1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
21 * Does the sample acquisition. If threshold is specified, the actual sampling
22 * is not commenced until the threshold has been reached.
23 * @param trigger_threshold - the threshold
24 * @param silent - is true, now outputs are made. If false, dbprints the status
26 void DoAcquisition125k_internal(int trigger_threshold
,bool silent
)
28 uint8_t *dest
= (uint8_t *)BigBuf
;
29 int n
= sizeof(BigBuf
);
35 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
36 AT91C_BASE_SSC
->SSC_THR
= 0x43;
39 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
40 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
42 if (trigger_threshold
!= -1 && dest
[i
] < trigger_threshold
)
45 trigger_threshold
= -1;
51 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
52 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
57 * Perform sample aquisition.
59 void DoAcquisition125k(int trigger_threshold
)
61 DoAcquisition125k_internal(trigger_threshold
, false);
65 * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
66 * if not already loaded, sets divisor and starts up the antenna.
67 * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
71 void LFSetupFPGAForADC(int divisor
, bool lf_field
)
73 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
74 if ( (divisor
== 1) || (divisor
< 0) || (divisor
> 255) )
75 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
76 else if (divisor
== 0)
77 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
79 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
81 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| (lf_field
? FPGA_LF_ADC_READER_FIELD
: 0));
83 // Connect the A/D to the peak-detected low-frequency path.
84 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
85 // Give it a bit of time for the resonant antenna to settle.
87 // Now set up the SSC to get the ADC samples that are now streaming at us.
91 * Initializes the FPGA, and acquires the samples.
93 void AcquireRawAdcSamples125k(int divisor
)
95 LFSetupFPGAForADC(divisor
, true);
96 // Now call the acquisition routine
97 DoAcquisition125k_internal(-1,false);
100 * Initializes the FPGA for snoop-mode, and acquires the samples.
103 void SnoopLFRawAdcSamples(int divisor
, int trigger_threshold
)
105 LFSetupFPGAForADC(divisor
, false);
106 DoAcquisition125k(trigger_threshold
);
109 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
112 /* Make sure the tag is reset */
113 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
118 int divisor_used
= 95; // 125 KHz
119 // see if 'h' was specified
121 if (command
[strlen((char *) command
) - 1] == 'h')
122 divisor_used
= 88; // 134.8 KHz
125 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
126 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
127 // Give it a bit of time for the resonant antenna to settle.
130 // And a little more time for the tag to fully power up
133 // Now set up the SSC to get the ADC samples that are now streaming at us.
136 // now modulate the reader field
137 while(*command
!= '\0' && *command
!= ' ') {
138 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
140 SpinDelayUs(delay_off
);
141 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
143 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
145 if(*(command
++) == '0')
146 SpinDelayUs(period_0
);
148 SpinDelayUs(period_1
);
150 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
152 SpinDelayUs(delay_off
);
153 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
155 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
158 DoAcquisition125k(-1);
161 /* blank r/w tag data stream
162 ...0000000000000000 01111111
163 1010101010101010101010101010101010101010101010101010101010101010
166 101010101010101[0]000...
168 [5555fe852c5555555555555555fe0000]
172 // some hardcoded initial params
173 // when we read a TI tag we sample the zerocross line at 2Mhz
174 // TI tags modulate a 1 as 16 cycles of 123.2Khz
175 // TI tags modulate a 0 as 16 cycles of 134.2Khz
176 #define FSAMPLE 2000000
177 #define FREQLO 123200
178 #define FREQHI 134200
180 signed char *dest
= (signed char *)BigBuf
;
181 int n
= sizeof(BigBuf
);
182 // 128 bit shift register [shift3:shift2:shift1:shift0]
183 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
185 int i
, cycles
=0, samples
=0;
186 // how many sample points fit in 16 cycles of each frequency
187 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
188 // when to tell if we're close enough to one freq or another
189 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
191 // TI tags charge at 134.2Khz
192 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
193 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
195 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
196 // connects to SSP_DIN and the SSP_DOUT logic level controls
197 // whether we're modulating the antenna (high)
198 // or listening to the antenna (low)
199 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
201 // get TI tag data into the buffer
204 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
206 for (i
=0; i
<n
-1; i
++) {
207 // count cycles by looking for lo to hi zero crossings
208 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
210 // after 16 cycles, measure the frequency
213 samples
=i
-samples
; // number of samples in these 16 cycles
