1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 #include "lfsampling.h"
19 #include "protocols.h"
20 #include "usb_cdc.h" // for usb_poll_validate_length
23 * Function to do a modulation and then get samples.
29 void ModThenAcquireRawAdcSamples125k(uint32_t delay_off
, uint32_t period_0
, uint32_t period_1
, uint8_t *command
)
32 int divisor_used
= 95; // 125 KHz
33 // see if 'h' was specified
35 if (command
[strlen((char *) command
) - 1] == 'h')
36 divisor_used
= 88; // 134.8 KHz
38 sample_config sc
= { 0,0,1, divisor_used
, 0};
39 setSamplingConfig(&sc
);
41 BigBuf_Clear_keep_EM();
43 /* Make sure the tag is reset */
44 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
45 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
48 LFSetupFPGAForADC(sc
.divisor
, 1);
50 // And a little more time for the tag to fully power up
53 // now modulate the reader field
54 while(*command
!= '\0' && *command
!= ' ') {
55 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
57 SpinDelayUs(delay_off
);
58 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
60 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
62 if(*(command
++) == '0')
63 SpinDelayUs(period_0
);
65 SpinDelayUs(period_1
);
67 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
69 SpinDelayUs(delay_off
);
70 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
72 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
75 DoAcquisition_config(false);
78 /* blank r/w tag data stream
79 ...0000000000000000 01111111
80 1010101010101010101010101010101010101010101010101010101010101010
83 101010101010101[0]000...
85 [5555fe852c5555555555555555fe0000]
89 // some hardcoded initial params
90 // when we read a TI tag we sample the zerocross line at 2Mhz
91 // TI tags modulate a 1 as 16 cycles of 123.2Khz
92 // TI tags modulate a 0 as 16 cycles of 134.2Khz
93 #define FSAMPLE 2000000
97 signed char *dest
= (signed char *)BigBuf_get_addr();
98 uint16_t n
= BigBuf_max_traceLen();
99 // 128 bit shift register [shift3:shift2:shift1:shift0]
100 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
102 int i
, cycles
=0, samples
=0;
103 // how many sample points fit in 16 cycles of each frequency
104 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
105 // when to tell if we're close enough to one freq or another
106 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
108 // TI tags charge at 134.2Khz
109 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
110 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
112 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
113 // connects to SSP_DIN and the SSP_DOUT logic level controls
114 // whether we're modulating the antenna (high)
115 // or listening to the antenna (low)
116 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
118 // get TI tag data into the buffer
121 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
123 for (i
=0; i
<n
-1; i
++) {
124 // count cycles by looking for lo to hi zero crossings
125 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
127 // after 16 cycles, measure the frequency
130 samples
=i
-samples
; // number of samples in these 16 cycles
132 // TI bits are coming to us lsb first so shift them
133 // right through our 128 bit right shift register
134 shift0
= (shift0
>>1) | (shift1
<< 31);
135 shift1
= (shift1
>>1) | (shift2
<< 31);
136 shift2
= (shift2
>>1) | (shift3
<< 31);
139 // check if the cycles fall close to the number
140 // expected for either the low or high frequency
141 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
142 // low frequency represents a 1
144 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
145 // high frequency represents a 0
147 // probably detected a gay waveform or noise
148 // use this as gaydar or discard shift register and start again
149 shift3
= shift2
= shift1
= shift0
= 0;
153 // for each bit we receive, test if we've detected a valid tag
155 // if we see 17 zeroes followed by 6 ones, we might have a tag
156 // remember the bits are backwards
157 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
158 // if start and end bytes match, we have a tag so break out of the loop
159 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
160 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
168 // if flag is set we have a tag
170 DbpString("Info: No valid tag detected.");
172 // put 64 bit data into shift1 and shift0
173 shift0
= (shift0
>>24) | (shift1
<< 8);
174 shift1
= (shift1
>>24) | (shift2
<< 8);
176 // align 16 bit crc into lower half of shift2
177 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
179 // if r/w tag, check ident match
180 if (shift3
& (1<<15) ) {
181 DbpString("Info: TI tag is rewriteable");
182 // only 15 bits compare, last bit of ident is not valid
183 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
184 DbpString("Error: Ident mismatch!");
186 DbpString("Info: TI tag ident is valid");
189 DbpString("Info: TI tag is readonly");
192 // WARNING the order of the bytes in which we calc crc below needs checking
193 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
194 // bytes in reverse or something
198 crc
= update_crc16(crc
, (shift0
)&0xff);
199 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
200 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
201 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
202 crc
= update_crc16(crc
, (shift1
)&0xff);
203 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
204 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
205 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
207 Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
208 if (crc
!= (shift2
&0xffff)) {
209 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
211 DbpString("Info: CRC is good");
216 void WriteTIbyte(uint8_t b
)
220 // modulate 8 bits out to the antenna
224 // stop modulating antenna
231 // stop modulating antenna
241 void AcquireTiType(void)
244 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
245 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
246 #define TIBUFLEN 1250
249 uint32_t *buf
= (uint32_t *)BigBuf_get_addr();
251 //clear buffer now so it does not interfere with timing later
252 BigBuf_Clear_ext(false);
254 // Set up the synchronous serial port
255 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
256 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
258 // steal this pin from the SSP and use it to control the modulation
259 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
260 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
262 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
263 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
265 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
266 // 48/2 = 24 MHz clock must be divided by 12
267 AT91C_BASE_SSC
->SSC_CMR
= 12;
269 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
270 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
271 AT91C_BASE_SSC
->SSC_TCMR
= 0;
272 AT91C_BASE_SSC
->SSC_TFMR
= 0;
273 // iceman, FpgaSetupSsc() ?? the code above? can it be replaced?
