1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
26 #include "lfsampling.h"
32 #define abs(x) ( ((x)<0) ? -(x) : (x) )
34 //=============================================================================
35 // A buffer where we can queue things up to be sent through the FPGA, for
36 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
37 // is the order in which they go out on the wire.
38 //=============================================================================
40 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
41 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
44 struct common_area common_area
__attribute__((section(".commonarea")));
46 void ToSendReset(void)
52 void ToSendStuffBit(int b
)
56 ToSend
[ToSendMax
] = 0;
61 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
66 if(ToSendMax
>= sizeof(ToSend
)) {
68 DbpString("ToSendStuffBit overflowed!");
72 //=============================================================================
73 // Debug print functions, to go out over USB, to the usual PC-side client.
74 //=============================================================================
76 void DbpString(char *str
)
78 byte_t len
= strlen(str
);
79 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
83 void DbpIntegers(int x1
, int x2
, int x3
)
85 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
89 void Dbprintf(const char *fmt
, ...) {
90 // should probably limit size here; oh well, let's just use a big buffer
91 char output_string
[128];
95 kvsprintf(fmt
, output_string
, 10, ap
);
98 DbpString(output_string
);
101 // prints HEX & ASCII
102 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
115 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
118 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
120 Dbprintf("%*D",l
,d
," ");
128 //-----------------------------------------------------------------------------
129 // Read an ADC channel and block till it completes, then return the result
130 // in ADC units (0 to 1023). Also a routine to average 32 samples and
132 //-----------------------------------------------------------------------------
133 static int ReadAdc(int ch
)
137 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
138 AT91C_BASE_ADC
->ADC_MR
=
139 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
140 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
141 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
143 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
144 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
145 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
148 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
150 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
152 // Note: with the "historic" values in the comments above, the error was 34% !!!
154 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
156 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
158 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
160 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
165 int AvgAdc(int ch
) // was static - merlok
170 for(i
= 0; i
< 32; i
++) {
174 return (a
+ 15) >> 5;
177 void MeasureAntennaTuning(void)
179 uint8_t LF_Results
[256];
180 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
181 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
186 * Sweeps the useful LF range of the proxmark from
187 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
188 * read the voltage in the antenna, the result left
189 * in the buffer is a graph which should clearly show
190 * the resonating frequency of your LF antenna
191 * ( hopefully around 95 if it is tuned to 125kHz!)
194 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
195 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
196 for (i
=255; i
>=19; i
--) {
198 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
200 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
201 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
202 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
204 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
205 if(LF_Results
[i
] > peak
) {
207 peak
= LF_Results
[i
];
213 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
216 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
217 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
218 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
220 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
222 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<<16), vHf
, peakf
| (peakv
<<16), LF_Results
, 256);
223 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
229 void MeasureAntennaTuningHf(void)
231 int vHf
= 0; // in mV
233 DbpString("Measuring HF antenna, press button to exit");
235 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
236 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
237 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
241 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
243 Dbprintf("%d mV",vHf
);
244 if (BUTTON_PRESS()) break;
246 DbpString("cancelled");
248 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
253 void SimulateTagHfListen(void)
255 // ToDo: historically this used the free buffer, which was 2744 Bytes long.
256 // There might be a better size to be defined:
257 #define HF_14B_SNOOP_BUFFER_SIZE 2744
258 uint8_t *dest
= BigBuf_malloc(HF_14B_SNOOP_BUFFER_SIZE
);
263 // We're using this mode just so that I can test it out; the simulated
264 // tag mode would work just as well and be simpler.
265 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
266 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
268 // We need to listen to the high-frequency, peak-detected path.
269 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
275 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
276 AT91C_BASE_SSC
->SSC_THR
= 0xff;
278 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
279 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
293 if(i
>= HF_14B_SNOOP_BUFFER_SIZE
) {
299 DbpString("simulate tag (now type bitsamples)");
302 void ReadMem(int addr
)
304 const uint8_t *data
= ((uint8_t *)addr
);
306 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
307 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
310 /* osimage version information is linked in */
311 extern struct version_information version_information
;
312 /* bootrom version information is pointed to from _bootphase1_version_pointer */
313 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
314 void SendVersion(void)
316 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
317 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
319 /* Try to find the bootrom version information. Expect to find a pointer at
320 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
321 * pointer, then use it.
