DbpString("bootrom version information appears invalid");
324 } else {
325 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
326 DbpString(temp);
327 }
328
329 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
330 DbpString(temp);
331
332 FpgaGatherVersion(temp, sizeof(temp));
333 DbpString(temp);
334 // Send Chip ID
335 cmd_send(CMD_ACK,*(AT91C_DBGU_CIDR),0,0,NULL,0);
336 }
337
338 #ifdef WITH_LF
339 // samy's sniff and repeat routine
340 void SamyRun()
341 {
342 DbpString("Stand-alone mode! No PC necessary.");
343 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
344
345 // 3 possible options? no just 2 for now
346 #define OPTS 2
347
348 int high[OPTS], low[OPTS];
349
350 // Oooh pretty -- notify user we're in elite samy mode now
351 LED(LED_RED, 200);
352 LED(LED_ORANGE, 200);
353 LED(LED_GREEN, 200);
354 LED(LED_ORANGE, 200);
355 LED(LED_RED, 200);
356 LED(LED_ORANGE, 200);
357 LED(LED_GREEN, 200);
358 LED(LED_ORANGE, 200);
359 LED(LED_RED, 200);
360
361 int selected = 0;
362 int playing = 0;
363 int cardRead = 0;
364
365 // Turn on selected LED
366 LED(selected + 1, 0);
367
368 for (;;)
369 {
370 usb_poll();
371 WDT_HIT();
372
373 // Was our button held down or pressed?
374 int button_pressed = BUTTON_HELD(1000);
375 SpinDelay(300);
376
377 // Button was held for a second, begin recording
378 if (button_pressed > 0 && cardRead == 0)
379 {
380 LEDsoff();
381 LED(selected + 1, 0);
382 LED(LED_RED2, 0);
383
384 // record
385 DbpString("Starting recording");
386
387 // wait for button to be released
388 while(BUTTON_PRESS())
389 WDT_HIT();
390
391 /* need this delay to prevent catching some weird data */
392 SpinDelay(500);
393
394 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
395 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
396
397 LEDsoff();
398 LED(selected + 1, 0);
399 // Finished recording
400
401 // If we were previously playing, set playing off
402 // so next button push begins playing what we recorded
403 playing = 0;
404
405 cardRead = 1;
406
407 }
408
409 else if (button_pressed > 0 && cardRead == 1)
410 {
411 LEDsoff();
412 LED(selected + 1, 0);
413 LED(LED_ORANGE, 0);
414
415 // record
416 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
417
418 // wait for button to be released
419 while(BUTTON_PRESS())
420 WDT_HIT();
421
422 /* need this delay to prevent catching some weird data */
423 SpinDelay(500);
424
425 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
426 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
427
428 LEDsoff();
429 LED(selected + 1, 0);
430 // Finished recording
431
432 // If we were previously playing, set playing off
433 // so next button push begins playing what we recorded
434 playing = 0;
435
436 cardRead = 0;
437
438 }
439
440 // Change where to record (or begin playing)
441 else if (button_pressed)
442 {
443 // Next option if we were previously playing
444 if (playing)
445 selected = (selected + 1) % OPTS;
446 playing = !playing;
447
448 LEDsoff();
449 LED(selected + 1, 0);
450
451 // Begin transmitting
452 if (playing)
453 {
454 LED(LED_GREEN, 0);
455 DbpString("Playing");
456 // wait for button to be released
457 while(BUTTON_PRESS())
458 WDT_HIT();
459 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
460 CmdHIDsimTAG(high[selected], low[selected], 0);
461 DbpString("Done playing");
462 if (BUTTON_HELD(1000) > 0)
463 {
464 DbpString("Exiting");
465 LEDsoff();
466 return;
467 }
468
469 /* We pressed a button so ignore it here with a delay */
470 SpinDelay(300);
471
472 // when done, we're done playing, move to next option
473 selected = (selected + 1) % OPTS;
474 playing = !playing;
475 LEDsoff();
476 LED(selected + 1, 0);
477 }
478 else
479 while(BUTTON_PRESS())
480 WDT_HIT();
481 }
482 }
483 }
484 #endif
485
486 /*
487 OBJECTIVE
488 Listen and detect an external reader. Determine the best location
489 for the antenna.