279 // Charge TI tag for 50ms.
282 // stop modulating antenna and listen
289 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
290 buf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
291 i
++; if(i
>= TIBUFLEN
) break;
296 // return stolen pin to SSP
297 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
298 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
300 char *dest
= (char *)BigBuf_get_addr();
304 for (i
= TIBUFLEN
-1; i
>= 0; i
--) {
305 for (j
= 0; j
< 32; j
++) {
306 if(buf
[i
] & (1 << j
)) {
315 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
316 // if crc provided, it will be written with the data verbatim (even if bogus)
317 // if not provided a valid crc will be computed from the data and written.
318 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
320 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
322 crc
= update_crc16(crc
, (idlo
)&0xff);
323 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
324 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
325 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
326 crc
= update_crc16(crc
, (idhi
)&0xff);
327 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
328 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
329 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
331 Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi
, (unsigned int) idlo
, crc
);
333 // TI tags charge at 134.2Khz
334 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
335 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
336 // connects to SSP_DIN and the SSP_DOUT logic level controls
337 // whether we're modulating the antenna (high)
338 // or listening to the antenna (low)
339 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
342 // steal this pin from the SSP and use it to control the modulation
343 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
344 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
346 // writing algorithm:
347 // a high bit consists of a field off for 1ms and field on for 1ms
348 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
349 // initiate a charge time of 50ms (field on) then immediately start writing bits
350 // start by writing 0xBB (keyword) and 0xEB (password)
351 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
352 // finally end with 0x0300 (write frame)
353 // all data is sent lsb first
354 // finish with 15ms programming time
358 SpinDelay(50); // charge time
360 WriteTIbyte(0xbb); // keyword
361 WriteTIbyte(0xeb); // password
362 WriteTIbyte( (idlo
)&0xff );
363 WriteTIbyte( (idlo
>>8 )&0xff );
364 WriteTIbyte( (idlo
>>16)&0xff );
365 WriteTIbyte( (idlo
>>24)&0xff );
366 WriteTIbyte( (idhi
)&0xff );
367 WriteTIbyte( (idhi
>>8 )&0xff );
368 WriteTIbyte( (idhi
>>16)&0xff );
369 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
370 WriteTIbyte( (crc
)&0xff ); // crc lo
371 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
372 WriteTIbyte(0x00); // write frame lo
373 WriteTIbyte(0x03); // write frame hi
375 SpinDelay(50); // programming time
379 // get TI tag data into the buffer
382 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
383 DbpString("Now use `lf ti read` to check");
386 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
389 uint8_t *tab
= BigBuf_get_addr();
391 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
392 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
394 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
395 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
396 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
398 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
399 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
403 //wait until SSC_CLK goes HIGH
404 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
405 if(BUTTON_PRESS() || usb_poll_validate_length() ) {
406 DbpString("Stopped");
411 if (ledcontrol
) LED_D_ON();
418 if (ledcontrol
) LED_D_OFF();
420 //wait until SSC_CLK goes LOW
421 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
422 if( BUTTON_PRESS() || usb_poll_validate_length() ) {
423 DbpString("Stopped");
441 #define DEBUG_FRAME_CONTENTS 1
442 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
446 // compose fc/8 fc/10 waveform (FSK2)
447 static void fc(int c
, int *n
)
449 uint8_t *dest
= BigBuf_get_addr();
452 // for when we want an fc8 pattern every 4 logical bits
464 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
466 for (idx
=0; idx
<6; idx
++) {
478 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
480 for (idx
=0; idx
<5; idx
++) {
494 // compose fc/X fc/Y waveform (FSKx)
495 static void fcAll(uint8_t fc
, int *n
, uint8_t clock
, uint16_t *modCnt
)
497 uint8_t *dest
= BigBuf_get_addr();
498 uint8_t halfFC
= fc
/2;
499 uint8_t wavesPerClock
= clock
/fc
;
500 uint8_t mod
= clock
% fc
; //modifier
501 uint8_t modAdj
= fc
/mod
; //how often to apply modifier
502 bool modAdjOk
= !(fc
% mod
); //if (fc % mod==0) modAdjOk=TRUE;
503 // loop through clock - step field clock
504 for (uint8_t idx
=0; idx
< wavesPerClock
; idx
++){
505 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
506 memset(dest
+(*n
), 0, fc
-halfFC
); //in case of odd number use extra here
507 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