215 // TI bits are coming to us lsb first so shift them
216 // right through our 128 bit right shift register
217 shift0
= (shift0
>>1) | (shift1
<< 31);
218 shift1
= (shift1
>>1) | (shift2
<< 31);
219 shift2
= (shift2
>>1) | (shift3
<< 31);
222 // check if the cycles fall close to the number
223 // expected for either the low or high frequency
224 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
225 // low frequency represents a 1
227 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
228 // high frequency represents a 0
230 // probably detected a gay waveform or noise
231 // use this as gaydar or discard shift register and start again
232 shift3
= shift2
= shift1
= shift0
= 0;
236 // for each bit we receive, test if we've detected a valid tag
238 // if we see 17 zeroes followed by 6 ones, we might have a tag
239 // remember the bits are backwards
240 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
241 // if start and end bytes match, we have a tag so break out of the loop
242 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
243 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
251 // if flag is set we have a tag
253 DbpString("Info: No valid tag detected.");
255 // put 64 bit data into shift1 and shift0
256 shift0
= (shift0
>>24) | (shift1
<< 8);
257 shift1
= (shift1
>>24) | (shift2
<< 8);
259 // align 16 bit crc into lower half of shift2
260 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
262 // if r/w tag, check ident match
263 if (shift3
& (1<<15) ) {
264 DbpString("Info: TI tag is rewriteable");
265 // only 15 bits compare, last bit of ident is not valid
266 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
267 DbpString("Error: Ident mismatch!");
269 DbpString("Info: TI tag ident is valid");
272 DbpString("Info: TI tag is readonly");
275 // WARNING the order of the bytes in which we calc crc below needs checking
276 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
277 // bytes in reverse or something
281 crc
= update_crc16(crc
, (shift0
)&0xff);
282 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
283 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
284 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
285 crc
= update_crc16(crc
, (shift1
)&0xff);
286 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
287 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
288 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
290 Dbprintf("Info: Tag data: %x%08x, crc=%x",
291 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
292 if (crc
!= (shift2
&0xffff)) {
293 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
295 DbpString("Info: CRC is good");
300 void WriteTIbyte(uint8_t b
)
304 // modulate 8 bits out to the antenna
308 // stop modulating antenna
315 // stop modulating antenna
325 void AcquireTiType(void)
328 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
329 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
330 #define TIBUFLEN 1250
333 memset(BigBuf
,0,sizeof(BigBuf
));
335 // Set up the synchronous serial port
336 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
337 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
339 // steal this pin from the SSP and use it to control the modulation
340 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
341 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
343 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
344 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
346 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
347 // 48/2 = 24 MHz clock must be divided by 12
348 AT91C_BASE_SSC
->SSC_CMR
= 12;
350 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
351 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
352 AT91C_BASE_SSC
->SSC_TCMR
= 0;
353 AT91C_BASE_SSC
->SSC_TFMR
= 0;
360 // Charge TI tag for 50ms.
363 // stop modulating antenna and listen
370 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
371 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
372 i
++; if(i
>= TIBUFLEN
) break;
377 // return stolen pin to SSP
378 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
379 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
381 char *dest
= (char *)BigBuf
;
384 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
385 for (j
=0; j
<32; j
++) {
386 if(BigBuf
[i
] & (1 << j
)) {
395 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
396 // if crc provided, it will be written with the data verbatim (even if bogus)
397 // if not provided a valid crc will be computed from the data and written.
398 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
400 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
402 crc
= update_crc16(crc
, (idlo
)&0xff);
403 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
404 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
405 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
406 crc
= update_crc16(crc
, (idhi
)&0xff);
407 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
408 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
409 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
411 Dbprintf("Writing to tag: %x%08x, crc=%x",
412 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
414 // TI tags charge at 134.2Khz
415 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
416 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