323 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
324 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
325 strcat(VersionString
, "bootrom version information appears invalid\n");
327 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
328 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
331 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
332 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
334 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
335 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
336 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
337 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
339 // Send Chip ID and used flash memory
340 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
341 uint32_t compressed_data_section_size
= common_area
.arg1
;
342 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
346 // samy's sniff and repeat routine
349 DbpString("Stand-alone mode! No PC necessary.");
350 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
352 // 3 possible options? no just 2 for now
355 int high
[OPTS
], low
[OPTS
];
357 // Oooh pretty -- notify user we're in elite samy mode now
359 LED(LED_ORANGE
, 200);
361 LED(LED_ORANGE
, 200);
363 LED(LED_ORANGE
, 200);
365 LED(LED_ORANGE
, 200);
372 // Turn on selected LED
373 LED(selected
+ 1, 0);
380 // Was our button held down or pressed?
381 int button_pressed
= BUTTON_HELD(1000);
384 // Button was held for a second, begin recording
385 if (button_pressed
> 0 && cardRead
== 0)
388 LED(selected
+ 1, 0);
392 DbpString("Starting recording");
394 // wait for button to be released
395 while(BUTTON_PRESS())
398 /* need this delay to prevent catching some weird data */
401 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
402 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
405 LED(selected
+ 1, 0);
406 // Finished recording
408 // If we were previously playing, set playing off
409 // so next button push begins playing what we recorded
416 else if (button_pressed
> 0 && cardRead
== 1)
419 LED(selected
+ 1, 0);
423 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
425 // wait for button to be released
426 while(BUTTON_PRESS())
429 /* need this delay to prevent catching some weird data */
432 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
433 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
436 LED(selected
+ 1, 0);
437 // Finished recording
439 // If we were previously playing, set playing off
440 // so next button push begins playing what we recorded
447 // Change where to record (or begin playing)
448 else if (button_pressed
)
450 // Next option if we were previously playing
452 selected
= (selected
+ 1) % OPTS
;
456 LED(selected
+ 1, 0);
458 // Begin transmitting
462 DbpString("Playing");
463 // wait for button to be released
464 while(BUTTON_PRESS())
466 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
467 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
468 DbpString("Done playing");
469 if (BUTTON_HELD(1000) > 0)
471 DbpString("Exiting");
476 /* We pressed a button so ignore it here with a delay */
479 // when done, we're done playing, move to next option
480 selected
= (selected
+ 1) % OPTS
;
483 LED(selected
+ 1, 0);
486 while(BUTTON_PRESS())
495 Listen and detect an external reader. Determine the best location
499 Inside the ListenReaderField() function, there is two mode.
500 By default, when you call the function, you will enter mode 1.
501 If you press the PM3 button one time, you will enter mode 2.
502 If you press the PM3 button a second time, you will exit the function.
504 DESCRIPTION OF MODE 1:
505 This mode just listens for an external reader field and lights up green
506 for HF and/or red for LF. This is the original mode of the detectreader
509 DESCRIPTION OF MODE 2:
510 This mode will visually represent, using the LEDs, the actual strength of the
511 current compared to the maximum current detected. Basically, once you know
512 what kind of external reader is present, it will help you spot the best location to place
513 your antenna. You will probably not get some good results if there is a LF and a HF reader
514 at the same place! :-)
518 static const char LIGHT_SCHEME
[] = {
519 0x0, /* ---- | No field detected */
520 0x1, /* X--- | 14% of maximum current detected */
521 0x2, /* -X-- | 29% of maximum current detected */
522 0x4, /* --X- | 43% of maximum current detected */
523 0x8, /* ---X | 57% of maximum current detected */
524 0xC, /* --XX | 71% of maximum current detected */
525 0xE, /* -XXX | 86% of maximum current detected */
526 0xF, /* XXXX | 100% of maximum current detected */
528 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
530 void ListenReaderField(int limit
)
532 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
533 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
534 int mode
=1, display_val
, display_max
, i
;
538 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
541 // switch off FPGA - we don't want to measure our own signal
542 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
543 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
547 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
549 if(limit
!= HF_ONLY
) {
550 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
554 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
556 if (limit
!= LF_ONLY
) {
557 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
562 if (BUTTON_PRESS()) {
567 DbpString("Signal Strength Mode");
571 DbpString("Stopped");
579 if (limit
!= HF_ONLY