510 if (mod
>0) (*modCnt
)++;
511 if ((mod
>0) && modAdjOk
){ //fsk2
512 if ((*modCnt
% modAdj
) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
513 memset(dest
+(*n
), 0, fc
-halfFC
);
514 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
518 if (mod
>0 && !modAdjOk
){ //fsk1
519 memset(dest
+(*n
), 0, mod
-(mod
/2));
520 memset(dest
+(*n
)+(mod
-(mod
/2)), 1, mod
/2);
525 // prepare a waveform pattern in the buffer based on the ID given then
526 // simulate a HID tag until the button is pressed
527 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
531 HID tag bitstream format
532 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
533 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
534 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
535 A fc8 is inserted before every 4 bits
536 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
537 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
541 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
545 // special start of frame marker containing invalid bit sequences
546 fc(8, &n
); fc(8, &n
); // invalid
547 fc(8, &n
); fc(10, &n
); // logical 0
548 fc(10, &n
); fc(10, &n
); // invalid
549 fc(8, &n
); fc(10, &n
); // logical 0
552 // manchester encode bits 43 to 32
553 for (i
=11; i
>=0; i
--) {
554 if ((i
%4)==3) fc(0,&n
);
556 fc(10, &n
); fc(8, &n
); // low-high transition
558 fc(8, &n
); fc(10, &n
); // high-low transition
563 // manchester encode bits 31 to 0
564 for (i
=31; i
>=0; i
--) {
565 if ((i
%4)==3) fc(0,&n
);
567 fc(10, &n
); fc(8, &n
); // low-high transition
569 fc(8, &n
); fc(10, &n
); // high-low transition
573 if (ledcontrol
) LED_A_ON();
574 SimulateTagLowFrequency(n
, 0, ledcontrol
);
575 if (ledcontrol
) LED_A_OFF();
578 // prepare a waveform pattern in the buffer based on the ID given then
579 // simulate a FSK tag until the button is pressed
580 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
581 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
585 uint8_t fcHigh
= arg1
>> 8;
586 uint8_t fcLow
= arg1
& 0xFF;
588 uint8_t clk
= arg2
& 0xFF;
589 uint8_t invert
= (arg2
>> 8) & 1;
591 for (i
=0; i
<size
; i
++){
592 if (BitStream
[i
] == invert
){
593 fcAll(fcLow
, &n
, clk
, &modCnt
);
595 fcAll(fcHigh
, &n
, clk
, &modCnt
);
598 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh
, fcLow
, clk
, invert
, n
);
600 if (ledcontrol
) LED_A_ON();
601 SimulateTagLowFrequency(n
, 0, ledcontrol
);
602 if (ledcontrol
) LED_A_OFF();
605 // compose ask waveform for one bit(ASK)
606 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
)
608 uint8_t *dest
= BigBuf_get_addr();
609 uint8_t halfClk
= clock
/2;
610 // c = current bit 1 or 0
612 memset(dest
+(*n
), c
, halfClk
);
613 memset(dest
+(*n
) + halfClk
, c
^1, halfClk
);
615 memset(dest
+(*n
), c
, clock
);
620 static void biphaseSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t *phase
)
622 uint8_t *dest
= BigBuf_get_addr();
623 uint8_t halfClk
= clock
/2;
625 memset(dest
+(*n
), c
^ 1 ^ *phase
, halfClk
);
626 memset(dest
+(*n
) + halfClk
, c
^ *phase
, halfClk
);
628 memset(dest
+(*n
), c
^ *phase
, clock
);
634 static void stAskSimBit(int *n
, uint8_t clock
) {
635 uint8_t *dest
= BigBuf_get_addr();
636 uint8_t halfClk
= clock
/2;
637 //ST = .5 high .5 low 1.5 high .5 low 1 high
638 memset(dest
+(*n
), 1, halfClk
);
639 memset(dest
+(*n
) + halfClk
, 0, halfClk
);
640 memset(dest
+(*n
) + clock
, 1, clock
+ halfClk
);
641 memset(dest
+(*n
) + clock
*2 + halfClk
, 0, halfClk
);
642 memset(dest
+(*n
) + clock
*3, 1, clock
);
646 // args clock, ask/man or askraw, invert, transmission separator
647 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
651 uint8_t clk
= (arg1
>> 8) & 0xFF;
652 uint8_t encoding
= arg1
& 0xFF;
653 uint8_t separator
= arg2
& 1;
654 uint8_t invert
= (arg2
>> 8) & 1;
656 if (encoding
==2){ //biphase
658 for (i
=0; i
<size
; i
++){
659 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
661 if (phase
==1) { //run a second set inverted to keep phase in check
662 for (i
=0; i
<size
; i
++){
663 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
666 } else { // ask/manchester || ask/raw
667 for (i
=0; i
<size
; i
++){
668 askSimBit(BitStream
[i
]^invert
, &n
, clk
, encoding
);
670 if (encoding
==0 && BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted (for biphase phase)
671 for (i
=0; i
<size
; i
++){
672 askSimBit(BitStream
[i
]^invert
^1, &n
, clk
, encoding
);
676 if (separator
==1 && encoding
== 1)
677 stAskSimBit(&n
, clk
);
678 else if (separator
==1)
679 Dbprintf("sorry but separator option not yet available");
681 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk
, invert
, encoding
, separator
, n
);
683 if (ledcontrol
) LED_A_ON();
684 SimulateTagLowFrequency(n
, 0, ledcontrol
);
685 if (ledcontrol
) LED_A_OFF();
688 //carrier can be 2,4 or 8
689 static void pskSimBit(uint8_t waveLen
, int *n
, uint8_t clk
, uint8_t *curPhase
, bool phaseChg
)
691 uint8_t *dest
= BigBuf_get_addr();
692 uint8_t halfWave
= waveLen
/2;
696 // write phase change
697 memset(dest
+(*n
), *curPhase
^1, halfWave
);
698 memset(dest
+(*n
) + halfWave
, *curPhase
, halfWave
);
703 //write each normal clock wave for the clock duration
704 for (; i
< clk
; i
+=waveLen
){
705 memset(dest