490
491 INSTRUCTIONS:
492 Inside the ListenReaderField() function, there is two mode.
493 By default, when you call the function, you will enter mode 1.
494 If you press the PM3 button one time, you will enter mode 2.
495 If you press the PM3 button a second time, you will exit the function.
496
497 DESCRIPTION OF MODE 1:
498 This mode just listens for an external reader field and lights up green
499 for HF and/or red for LF. This is the original mode of the detectreader
500 function.
501
502 DESCRIPTION OF MODE 2:
503 This mode will visually represent, using the LEDs, the actual strength of the
504 current compared to the maximum current detected. Basically, once you know
505 what kind of external reader is present, it will help you spot the best location to place
506 your antenna. You will probably not get some good results if there is a LF and a HF reader
507 at the same place! :-)
508
509 LIGHT SCHEME USED:
510 */
511 static const char LIGHT_SCHEME[] = {
512 0x0, /* ---- | No field detected */
513 0x1, /* X--- | 14% of maximum current detected */
514 0x2, /* -X-- | 29% of maximum current detected */
515 0x4, /* --X- | 43% of maximum current detected */
516 0x8, /* ---X | 57% of maximum current detected */
517 0xC, /* --XX | 71% of maximum current detected */
518 0xE, /* -XXX | 86% of maximum current detected */
519 0xF, /* XXXX | 100% of maximum current detected */
520 };
521 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
522
523 void ListenReaderField(int limit)
524 {
525 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
526 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
527 int mode=1, display_val, display_max, i;
528
529 #define LF_ONLY 1
530 #define HF_ONLY 2
531 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
532
533
534 // switch off FPGA - we don't want to measure our own signal
535 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
536 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
537
538 LEDsoff();
539
540 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
541
542 if(limit != HF_ONLY) {
543 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
544 lf_baseline = lf_av;
545 }
546
547 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
548
549 if (limit != LF_ONLY) {
550 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
551 hf_baseline = hf_av;
552 }
553
554 for(;;) {
555 if (BUTTON_PRESS()) {
556 SpinDelay(500);
557 switch (mode) {
558 case 1:
559 mode=2;
560 DbpString("Signal Strength Mode");
561 break;
562 case 2:
563 default:
564 DbpString("Stopped");
565 LEDsoff();
566 return;
567 break;
568 }
569 }
570 WDT_HIT();
571
572 if (limit != HF_ONLY) {
573 if(mode == 1) {
574 if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
575 LED_D_ON();
576 else
577 LED_D_OFF();
578 }
579
580 lf_av_new = AvgAdc(ADC_CHAN_LF);
581 // see if there's a significant change
582 if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
583 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
584 lf_av = lf_av_new;
585 if (lf_av > lf_max)
586 lf_max = lf_av;
587 }
588 }
589
590 if (limit != LF_ONLY) {
591 if (mode == 1){
592 if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
593 LED_B_ON();
594 else
595 LED_B_OFF();
596 }
597
598 hf_av_new = AvgAdc(ADC_CHAN_HF);
599 // see if there's a significant change
600 if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
601 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
602 hf_av = hf_av_new;
603 if (hf_av > hf_max)
604 hf_max = hf_av;
605 }
606 }
607
608 if(mode == 2) {
609 if (limit == LF_ONLY) {
610 display_val = lf_av;
611 display_max = lf_max;
612 } else if (limit == HF_ONLY) {
613 display_val = hf_av;
614 display_max = hf_max;
615 } else { /* Pick one at random */
616 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
617 display_val = hf_av;
618 display_max = hf_max;
619 } else {
620 display_val = lf_av;
621 display_max = lf_max;
622 }
623 }
624 for (i=0; i<LIGHT_LEN; i++) {
625 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
626 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
627 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
628 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
629 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
630 break;
631 }
632 }
633 }
634 }
635 }
636
637 void UsbPacketReceived(uint8_t *packet, int len)
638 {
639 UsbCommand *c = (UsbCommand *)packet;