) {
581 if (abs(lf_av
- lf_baseline
) > REPORT_CHANGE
)
587 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
588 // see if there's a significant change
589 if(abs(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
590 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
597 if (limit
!= LF_ONLY
) {
599 if (abs(hf_av
- hf_baseline
) > REPORT_CHANGE
)
605 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
606 // see if there's a significant change
607 if(abs(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
608 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
616 if (limit
== LF_ONLY
) {
618 display_max
= lf_max
;
619 } else if (limit
== HF_ONLY
) {
621 display_max
= hf_max
;
622 } else { /* Pick one at random */
623 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
625 display_max
= hf_max
;
628 display_max
= lf_max
;
631 for (i
=0; i
<LIGHT_LEN
; i
++) {
632 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
633 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
634 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
635 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
636 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
644 void UsbPacketReceived(uint8_t *packet
, int len
)
646 UsbCommand
*c
= (UsbCommand
*)packet
;
648 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
652 case CMD_SET_LF_SAMPLING_CONFIG
:
653 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
655 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
656 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0]),0,0,0,0);
658 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
659 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
661 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
662 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
664 case CMD_HID_DEMOD_FSK
:
665 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
667 case CMD_HID_SIM_TAG
:
668 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
670 case CMD_FSK_SIM_TAG
:
671 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
673 case CMD_ASK_SIM_TAG
:
674 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
676 case CMD_PSK_SIM_TAG
:
677 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
679 case CMD_HID_CLONE_TAG
:
680 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
682 case CMD_IO_DEMOD_FSK
:
683 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
685 case CMD_IO_CLONE_TAG
:
686 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
688 case CMD_EM410X_DEMOD
:
689 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
691 case CMD_EM410X_WRITE_TAG
:
692 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
694 case CMD_READ_TI_TYPE
:
697 case CMD_WRITE_TI_TYPE
:
698 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
700 case CMD_SIMULATE_TAG_125K
:
702 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
705 case CMD_LF_SIMULATE_BIDIR
:
706 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
708 case CMD_INDALA_CLONE_TAG
:
709 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
711 case CMD_INDALA_CLONE_TAG_L
:
712 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
714 case CMD_T55XX_READ_BLOCK
:
715 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
717 case CMD_T55XX_WRITE_BLOCK
:
718 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
720 case CMD_T55XX_READ_TRACE
:
723 case CMD_PCF7931_READ
:
725 cmd_send(CMD_ACK
,0,0,0,0,0);
727 case CMD_EM4X_READ_WORD
:
728 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
730 case CMD_EM4X_WRITE_WORD
:
731 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
736 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
737 SnoopHitag(c
->arg
[0]);
739 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
740 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
742 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
743 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
748 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
749 AcquireRawAdcSamplesIso15693();
751 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
752 RecordRawAdcSamplesIso15693();
755 case CMD_ISO_15693_COMMAND
:
756 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
759 case CMD_ISO_15693_FIND_AFI
:
760 BruteforceIso15693Afi(c
->arg
[0]);
763 case CMD_ISO_15693_DEBUG
:
764 SetDebugIso15693(c
->arg
[0]);
767 case CMD_READER_ISO_15693
:
768 ReaderIso15693(c
->arg
[0]);
770 case CMD_SIMTAG_ISO_15693
:
771 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
776 case CMD_SIMULATE_TAG_LEGIC_RF
:
777 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
780 case CMD_WRITER_LEGIC_RF
:
781 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
784 case CMD_READER_LEGIC_RF
:
785 LegicRfReader(c
->arg
[0], c
->arg
[1]);
789 #ifdef WITH_ISO14443b
790 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
791 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
793 case CMD_READ_SRI512_TAG
:
794 ReadSTMemoryIso14443(0x0F);
796 case CMD_READ_SRIX4K_TAG
:
797 ReadSTMemoryIso14443(0x7F);
799 case CMD_SNOOP_ISO_14443
:
802 case CMD_SIMULATE_TAG_ISO_14443
:
803 SimulateIso14443Tag();
805 case CMD_ISO_14443B_COMMAND
:
806 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
810 #ifdef WITH_ISO14443a
811 case CMD_SNOOP_ISO_14443a
:
812 SnoopIso14443a(c
->arg
[0]);
814 case CMD_READER_ISO_14443a
:
817 case CMD_SIMULATE_TAG_ISO_14443a
:
818 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
821 case CMD_EPA_PACE_COLLECT_NONCE
:
822 EPA_PACE_Collect_Nonce(c
);
825 case CMD_READER_MIFARE
:
826 ReaderMifare(c
->arg