417 // connects to SSP_DIN and the SSP_DOUT logic level controls
418 // whether we're modulating the antenna (high)
419 // or listening to the antenna (low)
420 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
423 // steal this pin from the SSP and use it to control the modulation
424 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
425 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
427 // writing algorithm:
428 // a high bit consists of a field off for 1ms and field on for 1ms
429 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
430 // initiate a charge time of 50ms (field on) then immediately start writing bits
431 // start by writing 0xBB (keyword) and 0xEB (password)
432 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
433 // finally end with 0x0300 (write frame)
434 // all data is sent lsb firts
435 // finish with 15ms programming time
439 SpinDelay(50); // charge time
441 WriteTIbyte(0xbb); // keyword
442 WriteTIbyte(0xeb); // password
443 WriteTIbyte( (idlo
)&0xff );
444 WriteTIbyte( (idlo
>>8 )&0xff );
445 WriteTIbyte( (idlo
>>16)&0xff );
446 WriteTIbyte( (idlo
>>24)&0xff );
447 WriteTIbyte( (idhi
)&0xff );
448 WriteTIbyte( (idhi
>>8 )&0xff );
449 WriteTIbyte( (idhi
>>16)&0xff );
450 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
451 WriteTIbyte( (crc
)&0xff ); // crc lo
452 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
453 WriteTIbyte(0x00); // write frame lo
454 WriteTIbyte(0x03); // write frame hi
456 SpinDelay(50); // programming time
460 // get TI tag data into the buffer
463 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
464 DbpString("Now use tiread to check");
467 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
470 uint8_t *tab
= (uint8_t *)BigBuf
;
472 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
473 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
475 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
477 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
478 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
480 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
481 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
485 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
487 DbpString("Stopped");
504 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
506 DbpString("Stopped");
523 #define DEBUG_FRAME_CONTENTS 1
524 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
528 // compose fc/8 fc/10 waveform
529 static void fc(int c
, int *n
) {
530 uint8_t *dest
= (uint8_t *)BigBuf
;
533 // for when we want an fc8 pattern every 4 logical bits
544 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
546 for (idx
=0; idx
<6; idx
++) {
558 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
560 for (idx
=0; idx
<5; idx
++) {
575 // prepare a waveform pattern in the buffer based on the ID given then
576 // simulate a HID tag until the button is pressed
577 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
581 HID tag bitstream format
582 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
583 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
584 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
585 A fc8 is inserted before every 4 bits
586 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
587 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
591 DbpString("Tags can only have 44 bits.");
595 // special start of frame marker containing invalid bit sequences
596 fc(8, &n
); fc(8, &n
); // invalid
597 fc(8, &n
); fc(10, &n
); // logical 0
598 fc(10, &n
); fc(10, &n
); // invalid
599 fc(8, &n
); fc(10, &n
); // logical 0
602 // manchester encode bits 43 to 32
603 for (i
=11; i
>=0; i
--) {
604 if ((i
%4)==3) fc(0,&n
);
606 fc(10, &n
); fc(8, &n
); // low-high transition
608 fc(8, &n
); fc(10, &n
); // high-low transition
613 // manchester encode bits 31 to 0
614 for (i
=31; i
>=0; i
--) {
615 if ((i
%4)==3) fc(0,&n
);
617 fc(10, &n
); fc(8, &n
); // low-high transition
619 fc(8, &n
); fc(10, &n
); // high-low transition
625 SimulateTagLowFrequency(n
, 0, ledcontrol
);
631 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
632 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
634 uint8_t *dest
= (uint8_t *)BigBuf
;
636 size_t size
=sizeof(BigBuf
);
637 uint32_t hi2
=0, hi
=0, lo
=0;
639 // Configure to go in 125Khz listen mode
640 LFSetupFPGAForADC(95, true);
642 while(!BUTTON_PRESS()) {
645 if (ledcontrol
) LED_A_ON();
647 DoAcquisition125k_internal(-1,true);
650 size
= sizeof(BigBuf
);
652 idx
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
);
655 // final loop, go over previously decoded manchester data and decode into usable tag ID
656 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
657 if (hi2
!= 0){ //extra large HID tags
658 Dbprintf("TAG ID: %x%08x%08x (%d)",
659 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
660 }else { //standard HID tags <38 bits
661 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
664 uint32_t cardnum
= 0;
665 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
667 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
669 while(lo2
> 1){ //find last bit set to 1 (format len bit)
677 cardnum
= (lo
>>1)&0xFFFF;
681 cardnum
= (lo
>>1)&0x7FFFF;
682 fc
= ((hi
&0xF)<<12)|(lo
>>20);
685 cardnum
= (lo
>>1)&0xFFFF;
686 fc
= ((hi
&1)<<15)|(lo
>>17);
689 cardnum
= (lo