640
641 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
642
643 switch(c->cmd) {
644 #ifdef WITH_LF
645 case CMD_SET_LF_SAMPLING_CONFIG:
646 setSamplingConfig((sample_config *) c->d.asBytes);
647 break;
648 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
649 cmd_send(CMD_ACK,SampleLF(c->arg[0]),0,0,0,0);
650 break;
651 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
652 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
653 break;
654 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
655 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
656 break;
657 case CMD_HID_DEMOD_FSK:
658 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
659 break;
660 case CMD_HID_SIM_TAG:
661 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
662 break;
663 case CMD_FSK_SIM_TAG:
664 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
665 break;
666 case CMD_ASK_SIM_TAG:
667 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
668 break;
669 case CMD_PSK_SIM_TAG:
670 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
671 break;
672 case CMD_HID_CLONE_TAG:
673 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
674 break;
675 case CMD_IO_DEMOD_FSK:
676 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
677 break;
678 case CMD_IO_CLONE_TAG:
679 CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
680 break;
681 case CMD_EM410X_DEMOD:
682 CmdEM410xdemod(c->arg[0], 0, 0, 1);
683 break;
684 case CMD_EM410X_WRITE_TAG:
685 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
686 break;
687 case CMD_READ_TI_TYPE:
688 ReadTItag();
689 break;
690 case CMD_WRITE_TI_TYPE:
691 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
692 break;
693 case CMD_SIMULATE_TAG_125K:
694 LED_A_ON();
695 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
696 LED_A_OFF();
697 break;
698 case CMD_LF_SIMULATE_BIDIR:
699 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
700 break;
701 case CMD_INDALA_CLONE_TAG:
702 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
703 break;
704 case CMD_INDALA_CLONE_TAG_L:
705 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
706 break;
707 case CMD_T55XX_READ_BLOCK:
708 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
709 break;
710 case CMD_T55XX_WRITE_BLOCK:
711 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
712 break;
713 case CMD_T55XX_READ_TRACE:
714 T55xxReadTrace();
715 break;
716 case CMD_PCF7931_READ:
717 ReadPCF7931();
718 cmd_send(CMD_ACK,0,0,0,0,0);
719 break;
720 case CMD_EM4X_READ_WORD:
721 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
722 break;
723 case CMD_EM4X_WRITE_WORD:
724 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
725 break;
726 #endif
727
728 #ifdef WITH_HITAG
729 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
730 SnoopHitag(c->arg[0]);
731 break;
732 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
733 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
734 break;
735 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
736 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
737 break;
738 #endif
739
740 #ifdef WITH_ISO15693
741 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
742 AcquireRawAdcSamplesIso15693();
743 break;
744 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
745 RecordRawAdcSamplesIso15693();
746 break;
747
748 case CMD_ISO_15693_COMMAND:
749 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
750 break;
751
752 case CMD_ISO_15693_FIND_AFI:
753 BruteforceIso15693Afi(c->arg[0]);
754 break;
755
756 case CMD_ISO_15693_DEBUG:
757 SetDebugIso15693(c->arg[0]);
758 break;
759
760 case CMD_READER_ISO_15693:
761 ReaderIso15693(c->arg[0]);
762 break;
763 case CMD_SIMTAG_ISO_15693:
764 SimTagIso15693(c->arg[0], c->d.asBytes);
765 break;
766 #endif
767
768 #ifdef WITH_LEGICRF
769 case CMD_SIMULATE_TAG_LEGIC_RF:
770 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
771 break;
772
773 case CMD_WRITER_LEGIC_RF:
774 LegicRfWriter(c->arg[1], c->arg[0]);
775 break;
776
777 case CMD_READER_LEGIC_RF:
778 LegicRfReader(c->arg[0], c->arg[1]);
779 break;
780 #endif
781
782 #ifdef WITH_ISO14443b
783 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
784 AcquireRawAdcSamplesIso14443(c->arg[0]);
785 break;
786 case CMD_READ_SRI512_TAG:
787 ReadSTMemoryIso14443(0x0F);
788 break;
789 case CMD_READ_SRIX4K_TAG:
790 ReadSTMemoryIso14443(0x7F);