+(*n
), *curPhase
, halfWave
);
706 memset(dest
+(*n
) + halfWave
, *curPhase
^1, halfWave
);
711 // args clock, carrier, invert,
712 void CmdPSKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
716 uint8_t clk
= arg1
>> 8;
717 uint8_t carrier
= arg1
& 0xFF;
718 uint8_t invert
= arg2
& 0xFF;
719 uint8_t curPhase
= 0;
720 for (i
=0; i
<size
; i
++){
721 if (BitStream
[i
] == curPhase
){
722 pskSimBit(carrier
, &n
, clk
, &curPhase
, FALSE
);
724 pskSimBit(carrier
, &n
, clk
, &curPhase
, TRUE
);
727 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier
, clk
, invert
, n
);
729 if (ledcontrol
) LED_A_ON();
730 SimulateTagLowFrequency(n
, 0, ledcontrol
);
731 if (ledcontrol
) LED_A_OFF();
734 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
735 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
737 uint8_t *dest
= BigBuf_get_addr();
739 uint32_t hi2
=0, hi
=0, lo
=0;
741 // Configure to go in 125Khz listen mode
742 LFSetupFPGAForADC(95, true);
745 BigBuf_Clear_keep_EM();
747 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
750 if (ledcontrol
) LED_A_ON();
752 DoAcquisition_default(-1,true);
754 size
= 50*128*2; //big enough to catch 2 sequences of largest format
755 idx
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
);
757 if (idx
>0 && lo
>0 && (size
==96 || size
==192)){
758 // go over previously decoded manchester data and decode into usable tag ID
759 if (hi2
!= 0){ //extra large HID tags 88/192 bits
760 Dbprintf("TAG ID: %x%08x%08x (%d)",
764 (unsigned int) (lo
>>1) & 0xFFFF
766 } else { //standard HID tags 44/96 bits
769 uint32_t cardnum
= 0;
771 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
773 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
775 while(lo2
> 1){ //find last bit set to 1 (format len bit)
783 cardnum
= (lo
>>1)&0xFFFF;
787 cardnum
= (lo
>>1)&0x7FFFF;
788 fc
= ((hi
&0xF)<<12)|(lo
>>20);
791 cardnum
= (lo
>>1)&0xFFFF;
792 fc
= ((hi
&1)<<15)|(lo
>>17);
795 cardnum
= (lo
>>1)&0xFFFFF;
796 fc
= ((hi
&1)<<11)|(lo
>>21);
799 else { //if bit 38 is not set then 37 bit format is used
804 cardnum
= (lo
>>1)&0x7FFFF;
805 fc
= ((hi
&0xF)<<12)|(lo
>>20);
808 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
811 (unsigned int) (lo
>>1) & 0xFFFF,
812 (unsigned int) bitlen
,
814 (unsigned int) cardnum
);
817 if (ledcontrol
) LED_A_OFF();
824 hi2
= hi
= lo
= idx
= 0;
827 DbpString("Stopped");
828 if (ledcontrol
) LED_A_OFF();
831 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
832 void CmdAWIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
834 uint8_t *dest
= BigBuf_get_addr();
838 BigBuf_Clear_keep_EM();
839 // Configure to go in 125Khz listen mode
840 LFSetupFPGAForADC(95, true);
842 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
845 if (ledcontrol
) LED_A_ON();
847 DoAcquisition_default(-1,true);
849 size
= 50*128*2; //big enough to catch 2 sequences of largest format
850 idx
= AWIDdemodFSK(dest
, &size
);
852 if (idx
<=0 || size
!=96) continue;
854 // 0 10 20 30 40 50 60
856 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
857 // -----------------------------------------------------------------------------
858 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
859 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
860 // |---26 bit---| |-----117----||-------------142-------------|
861 // b = format bit len, o = odd parity of last 3 bits
862 // f = facility code, c = card number
863 // w = wiegand parity
864 // (26 bit format shown)
866 //get raw ID before removing parities
867 uint32_t rawLo
= bytebits_to_byte(dest
+idx
+64,32);
868 uint32_t rawHi
= bytebits_to_byte(dest
+idx
+32,32);
869 uint32_t rawHi2
= bytebits_to_byte(dest
+idx
,32);
871 size
= removeParity(dest
, idx
+8, 4, 1, 88);
872 if (size
!= 66) continue;
875 // 0 10 20 30 40 50 60
877 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
878 // -----------------------------------------------------------------------------
879 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
880 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
881 // |26 bit| |-117--| |-----142------|
883 // 00110010 0 0000011111010000000000000001000100101000100001111 0 00000000
884 // bbbbbbbb w ffffffffffffffffccccccccccccccccccccccccccccccccc w xxxxxxxx
885 // |50 bit| |----4000------||-----------2248975-------------|
887 // b = format bit len, o = odd parity of last 3 bits
888 // f = facility code, c = card number
889 // w = wiegand parity
892 uint32_t cardnum
= 0;
895 uint8_t fmtLen
= bytebits_to_byte(dest
,8);
898 fc
= bytebits_to_byte(dest
+ 9, 8);
899 cardnum
= bytebits_to_byte(dest
+ 17, 16);
900 code1
= bytebits_to_byte(dest
+ 8,fmtLen
);
901 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, fc
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
904 fc
= bytebits_to_byte(dest
+ 9, 16);
905 cardnum
= bytebits_to_byte(dest
+ 25, 32);
906 code1
= bytebits_to_byte(dest
+ 8, (fmtLen
-32) );
907 code2
= bytebits_to_byte(dest
+ 8 + (fmtLen
-32), 32);
908 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen
, fc
, cardnum
, code1
, code2
, rawHi2
, rawHi
, rawLo
);
912 cardnum
= bytebits_to_byte(dest
+8+(fmtLen
-17), 16);
913 code1
= bytebits_to_byte(dest
+8,fmtLen
-32);
914 code2
= bytebits_to_byte(dest
+8+(fmtLen
-32),32);