>>1)&0xFFFFF;
690 fc
= ((hi
&1)<<11)|(lo
>>21);
693 else { //if bit 38 is not set then 37 bit format is used
698 cardnum
= (lo
>>1)&0x7FFFF;
699 fc
= ((hi
&0xF)<<12)|(lo
>>20);
702 //Dbprintf("TAG ID: %x%08x (%d)",
703 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
704 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
705 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF,
706 (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
);
709 if (ledcontrol
) LED_A_OFF();
717 DbpString("Stopped");
718 if (ledcontrol
) LED_A_OFF();
721 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
723 uint8_t *dest
= (uint8_t *)BigBuf
;
725 size_t size
=0, idx
=0;
726 int clk
=0, invert
=0, errCnt
=0;
728 // Configure to go in 125Khz listen mode
729 LFSetupFPGAForADC(95, true);
731 while(!BUTTON_PRESS()) {
734 if (ledcontrol
) LED_A_ON();
736 DoAcquisition125k_internal(-1,true);
737 size
= sizeof(BigBuf
);
738 //Dbprintf("DEBUG: Buffer got");
739 //askdemod and manchester decode
740 errCnt
= askmandemod(dest
, &size
, &clk
, &invert
);
741 //Dbprintf("DEBUG: ASK Got");
745 lo
= Em410xDecode(dest
, &size
, &idx
);
746 //Dbprintf("DEBUG: EM GOT");
748 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
751 (uint32_t)(lo
&0xFFFF),
752 (uint32_t)((lo
>>16LL) & 0xFF),
753 (uint32_t)(lo
& 0xFFFFFF));
756 if (ledcontrol
) LED_A_OFF();
760 //Dbprintf("DEBUG: No Tag");
769 DbpString("Stopped");
770 if (ledcontrol
) LED_A_OFF();
773 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
775 uint8_t *dest
= (uint8_t *)BigBuf
;
777 uint32_t code
=0, code2
=0;
779 uint8_t facilitycode
=0;
781 // Configure to go in 125Khz listen mode
782 LFSetupFPGAForADC(95, true);
784 while(!BUTTON_PRESS()) {
786 if (ledcontrol
) LED_A_ON();
787 DoAcquisition125k_internal(-1,true);
788 //fskdemod and get start index
790 idx
= IOdemodFSK(dest
,sizeof(BigBuf
));
795 //0 10 20 30 40 50 60
797 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
798 //-----------------------------------------------------------------------------
799 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
801 //XSF(version)facility:codeone+codetwo
803 if(findone
){ //only print binary if we are doing one
804 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
805 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
806 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
807 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
808 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
809 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
810 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
812 code
= bytebits_to_byte(dest
+idx
,32);
813 code2
= bytebits_to_byte(dest
+idx
+32,32);
814 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
815 facilitycode
= bytebits_to_byte(dest
+idx
+18,8) ;
816 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
818 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version
,facilitycode
,number
,code
,code2
);
819 // if we're only looking for one tag
821 if (ledcontrol
) LED_A_OFF();
826 version
=facilitycode
=0;
832 DbpString("Stopped");
833 if (ledcontrol
) LED_A_OFF();
836 /*------------------------------
837 * T5555/T5557/T5567 routines
838 *------------------------------
841 /* T55x7 configuration register definitions */
842 #define T55x7_POR_DELAY 0x00000001
843 #define T55x7_ST_TERMINATOR 0x00000008
844 #define T55x7_PWD 0x00000010
845 #define T55x7_MAXBLOCK_SHIFT 5
846 #define T55x7_AOR 0x00000200
847 #define T55x7_PSKCF_RF_2 0
848 #define T55x7_PSKCF_RF_4 0x00000400
849 #define T55x7_PSKCF_RF_8 0x00000800
850 #define T55x7_MODULATION_DIRECT 0
851 #define T55x7_MODULATION_PSK1 0x00001000
852 #define T55x7_MODULATION_PSK2 0x00002000
853 #define T55x7_MODULATION_PSK3 0x00003000
854 #define T55x7_MODULATION_FSK1 0x00004000
855 #define T55x7_MODULATION_FSK2 0x00005000
856 #define T55x7_MODULATION_FSK1a 0x00006000
857 #define T55x7_MODULATION_FSK2a 0x00007000
858 #define T55x7_MODULATION_MANCHESTER 0x00008000
859 #define T55x7_MODULATION_BIPHASE 0x00010000
860 #define T55x7_BITRATE_RF_8 0
861 #define T55x7_BITRATE_RF_16 0x00040000
862 #define T55x7_BITRATE_RF_32 0x00080000
863 #define T55x7_BITRATE_RF_40 0x000C0000
864 #define T55x7_BITRATE_RF_50 0x00100000
865 #define T55x7_BITRATE_RF_64 0x00140000
866 #define T55x7_BITRATE_RF_100 0x00180000
867 #define T55x7_BITRATE_RF_128 0x001C0000
869 /* T5555 (Q5) configuration register definitions */
870 #define T5555_ST_TERMINATOR 0x00000001
871 #define T5555_MAXBLOCK_SHIFT 0x00000001
872 #define T5555_MODULATION_MANCHESTER 0
873 #define T5555_MODULATION_PSK1 0x00000010
874 #define T5555_MODULATION_PSK2 0x00000020
875 #define T5555_MODULATION_PSK3 0x00000030
876 #define T5555_MODULATION_FSK1 0x00000040
877 #define T5555_MODULATION_FSK2 0x00000050
878 #define T5555_MODULATION_BIPHASE 0x00000060
879 #define T5555_MODULATION_DIRECT 0x00000070
880 #define T5555_INVERT_OUTPUT 0x00000080
881 #define T5555_PSK_RF_2 0
882 #define T5555_PSK_RF_4 0x00000100
883 #define T5555_PSK_RF_8 0x00000200
884 #define T5555_USE_PWD 0x00000400
885 #define T5555_USE_AOR 0x00000800
886 #define T5555_BITRATE_SHIFT 12
887 #define T5555_FAST_WRITE 0x00004000
888 #define T5555_PAGE_SELECT 0x00008000
891 * Relevant times in microsecond
892 * To compensate antenna falling times shorten the write times
893 * and enlarge the gap ones.