[0]);
828 case CMD_MIFARE_READBL
:
829 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
831 case CMD_MIFAREU_READBL
:
832 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
834 case CMD_MIFAREUC_AUTH
:
835 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
837 case CMD_MIFAREU_READCARD
:
838 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
840 case CMD_MIFAREUC_SETPWD
:
841 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
843 case CMD_MIFARE_READSC
:
844 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
846 case CMD_MIFARE_WRITEBL
:
847 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
849 case CMD_MIFAREU_WRITEBL_COMPAT
:
850 MifareUWriteBlock(c
->arg
[0], c
->d
.asBytes
);
852 case CMD_MIFAREU_WRITEBL
:
853 MifareUWriteBlock_Special(c
->arg
[0], c
->d
.asBytes
);
855 case CMD_MIFARE_NESTED
:
856 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
858 case CMD_MIFARE_CHKKEYS
:
859 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
861 case CMD_SIMULATE_MIFARE_CARD
:
862 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
866 case CMD_MIFARE_SET_DBGMODE
:
867 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
869 case CMD_MIFARE_EML_MEMCLR
:
870 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
872 case CMD_MIFARE_EML_MEMSET
:
873 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
875 case CMD_MIFARE_EML_MEMGET
:
876 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
878 case CMD_MIFARE_EML_CARDLOAD
:
879 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
882 // Work with "magic Chinese" card
883 case CMD_MIFARE_CSETBLOCK
:
884 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
886 case CMD_MIFARE_CGETBLOCK
:
887 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
889 case CMD_MIFARE_CIDENT
:
894 case CMD_MIFARE_SNIFFER
:
895 SniffMifare(c
->arg
[0]);
901 // Makes use of ISO14443a FPGA Firmware
902 case CMD_SNOOP_ICLASS
:
905 case CMD_SIMULATE_TAG_ICLASS
:
906 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
908 case CMD_READER_ICLASS
:
909 ReaderIClass(c
->arg
[0]);
911 case CMD_READER_ICLASS_REPLAY
:
912 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
914 case CMD_ICLASS_EML_MEMSET
:
915 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
919 case CMD_SIMULATE_TAG_HF_LISTEN
:
920 SimulateTagHfListen();
927 case CMD_MEASURE_ANTENNA_TUNING
:
928 MeasureAntennaTuning();
931 case CMD_MEASURE_ANTENNA_TUNING_HF
:
932 MeasureAntennaTuningHf();
935 case CMD_LISTEN_READER_FIELD
:
936 ListenReaderField(c
->arg
[0]);
939 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
940 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
942 LED_D_OFF(); // LED D indicates field ON or OFF
945 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
948 uint8_t *BigBuf
= BigBuf_get_addr();
949 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
950 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
951 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
953 // Trigger a finish downloading signal with an ACK frame
954 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
958 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
959 uint8_t *b
= BigBuf_get_addr();
960 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
961 cmd_send(CMD_ACK
,0,0,0,0,0);
968 case CMD_SET_LF_DIVISOR
:
969 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
970 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
973 case CMD_SET_ADC_MUX
:
975 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
976 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
977 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
978 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
994 case CMD_SETUP_WRITE
:
995 case CMD_FINISH_WRITE
:
996 case CMD_HARDWARE_RESET
:
1000 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1002 // We're going to reset, and the bootrom will take control.
1006 case CMD_START_FLASH
:
1007 if(common_area
.flags
.bootrom_present
) {
1008 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1011 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1015 case CMD_DEVICE_INFO
: {
1016 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1017 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1018 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1022 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1027 void __attribute__((noreturn
)) AppMain(void)
1031 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1032 /* Initialize common area */
1033 memset(&common_area
, 0, sizeof(common_area
));
1034 common_area
.magic
= COMMON_AREA_MAGIC
;
1035 common_area
.version
= 1;
1037 common_area
.flags
.osimage_present
= 1;
1047 // The FPGA gets its clock from us from PCK0 output, so set that up.
1048 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1049 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1050 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1051 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1052 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1053 AT91C_PMC_PRES_CLK_4
;
1054 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1057 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1059 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1061 // Load the FPGA image, which we have stored in our flash.
1062 // (the HF version by default)
1063 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1071 byte_t rx
[sizeof(UsbCommand
)];
1076 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1078 UsbPacketReceived(rx
,rx_len
);
1084 if (BUTTON_HELD(1000) > 0)