915 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, code2
, rawHi2
, rawHi
, rawLo
);
917 cardnum
= bytebits_to_byte(dest
+8+(fmtLen
-17), 16);
918 code1
= bytebits_to_byte(dest
+8,fmtLen
);
919 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
924 if (ledcontrol
) LED_A_OFF();
930 DbpString("Stopped");
931 if (ledcontrol
) LED_A_OFF();
934 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
936 uint8_t *dest
= BigBuf_get_addr();
938 size_t size
=0, idx
=0;
939 int clk
=0, invert
=0, errCnt
=0, maxErr
=20;
943 BigBuf_Clear_keep_EM();
944 // Configure to go in 125Khz listen mode
945 LFSetupFPGAForADC(95, true);
947 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
950 if (ledcontrol
) LED_A_ON();
952 DoAcquisition_default(-1,true);
953 size
= BigBuf_max_traceLen();
954 //askdemod and manchester decode
955 if (size
> 16385) size
= 16385; //big enough to catch 2 sequences of largest format
956 errCnt
= askdemod(dest
, &size
, &clk
, &invert
, maxErr
, 0, 1);
959 if (errCnt
<0) continue;
961 errCnt
= Em410xDecode(dest
, &size
, &idx
, &hi
, &lo
);
964 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
968 (uint32_t)(lo
&0xFFFF),
969 (uint32_t)((lo
>>16LL) & 0xFF),
970 (uint32_t)(lo
& 0xFFFFFF));
972 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
975 (uint32_t)(lo
&0xFFFF),
976 (uint32_t)((lo
>>16LL) & 0xFF),
977 (uint32_t)(lo
& 0xFFFFFF));
981 if (ledcontrol
) LED_A_OFF();
983 *low
=lo
& 0xFFFFFFFF;
988 hi
= lo
= size
= idx
= 0;
989 clk
= invert
= errCnt
= 0;
991 DbpString("Stopped");
992 if (ledcontrol
) LED_A_OFF();
995 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
997 uint8_t *dest
= BigBuf_get_addr();
999 uint32_t code
=0, code2
=0;
1001 uint8_t facilitycode
=0;
1004 uint16_t calccrc
= 0;
1007 BigBuf_Clear_keep_EM();
1009 // Configure to go in 125Khz listen mode
1010 LFSetupFPGAForADC(95, true);
1012 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1014 if (ledcontrol
) LED_A_ON();
1015 DoAcquisition_default(-1,true);
1016 //fskdemod and get start index
1018 idx
= IOdemodFSK(dest
, BigBuf_max_traceLen());
1019 if (idx
<0) continue;
1023 //0 10 20 30 40 50 60
1025 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1026 //-----------------------------------------------------------------------------
1027 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
1030 //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
1031 //preamble F0 E0 01 03 B6 75
1032 // How to calc checksum,
1033 // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
1034 // F0 + E0 + 01 + 03 + B6 = 28A
1038 //XSF(version)facility:codeone+codetwo
1040 if(findone
){ //only print binary if we are doing one
1041 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
1042 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
1043 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
1044 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
1045 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
1046 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
1047 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
1049 code
= bytebits_to_byte(dest
+idx
,32);
1050 code2
= bytebits_to_byte(dest
+idx
+32,32);
1051 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
1052 facilitycode
= bytebits_to_byte(dest
+idx
+18,8);
1053 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
1055 crc
= bytebits_to_byte(dest
+idx
+54,8);
1056 for (uint8_t i
=1; i
<6; ++i
)
1057 calccrc
+= bytebits_to_byte(dest
+idx
+9*i
,8);
1059 calccrc
= 0xff - calccrc
;
1061 char *crcStr
= (crc
== calccrc
) ? "ok":"!crc";
1063 Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version
,facilitycode
,number
,code
,code2
, crc
, crcStr
);
1064 // if we're only looking for one tag
1066 if (ledcontrol
) LED_A_OFF();
1072 version
=facilitycode
=0;
1078 DbpString("Stopped");
1079 if (ledcontrol
) LED_A_OFF();
1082 /*------------------------------
1083 * T5555/T5557/T5567/T5577 routines
1084 *------------------------------
1085 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1087 * Relevant communication times in microsecond
1088 * To compensate antenna falling times shorten the write times
1089 * and enlarge the gap ones.
1090 * Q5 tags seems to have issues when these values changes.
1093 #define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1094 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1095 #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1096 #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1097 #define READ_GAP 15*8
1099 // VALUES TAKEN FROM EM4x function: SendForward
1100 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1101 // WRITE_GAP = 128; (16*8)
1102 // WRITE_1 = 256 32*8; (32*8)
1104 // These timings work for 4469/4269/4305 (with the 55*8 above)
1105 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1107 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
1108 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
1109 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
1110 // T0 = TIMER_CLOCK1 / 125000 = 192
1111 // 1 Cycle = 8 microseconds(us) == 1 field clock
1113 void TurnReadLFOn(int delay
) {
1114 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1115 // Give it a bit of time for the resonant antenna to settle.
1117 // measure antenna strength.