791 break;
792 case CMD_SNOOP_ISO_14443:
793 SnoopIso14443();
794 break;
795 case CMD_SIMULATE_TAG_ISO_14443:
796 SimulateIso14443Tag();
797 break;
798 case CMD_ISO_14443B_COMMAND:
799 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
800 break;
801 #endif
802
803 #ifdef WITH_ISO14443a
804 case CMD_SNOOP_ISO_14443a:
805 SnoopIso14443a(c->arg[0]);
806 break;
807 case CMD_READER_ISO_14443a:
808 ReaderIso14443a(c);
809 break;
810 case CMD_SIMULATE_TAG_ISO_14443a:
811 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
812 break;
813
814 case CMD_EPA_PACE_COLLECT_NONCE:
815 EPA_PACE_Collect_Nonce(c);
816 break;
817
818 // case CMD_EPA_:
819 // EpaFoo(c);
820 // break;
821
822 case CMD_READER_MIFARE:
823 ReaderMifare(c->arg[0]);
824 break;
825 case CMD_MIFARE_READBL:
826 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
827 break;
828 case CMD_MIFAREU_READBL:
829 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
830 break;
831 case CMD_MIFAREUC_AUTH1:
832 MifareUC_Auth1(c->arg[0],c->d.asBytes);
833 break;
834 case CMD_MIFAREUC_AUTH2:
835 MifareUC_Auth2(c->arg[0],c->d.asBytes);
836 break;
837 case CMD_MIFAREU_READCARD:
838 case CMD_MIFAREUC_READCARD:
839 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
840 break;
841 case CMD_MIFAREUC_SETPWD:
842 MifareUSetPwd(c->arg[0], c->d.asBytes);
843 break;
844 case CMD_MIFARE_READSC:
845 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
846 break;
847 case CMD_MIFARE_WRITEBL:
848 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
849 break;
850 case CMD_MIFAREU_WRITEBL_COMPAT:
851 MifareUWriteBlock(c->arg[0], c->d.asBytes);
852 break;
853 case CMD_MIFAREU_WRITEBL:
854 MifareUWriteBlock_Special(c->arg[0], c->d.asBytes);
855 break;
856 case CMD_MIFARE_NESTED:
857 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
858 break;
859 case CMD_MIFARE_CHKKEYS:
860 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
861 break;
862 case CMD_SIMULATE_MIFARE_CARD:
863 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
864 break;
865
866 // emulator
867 case CMD_MIFARE_SET_DBGMODE:
868 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
869 break;
870 case CMD_MIFARE_EML_MEMCLR:
871 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
872 break;
873 case CMD_MIFARE_EML_MEMSET:
874 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
875 break;
876 case CMD_MIFARE_EML_MEMGET:
877 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
878 break;
879 case CMD_MIFARE_EML_CARDLOAD:
880 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
881 break;
882
883 // Work with "magic Chinese" card
884 case CMD_MIFARE_CSETBLOCK:
885 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
886 break;
887 case CMD_MIFARE_CGETBLOCK:
888 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
889 break;
890 case CMD_MIFARE_CIDENT:
891 MifareCIdent();
892 break;
893
894 // mifare sniffer
895 case CMD_MIFARE_SNIFFER:
896 SniffMifare(c->arg[0]);
897 break;
898
899 //mifare desfire
900 case CMD_MIFARE_DESFIRE_READBL: break;
901 case CMD_MIFARE_DESFIRE_WRITEBL: break;
902 case CMD_MIFARE_DESFIRE_AUTH1:
903 MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
904 break;
905 case CMD_MIFARE_DESFIRE_AUTH2:
906 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
907 break;
908 case CMD_MIFARE_DES_READER:
909 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
910 break;
911 case CMD_MIFARE_DESFIRE_INFO:
912 MifareDesfireGetInformation();
913 break;
914 case CMD_MIFARE_DESFIRE:
915 MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
916 break;
917
918 case CMD_MIFARE_COLLECT_NONCES:
919 MifareCollectNonces(c->arg[0], c->arg[1]);
920 break;
921 #endif
922
923 #ifdef WITH_ICLASS
924 // Makes use of ISO14443a FPGA Firmware
925 case CMD_SNOOP_ICLASS:
926 SnoopIClass();
927 break;
928 case CMD_SIMULATE_TAG_ICLASS:
929 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
930 break;
931 case CMD_READER_ICLASS:
932 ReaderIClass(c->arg[0]);
933 break;
934 case CMD_READER_ICLASS_REPLAY:
935 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
936 break;
937 case CMD_ICLASS_EML_MEMSET:
938 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
939 break;
940 #endif
941
942 case CMD_SIMULATE_TAG_HF_LISTEN:
943 SimulateTagHfListen();
944 break;
945
946 case CMD_BUFF_CLEAR:
947 BigBuf_Clear();
948 break;
949
950 case CMD_MEASURE_ANTENNA_TUNING:
951 MeasureAntennaTuning();