895 #define START_GAP 250
896 #define WRITE_GAP 160
897 #define WRITE_0 144 // 192
898 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
900 // Write one bit to card
901 void T55xxWriteBit(int bit
)
903 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
904 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
905 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
907 SpinDelayUs(WRITE_0
);
909 SpinDelayUs(WRITE_1
);
910 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
911 SpinDelayUs(WRITE_GAP
);
914 // Write one card block in page 0, no lock
915 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
917 //unsigned int i; //enio adjustment 12/10/14
920 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
921 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
922 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
924 // Give it a bit of time for the resonant antenna to settle.
925 // And for the tag to fully power up
928 // Now start writting
929 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
930 SpinDelayUs(START_GAP
);
934 T55xxWriteBit(0); //Page 0
937 for (i
= 0x80000000; i
!= 0; i
>>= 1)
938 T55xxWriteBit(Pwd
& i
);
944 for (i
= 0x80000000; i
!= 0; i
>>= 1)
945 T55xxWriteBit(Data
& i
);
948 for (i
= 0x04; i
!= 0; i
>>= 1)
949 T55xxWriteBit(Block
& i
);
951 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
952 // so wait a little more)
953 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
954 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
956 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
959 // Read one card block in page 0
960 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
962 uint8_t *dest
= (uint8_t *)BigBuf
;
963 //int m=0, i=0; //enio adjustment 12/10/14
965 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
967 // Clear destination buffer before sending the command
968 memset(dest
, 128, m
);
969 // Connect the A/D to the peak-detected low-frequency path.
970 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
971 // Now set up the SSC to get the ADC samples that are now streaming at us.
975 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
976 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
978 // Give it a bit of time for the resonant antenna to settle.
979 // And for the tag to fully power up
982 // Now start writting
983 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
984 SpinDelayUs(START_GAP
);
988 T55xxWriteBit(0); //Page 0
991 for (i
= 0x80000000; i
!= 0; i
>>= 1)
992 T55xxWriteBit(Pwd
& i
);
997 for (i
= 0x04; i
!= 0; i
>>= 1)
998 T55xxWriteBit(Block
& i
);
1000 // Turn field on to read the response
1001 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1002 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1004 // Now do the acquisition
1007 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1008 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1010 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1011 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1012 // we don't care about actual value, only if it's more or less than a
1013 // threshold essentially we capture zero crossings for later analysis
1014 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1020 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1025 // Read card traceability data (page 1)
1026 void T55xxReadTrace(void){
1027 uint8_t *dest
= (uint8_t *)BigBuf
;
1030 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1032 // Clear destination buffer before sending the command
1033 memset(dest
, 128, m
);
1034 // Connect the A/D to the peak-detected low-frequency path.
1035 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1036 // Now set up the SSC to get the ADC samples that are now streaming at us.
1040 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1041 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1043 // Give it a bit of time for the resonant antenna to settle.