1118 //int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
1124 // Write one bit to card
1125 void T55xxWriteBit(int bit
) {
1127 TurnReadLFOn(WRITE_0
);
1129 TurnReadLFOn(WRITE_1
);
1130 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1131 SpinDelayUs(WRITE_GAP
);
1134 // Send T5577 reset command then read stream (see if we can identify the start of the stream)
1135 void T55xxResetRead(void) {
1137 //clear buffer now so it does not interfere with timing later
1138 BigBuf_Clear_keep_EM();
1140 // Set up FPGA, 125kHz
1141 LFSetupFPGAForADC(95, true);
1143 // Trigger T55x7 in mode.
1144 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1145 SpinDelayUs(START_GAP
);
1147 // reset tag - op code 00
1151 // Turn field on to read the response
1152 TurnReadLFOn(READ_GAP
);
1155 doT55x7Acquisition(BigBuf_max_traceLen());
1157 // Turn the field off
1158 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1159 cmd_send(CMD_ACK
,0,0,0,0,0);
1163 // Write one card block in page 0, no lock
1164 void T55xxWriteBlockExt(uint32_t Data
, uint8_t Block
, uint32_t Pwd
, uint8_t arg
) {
1166 bool PwdMode
= arg
& 0x1;
1167 uint8_t Page
= (arg
& 0x2)>>1;
1170 // Set up FPGA, 125kHz
1171 LFSetupFPGAForADC(95, true);
1173 // Trigger T55x7 in mode.
1174 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1175 SpinDelayUs(START_GAP
);
1179 T55xxWriteBit(Page
); //Page 0
1182 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1183 T55xxWriteBit(Pwd
& i
);
1189 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1190 T55xxWriteBit(Data
& i
);
1192 // Send Block number
1193 for (i
= 0x04; i
!= 0; i
>>= 1)
1194 T55xxWriteBit(Block
& i
);
1196 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1197 // so wait a little more)
1198 TurnReadLFOn(20 * 1000);
1199 //could attempt to do a read to confirm write took
1200 // as the tag should repeat back the new block
1201 // until it is reset, but to confirm it we would
1202 // need to know the current block 0 config mode
1205 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1209 // Write one card block in page 0, no lock
1210 void T55xxWriteBlock(uint32_t Data
, uint8_t Block
, uint32_t Pwd
, uint8_t arg
) {
1211 T55xxWriteBlockExt(Data
, Block
, Pwd
, arg
);
1212 cmd_send(CMD_ACK
,0,0,0,0,0);
1215 // Read one card block in page [page]
1216 void T55xxReadBlock(uint16_t arg0
, uint8_t Block
, uint32_t Pwd
) {
1218 bool PwdMode
= arg0
& 0x1;
1219 uint8_t Page
= (arg0
& 0x2) >> 1;
1221 bool RegReadMode
= (Block
== 0xFF);
1223 //clear buffer now so it does not interfere with timing later
1224 BigBuf_Clear_ext(false);
1226 //make sure block is at max 7
1229 // Set up FPGA, 125kHz to power up the tag
1230 LFSetupFPGAForADC(95, true);
1232 // Trigger T55x7 Direct Access Mode with start gap
1233 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1234 SpinDelayUs(START_GAP
);
1238 T55xxWriteBit(Page
); //Page 0
1242 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1243 T55xxWriteBit(Pwd
& i
);
1245 // Send a zero bit separation
1248 // Send Block number (if direct access mode)
1250 for (i
= 0x04; i
!= 0; i
>>= 1)
1251 T55xxWriteBit(Block
& i
);
1253 // Turn field on to read the response
1254 TurnReadLFOn(READ_GAP
);
1257 doT55x7Acquisition(12000);
1259 // Turn the field off
1260 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1261 cmd_send(CMD_ACK
,0,0,0,0,0);
1265 void T55xxWakeUp(uint32_t Pwd
){
1269 // Set up FPGA, 125kHz
1270 LFSetupFPGAForADC(95, true);
1272 // Trigger T55x7 Direct Access Mode
1273 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1274 SpinDelayUs(START_GAP
);
1278 T55xxWriteBit(0); //Page 0
1281 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1282 T55xxWriteBit(Pwd
& i
);
1284 // Turn and leave field on to let the begin repeating transmission
1285 TurnReadLFOn(20*1000);
1288 /*-------------- Cloning routines -----------*/
1289 void WriteT55xx(uint32_t *blockdata
, uint8_t startblock
, uint8_t numblocks
) {
1290 // write last block first and config block last (if included)
1291 for (uint8_t i
= numblocks
+startblock
; i
> startblock
; i
--)
1292 T55xxWriteBlockExt(blockdata
[i
-1], i
-1, 0, 0);
1295 // Copy HID id to card and setup block 0 config
1296 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
) {
1297 uint32_t data
[] = {0,0,0,0,0,0,0};
1298 uint8_t last_block
= 0;
1301 // Ensure no more than 84 bits supplied