952 break;
953
954 case CMD_MEASURE_ANTENNA_TUNING_HF:
955 MeasureAntennaTuningHf();
956 break;
957
958 case CMD_LISTEN_READER_FIELD:
959 ListenReaderField(c->arg[0]);
960 break;
961
962 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
963 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
964 SpinDelay(200);
965 LED_D_OFF(); // LED D indicates field ON or OFF
966 break;
967
968 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
969
970 LED_B_ON();
971 uint8_t *BigBuf = BigBuf_get_addr();
972 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
973 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
974 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
975 }
976 // Trigger a finish downloading signal with an ACK frame
977 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
978 LED_B_OFF();
979 break;
980
981 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
982 uint8_t *b = BigBuf_get_addr();
983 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
984 cmd_send(CMD_ACK,0,0,0,0,0);
985 break;
986 }
987 case CMD_READ_MEM:
988 ReadMem(c->arg[0]);
989 break;
990
991 case CMD_SET_LF_DIVISOR:
992 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
993 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
994 break;
995
996 case CMD_SET_ADC_MUX:
997 switch(c->arg[0]) {
998 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
999 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1000 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1001 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1002 }
1003 break;
1004
1005 case CMD_VERSION:
1006 SendVersion();
1007 break;
1008
1009 #ifdef WITH_LCD
1010 case CMD_LCD_RESET:
1011 LCDReset();
1012 break;
1013 case CMD_LCD:
1014 LCDSend(c->arg[0]);
1015 break;
1016 #endif
1017 case CMD_SETUP_WRITE:
1018 case CMD_FINISH_WRITE:
1019 case CMD_HARDWARE_RESET:
1020 usb_disable();
1021 SpinDelay(1000);
1022 SpinDelay(1000);
1023 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1024 for(;;) {
1025 // We're going to reset, and the bootrom will take control.
1026 }
1027 break;
1028
1029 case CMD_START_FLASH:
1030 if(common_area.flags.bootrom_present) {
1031 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1032 }
1033 usb_disable();
1034 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1035 for(;;);
1036 break;
1037
1038 case CMD_DEVICE_INFO: {
1039 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1040 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1041 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1042 break;
1043 }
1044 default:
1045 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1046 break;
1047 }
1048 }
1049
1050 void __attribute__((noreturn)) AppMain(void)
1051 {
1052 SpinDelay(100);
1053 clear_trace();
1054 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1055 /* Initialize common area */
1056 memset(&common_area, 0, sizeof(common_area));
1057 common_area.magic = COMMON_AREA_MAGIC;
1058 common_area.version = 1;
1059 }
1060 common_area.flags.osimage_present = 1;
1061
1062 LED_D_OFF();
1063 LED_C_OFF();
1064 LED_B_OFF();
1065 LED_A_OFF();
1066
1067 // Init USB device
1068 usb_enable();
1069
1070 // The FPGA gets its clock from us from PCK0 output, so set that up.
1071 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1072 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1073 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1074 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1075 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1076 AT91C_PMC_PRES_CLK_4;
1077 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1078
1079 // Reset SPI
1080 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1081 // Reset SSC
1082 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1083
1084 // Load the FPGA image, which we have stored in our flash.
1085 // (the HF version by default)
1086 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1087
1088 StartTickCount();
1089
1090 #ifdef WITH_LCD
1091 LCDInit();
1092 #endif
1093
1094 byte_t rx[sizeof(UsbCommand)];
1095 size_t rx_len;
1096
1097 for(;;) {
1098 if (usb_poll()) {
1099 rx_len = usb_read(rx,sizeof(UsbCommand));
1100 if (rx_len) {
1101 UsbPacketReceived(rx,rx_len);
1102 }
1103 }
1104 WDT_HIT();
1105
1106 #ifdef WITH_LF
1107 if (BUTTON_HELD(1000) > 0)
1108 SamyRun();
1109 #endif
1110 }
1111 }
Impressum, Datenschutz