1044 // And for the tag to fully power up
1047 // Now start writting
1048 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1049 SpinDelayUs(START_GAP
);
1053 T55xxWriteBit(1); //Page 1
1055 // Turn field on to read the response
1056 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1057 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1059 // Now do the acquisition
1062 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1063 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1065 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1066 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1072 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1077 /*-------------- Cloning routines -----------*/
1078 // Copy HID id to card and setup block 0 config
1079 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1081 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1085 // Ensure no more than 84 bits supplied
1087 DbpString("Tags can only have 84 bits.");
1090 // Build the 6 data blocks for supplied 84bit ID
1092 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1093 for (int i
=0;i
<4;i
++) {
1094 if (hi2
& (1<<(19-i
)))
1095 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1097 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1101 for (int i
=0;i
<16;i
++) {
1102 if (hi2
& (1<<(15-i
)))
1103 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1105 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1109 for (int i
=0;i
<16;i
++) {
1110 if (hi
& (1<<(31-i
)))
1111 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1113 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1117 for (int i
=0;i
<16;i
++) {
1118 if (hi
& (1<<(15-i
)))
1119 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1121 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1125 for (int i
=0;i
<16;i
++) {
1126 if (lo
& (1<<(31-i
)))
1127 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1129 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1133 for (int i
=0;i
<16;i
++) {
1134 if (lo
& (1<<(15-i
)))
1135 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1137 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1141 // Ensure no more than 44 bits supplied
1143 DbpString("Tags can only have 44 bits.");
1147 // Build the 3 data blocks for supplied 44bit ID
1150 data1
= 0x1D000000; // load preamble
1152 for (int i
=0;i
<12;i
++) {
1153 if (hi
& (1<<(11-i
)))
1154 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1156 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1160 for (int i
=0;i
<16;i
++) {
1161 if (lo
& (1<<(31-i
)))
1162 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1164 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1168 for (int i
=0;i
<16;i
++) {
1169 if (lo
& (1<<(15-i
)))
1170 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1172 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1177 // Program the data blocks for supplied ID
1178 // and the block 0 for HID format
1179 T55xxWriteBlock(data1
,1,0,0);
1180 T55xxWriteBlock(data2
,2,0,0);
1181 T55xxWriteBlock(data3
,3,0,0);
1183 if (longFMT
) { // if long format there are 6 blocks
1184 T55xxWriteBlock(data4
,4,0,0);
1185 T55xxWriteBlock(data5
,5,0,0);
1186 T55xxWriteBlock(data6
,6,0,0);
1189 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1190 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1191 T55x7_MODULATION_FSK2a
|
1192 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1200 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1202 int data1
=0, data2
=0; //up to six blocks for long format
1204 data1
= hi
; // load preamble
1208 // Program the data blocks for supplied ID
1209 // and the block 0 for HID format
1210 T55xxWriteBlock(data1
,1,0,0);
1211 T55xxWriteBlock(data2
,2,0,0);
1214 T55xxWriteBlock(0x00147040,0,0,0);
1220 // Define 9bit header for EM410x tags
1221 #define EM410X_HEADER 0x1FF
1222 #define EM410X_ID_LENGTH 40
1224 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1227 uint64_t id
= EM410X_HEADER
;
1228 uint64_t rev_id
= 0; // reversed ID
1229 int c_parity
[4]; // column parity
1230 int r_parity
= 0; // row parity
1233 // Reverse ID bits given as parameter (for simpler operations)
1234 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1236 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1239 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1244 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1245 id_bit
= rev_id
& 1;
1248 // Don't write row parity bit at start of parsing
1250 id
= (id
<< 1) | r_parity
;
1251 // Start counting parity for new row
1258 // First elements in column?
1260 // Fill out first elements
1261 c_parity
[i
] = id_bit
;
1263 // Count column parity
1264 c_parity
[i
% 4] ^= id_bit
;
1267 id
= (id
<< 1) | id_bit
;
1271 // Insert parity bit of last row
1272 id
= (id
<< 1) | r_parity
;
1274 // Fill out column parity at the end of tag
1275 for (i
= 0; i
< 4; ++i
)
1276 id
= (id
<< 1) | c_parity
[i
];
1281 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1285 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1286 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1288 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1290 // Clock rate is stored in bits 8-15 of the card value
1291 clock
= (card
& 0xFF00) >> 8;
1292 Dbprintf("Clock rate: %d", clock
);
1296 clock
= T55x7_BITRATE_RF_32
;
1299 clock
= T55x7_BITRATE_RF_16
;
1302 // A value of 0 is assumed to be 64 for backwards-compatibility
1305 clock
= T55x7_BITRATE_RF_64
;
1308 Dbprintf("Invalid clock rate: %d", clock
);
1312 // Writing configuration for T55x7 tag
1313 T55xxWriteBlock(clock
|
1314 T55x7_MODULATION_MANCHESTER
|
1315 2 << T55x7_MAXBLOCK_SHIFT
,
1319 // Writing configuration for T5555(Q5) tag
1320 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1321 T5555_MODULATION_MANCHESTER
|
1322 2 << T5555_MAXBLOCK_SHIFT
,