1302 if (hi2
> 0xFFFFF) {
1303 DbpString("Tags can only have 84 bits.");
1306 // Build the 6 data blocks for supplied 84bit ID
1308 // load preamble (1D) & long format identifier (9E manchester encoded)
1309 data
[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2
>> 16) & 0xF) & 0xFF);
1310 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1311 data
[2] = manchesterEncode2Bytes(hi2
& 0xFFFF);
1312 data
[3] = manchesterEncode2Bytes(hi
>> 16);
1313 data
[4] = manchesterEncode2Bytes(hi
& 0xFFFF);
1314 data
[5] = manchesterEncode2Bytes(lo
>> 16);
1315 data
[6] = manchesterEncode2Bytes(lo
& 0xFFFF);
1317 // Ensure no more than 44 bits supplied
1319 DbpString("Tags can only have 44 bits.");
1322 // Build the 3 data blocks for supplied 44bit ID
1325 data
[1] = 0x1D000000 | (manchesterEncode2Bytes(hi
) & 0xFFFFFF);
1326 data
[2] = manchesterEncode2Bytes(lo
>> 16);
1327 data
[3] = manchesterEncode2Bytes(lo
& 0xFFFF);
1329 // load chip config block
1330 data
[0] = T55x7_BITRATE_RF_50
| T55x7_MODULATION_FSK2a
| last_block
<< T55x7_MAXBLOCK_SHIFT
;
1332 //TODO add selection of chip for Q5 or T55x7
1333 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1336 // Program the data blocks for supplied ID
1337 // and the block 0 for HID format
1338 WriteT55xx(data
, 0, last_block
+1);
1345 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
) {
1346 uint32_t data
[] = {T55x7_BITRATE_RF_64
| T55x7_MODULATION_FSK2a
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
};
1347 //TODO add selection of chip for Q5 or T55x7
1348 // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1351 // Program the data blocks for supplied ID
1352 // and the block 0 config
1353 WriteT55xx(data
, 0, 3);
1360 // Clone Indala 64-bit tag by UID to T55x7
1361 void CopyIndala64toT55x7(uint32_t hi
, uint32_t lo
) {
1362 //Program the 2 data blocks for supplied 64bit UID
1363 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1364 uint32_t data
[] = { T55x7_BITRATE_RF_32
| T55x7_MODULATION_PSK1
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
};
1365 //TODO add selection of chip for Q5 or T55x7
1366 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1368 WriteT55xx(data
, 0, 3);
1369 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1370 // T5567WriteBlock(0x603E1042,0);
1373 // Clone Indala 224-bit tag by UID to T55x7
1374 void CopyIndala224toT55x7(uint32_t uid1
, uint32_t uid2
, uint32_t uid3
, uint32_t uid4
, uint32_t uid5
, uint32_t uid6
, uint32_t uid7
) {
1375 //Program the 7 data blocks for supplied 224bit UID
1376 uint32_t data
[] = {0, uid1
, uid2
, uid3
, uid4
, uid5
, uid6
, uid7
};
1377 // and the block 0 for Indala224 format
1378 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1379 data
[0] = T55x7_BITRATE_RF_32
| T55x7_MODULATION_PSK1
| (7 << T55x7_MAXBLOCK_SHIFT
);
1380 //TODO add selection of chip for Q5 or T55x7
1381 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
1382 WriteT55xx(data
, 0, 8);
1383 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1384 // T5567WriteBlock(0x603E10E2,0);
1387 // clone viking tag to T55xx
1388 void CopyVikingtoT55xx(uint32_t block1
, uint32_t block2
, uint8_t Q5
) {
1389 uint32_t data
[] = {T55x7_BITRATE_RF_32
| T55x7_MODULATION_MANCHESTER
| (2 << T55x7_MAXBLOCK_SHIFT
), block1
, block2
};
1390 if (Q5
) data
[0] = (32 << T5555_BITRATE_SHIFT
) | T5555_MODULATION_MANCHESTER
| 2 << T5555_MAXBLOCK_SHIFT
;
1391 // Program the data blocks for supplied ID and the block 0 config
1392 WriteT55xx(data
, 0, 3);
1394 cmd_send(CMD_ACK
,0,0,0,0,0);
1397 // Define 9bit header for EM410x tags
1398 #define EM410X_HEADER 0x1FF
1399 #define EM410X_ID_LENGTH 40
1401 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
) {
1403 uint64_t id
= EM410X_HEADER
;
1404 uint64_t rev_id
= 0; // reversed ID
1405 int c_parity
[4]; // column parity
1406 int r_parity
= 0; // row parity
1409 // Reverse ID bits given as parameter (for simpler operations)
1410 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1412 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1415 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1420 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1421 id_bit
= rev_id
& 1;
1424 // Don't write row parity bit at start of parsing
1426 id
= (id
<< 1) | r_parity
;
1427 // Start counting parity for new row
1434 // First elements in column?
1436 // Fill out first elements
1437 c_parity
[i
] = id_bit
;
1439 // Count column parity
1440 c_parity
[i
% 4] ^= id_bit
;
1443 id
= (id
<< 1) | id_bit
;
1447 // Insert parity bit of last row
1448 id
= (id
<< 1) | r_parity
;
1450 // Fill out column parity at the end of tag
1451 for (i
= 0; i
< 4; ++i
)
1452 id
= (id
<< 1) | c_parity
[i
];
1457 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1461 uint32_t data
[] = {0, (uint32_t)(id
>>32), (uint32_t)(id
& 0xFFFFFFFF)};
1463 clock
= (card
& 0xFF00) >> 8;
1464 clock
= (clock
== 0) ? 64 : clock
;
1465 Dbprintf("Clock rate: %d", clock
);
1466 if (card
& 0xFF) { //t55x7
1467 clock
= GetT55xxClockBit(clock
);
1469 Dbprintf("Invalid clock rate: %d", clock
);
1472 data
[0] = clock
| T55x7_MODULATION_MANCHESTER
| (2 << T55x7_MAXBLOCK_SHIFT
);
1473 } else { //t5555 (Q5)
1474 clock
= (clock
-2)>>1; //n = (RF-2)/2
1475 data
[0] = (clock
<< T5555_BITRATE_SHIFT
) | T5555_MODULATION_MANCHESTER
| (2 << T5555_MAXBLOCK_SHIFT
);
1478 WriteT55xx(data
, 0, 3);
1481 Dbprintf("Tag %s written with 0x%08x%08x\n",
1482 card
? "T55x7":"T5555",
1483 (uint32_t)(id
>> 32),
1487 //-----------------------------------
1488 // EM4469 / EM4305 routines
1489 //-----------------------------------
1490 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1491 #define FWD_CMD_WRITE 0xA
1492 #define FWD_CMD_READ 0x9
1493 #define FWD_CMD_DISABLE 0x5
1495 uint8_t forwardLink_data
[64]; //array of forwarded bits
1496 uint8_t * forward_ptr
; //ptr for forward message preparation
1497 uint8_t fwd_bit_sz
; //forwardlink bit counter
1498 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1500 //====================================================================
1501 // prepares command bits
1503 //====================================================================
1504 //--------------------------------------------------------------------
1505 // VALUES TAKEN FROM EM4x function: SendForward
1506 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1507 // WRITE_GAP = 128; (16*8)
1508 // WRITE_1 = 256 32*8; (32*8)
1510 // These timings work for 4469/4269/4305 (with the 55*8 above)
1511 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1513 uint8_t Prepare_Cmd( uint8_t cmd
) {
1515 *forward_ptr
++ = 0; //start bit
1516 *forward_ptr
++ = 0; //second pause for 4050 code
1518 *forward_ptr
++ = cmd
;
1520 *forward_ptr
++ = cmd
;
1522 *forward_ptr
++ = cmd
;
1524 *forward_ptr
++ = cmd
;
1526 return 6; //return number of emited bits
1529 //====================================================================
1530 // prepares address bits
1532 //====================================================================
1533 uint8_t Prepare_Addr( uint8_t addr
) {
1535 register uint8_t line_parity
;
1540 *forward_ptr
++ = addr
;
1541 line_parity
^= addr
;
1545 *forward_ptr
++ = (line_parity
& 1);
1547 return 7; //return number of emited bits
1550 //====================================================================
1551 // prepares data bits intreleaved with parity bits
1553 //====================================================================
1554 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1556 register uint8_t line_parity
;
1557 register uint8_t column_parity
;
1558 register uint8_t i
, j
;
1559 register uint16_t data
;
1564 for(i
=0; i
<4; i
++) {
1566 for(j
=0; j
<8; j
++) {
1567 line_parity
^= data
;
1568 column_parity
^= (data
& 1) << j
;
1569 *forward_ptr
++ = data
;
1572 *forward_ptr
++ = line_parity
;
1577 for(j
=0; j
<8; j
++) {
1578 *forward_ptr
++ = column_parity
;
1579 column_parity
>>= 1;
1583 return 45; //return number of emited bits
1586 //====================================================================
1587 // Forward Link send function
1588 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1589 // fwd_bit_count set with number of bits to be sent
1590 //====================================================================
1591 void SendForward(uint8_t fwd_bit_count
) {
1593 fwd_write_ptr
= forwardLink_data
;
1594 fwd_bit_sz
= fwd_bit_count
;
1598 // Set up FPGA, 125kHz
1599 LFSetupFPGAForADC(95, true);
1601 // force 1st mod pulse (start gap must be longer for 4305)
1602 fwd_bit_sz
--; //prepare next bit modulation
1604 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1605 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1606 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1607 SpinDelayUs(16*8); //16 cycles on (8us each)
1609 // now start writting
1610 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1611 if(((*fwd_write_ptr
++) & 1) == 1)
1612 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1614 //These timings work for 4469/4269/4305 (with the 55*8 above)
1615 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1616 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1617 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1618 SpinDelayUs(9*8); //16 cycles on (8us each)
1623 void EM4xLogin(uint32_t Password
) {
1625 uint8_t fwd_bit_count
;
1627 forward_ptr
= forwardLink_data
;
1628 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1629 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1631 SendForward(fwd_bit_count
);
1633 //Wait for command to complete
1637 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1639 uint8_t fwd_bit_count
;
1640 uint8_t *dest
= BigBuf_get_addr();
1641 uint16_t bufsize
= BigBuf_max_traceLen();
1644 // Clear destination buffer before sending the command
1645 BigBuf_Clear_ext(false);
1647 //If password mode do login
1648 if (PwdMode
== 1) EM4xLogin(Pwd
);
1650 forward_ptr
= forwardLink_data
;
1651 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1652 fwd_bit_count
+= Prepare_Addr( Address
);
1654 // Connect the A/D to the peak-detected low-frequency path.
1655 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1656 // Now set up the SSC to get the ADC samples that are now streaming at us.
1659 SendForward(fwd_bit_count
);
1661 // Now do the acquisition
1664 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1665 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1667 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1668 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1670 if (i
>= bufsize
) break;
1674 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1675 cmd_send(CMD_ACK
,0,0,0,0,0);
1679 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1681 uint8_t fwd_bit_count
;
1683 //If password mode do login
1684 if (PwdMode
== 1) EM4xLogin(Pwd
);
1686 forward_ptr
= forwardLink_data
;
1687 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1688 fwd_bit_count
+= Prepare_Addr( Address
);
1689 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1691 SendForward(fwd_bit_count
);
1693 //Wait for write to complete
1695 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off