1326 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1327 (uint32_t)(id
>> 32), (uint32_t)id
);
1330 // Clone Indala 64-bit tag by UID to T55x7
1331 void CopyIndala64toT55x7(int hi
, int lo
)
1334 //Program the 2 data blocks for supplied 64bit UID
1335 // and the block 0 for Indala64 format
1336 T55xxWriteBlock(hi
,1,0,0);
1337 T55xxWriteBlock(lo
,2,0,0);
1338 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1339 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1340 T55x7_MODULATION_PSK1
|
1341 2 << T55x7_MAXBLOCK_SHIFT
,
1343 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1344 // T5567WriteBlock(0x603E1042,0);
1350 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1353 //Program the 7 data blocks for supplied 224bit UID
1354 // and the block 0 for Indala224 format
1355 T55xxWriteBlock(uid1
,1,0,0);
1356 T55xxWriteBlock(uid2
,2,0,0);
1357 T55xxWriteBlock(uid3
,3,0,0);
1358 T55xxWriteBlock(uid4
,4,0,0);
1359 T55xxWriteBlock(uid5
,5,0,0);
1360 T55xxWriteBlock(uid6
,6,0,0);
1361 T55xxWriteBlock(uid7
,7,0,0);
1362 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1363 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1364 T55x7_MODULATION_PSK1
|
1365 7 << T55x7_MAXBLOCK_SHIFT
,
1367 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1368 // T5567WriteBlock(0x603E10E2,0);
1375 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1376 #define max(x,y) ( x<y ? y:x)
1378 int DemodPCF7931(uint8_t **outBlocks
) {
1379 uint8_t BitStream
[256];
1380 uint8_t Blocks
[8][16];
1381 uint8_t *GraphBuffer
= (uint8_t *)BigBuf
;
1382 int GraphTraceLen
= sizeof(BigBuf
);
1383 int i
, j
, lastval
, bitidx
, half_switch
;
1385 int tolerance
= clock
/ 8;
1386 int pmc
, block_done
;
1387 int lc
, warnings
= 0;
1389 int lmin
=128, lmax
=128;
1392 AcquireRawAdcSamples125k(0);
1399 /* Find first local max/min */
1400 if(GraphBuffer
[1] > GraphBuffer
[0]) {
1401 while(i
< GraphTraceLen
) {
1402 if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
)
1409 while(i
< GraphTraceLen
) {
1410 if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
)
1422 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1424 if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir
== 0 && GraphBuffer
[i
] < lmin
))
1429 // Switch depending on lc length:
1430 // Tolerance is 1/8 of clock rate (arbitrary)
1431 if (abs(lc
-clock
/4) < tolerance
) {
1433 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1435 i
+= (128+127+16+32+33+16)-1;
1443 } else if (abs(lc
-clock
/2) < tolerance
) {
1445 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1447 i
+= (128+127+16+32+33)-1;
1452 else if(half_switch
== 1) {
1453 BitStream
[bitidx
++] = 0;
1458 } else if (abs(lc
-clock
) < tolerance
) {
1460 BitStream
[bitidx
++] = 1;
1466 Dbprintf("Error: too many detection errors, aborting.");
1471 if(block_done
== 1) {
1473 for(j
=0; j
<16; j
++) {
1474 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1475 64*BitStream
[j
*8+6]+
1476 32*BitStream
[j
*8+5]+
1477 16*BitStream
[j
*8+4]+
1489 if(i
< GraphTraceLen
)
1491 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0;
1498 if(num_blocks
== 4) break;
1500 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1504 int IsBlock0PCF7931(uint8_t *Block
) {
1505 // Assume RFU means 0 :)
1506 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1508 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1513 int IsBlock1PCF7931(uint8_t *Block
) {
1514 // Assume RFU means 0 :)
1515 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1516 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1524 void ReadPCF7931() {
1525 uint8_t Blocks
[8][17];
1526 uint8_t tmpBlocks
[4][16];
1527 int i
, j
, ind
, ind2
, n
;
1534 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1537 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1538 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1541 if(error
==10 && num_blocks
== 0) {
1542 Dbprintf("Error, no tag or bad tag");
1545 else if (tries
==20 || error
==10) {
1546 Dbprintf("Error reading the tag");
1547 Dbprintf("Here is the partial content");
1552 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1553 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1554 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1556 for(i
=0; i
<n
; i
++) {
1557 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1559 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1563 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1564 Blocks
[0][ALLOC
] = 1;
1565 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1566 Blocks
[1][ALLOC
] = 1;
1567 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1569 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1571 // Handle following blocks
1572 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1575 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1576 Blocks
[ind2
][ALLOC
] = 1;
1584 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1585 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1586 for(j
=0; j
<max_blocks
; j
++) {
1587 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1588 // Found an identical block
1589 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1592 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1593 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1594 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1595 Blocks
[ind2
][ALLOC
] = 1;
1597 if(num_blocks
== max_blocks
) goto end
;
1600 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1601 if(ind2
> max_blocks
)
1603 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1604 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1605 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1606 Blocks
[ind2
][ALLOC
] = 1;
1608 if(num_blocks
== max_blocks
) goto end
;
1617 if (BUTTON_PRESS()) return;
1618 } while (num_blocks
!= max_blocks
);
1620 Dbprintf("-----------------------------------------");
1621 Dbprintf("Memory content:");
1622 Dbprintf("-----------------------------------------");
1623 for(i
=0; i
<max_blocks
; i
++) {
1624 if(Blocks
[i
][ALLOC
]==1)
1625 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1626 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1627 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1629 Dbprintf("<missing block %d>", i
);
1631 Dbprintf("-----------------------------------------");
1637 //-----------------------------------
1638 // EM4469 / EM4305 routines
1639 //-----------------------------------
1640 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1641 #define FWD_CMD_WRITE 0xA
1642 #define FWD_CMD_READ 0x9
1643 #define FWD_CMD_DISABLE 0x5
1646 uint8_t forwardLink_data
[64]; //array of forwarded bits
1647 uint8_t * forward_ptr
; //ptr for forward message preparation
1648 uint8_t fwd_bit_sz
; //forwardlink bit counter
1649 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1651 //====================================================================
1652 // prepares command bits
1654 //====================================================================
1655 //--------------------------------------------------------------------
1656 uint8_t Prepare_Cmd( uint8_t cmd
) {
1657 //--------------------------------------------------------------------
1659 *forward_ptr
++ = 0; //start bit
1660 *forward_ptr
++ = 0; //second pause for 4050 code
1662 *forward_ptr
++ = cmd
;
1664 *forward_ptr
++ = cmd
;
1666 *forward_ptr
++ = cmd
;
1668 *forward_ptr
++ = cmd
;
1670 return 6; //return number of emited bits
1673 //====================================================================
1674 // prepares address bits
1676 //====================================================================
1678 //--------------------------------------------------------------------
1679 uint8_t Prepare_Addr( uint8_t addr
) {
1680 //--------------------------------------------------------------------
1682 register uint8_t line_parity
;
1687 *forward_ptr
++ = addr
;
1688 line_parity
^= addr
;
1692 *forward_ptr
++ = (line_parity
& 1);
1694 return 7; //return number of emited bits
1697 //====================================================================
1698 // prepares data bits intreleaved with parity bits
1700 //====================================================================
1702 //--------------------------------------------------------------------
1703 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1704 //--------------------------------------------------------------------
1706 register uint8_t line_parity
;
1707 register uint8_t column_parity
;
1708 register uint8_t i
, j
;
1709 register uint16_t data
;
1714 for(i
=0; i
<4; i
++) {
1716 for(j
=0; j
<8; j
++) {
1717 line_parity
^= data
;
1718 column_parity
^= (data
& 1) << j
;
1719 *forward_ptr
++ = data
;
1722 *forward_ptr
++ = line_parity
;
1727 for(j
=0; j
<8; j
++) {
1728 *forward_ptr
++ = column_parity
;
1729 column_parity
>>= 1;
1733 return 45; //return number of emited bits
1736 //====================================================================
1737 // Forward Link send function
1738 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1739 // fwd_bit_count set with number of bits to be sent
1740 //====================================================================
1741 void SendForward(uint8_t fwd_bit_count
) {
1743 fwd_write_ptr
= forwardLink_data
;
1744 fwd_bit_sz
= fwd_bit_count
;
1749 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1750 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1751 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1753 // Give it a bit of time for the resonant antenna to settle.
1754 // And for the tag to fully power up
1757 // force 1st mod pulse (start gap must be longer for 4305)
1758 fwd_bit_sz
--; //prepare next bit modulation
1760 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1761 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1762 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1763 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1764 SpinDelayUs(16*8); //16 cycles on (8us each)
1766 // now start writting
1767 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1768 if(((*fwd_write_ptr
++) & 1) == 1)
1769 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1771 //These timings work for 4469/4269/4305 (with the 55*8 above)
1772 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1773 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1774 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1775 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1776 SpinDelayUs(9*8); //16 cycles on (8us each)
1781 void EM4xLogin(uint32_t Password
) {
1783 uint8_t fwd_bit_count
;
1785 forward_ptr
= forwardLink_data
;
1786 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1787 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1789 SendForward(fwd_bit_count
);
1791 //Wait for command to complete
1796 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1798 uint8_t fwd_bit_count
;
1799 uint8_t *dest
= (uint8_t *)BigBuf
;
1802 //If password mode do login
1803 if (PwdMode
== 1) EM4xLogin(Pwd
);
1805 forward_ptr
= forwardLink_data
;
1806 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1807 fwd_bit_count
+= Prepare_Addr( Address
);
1810 // Clear destination buffer before sending the command
1811 memset(dest
, 128, m
);
1812 // Connect the A/D to the peak-detected low-frequency path.
1813 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1814 // Now set up the SSC to get the ADC samples that are now streaming at us.
1817 SendForward(fwd_bit_count
);
1819 // Now do the acquisition
1822 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1823 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1825 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1826 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1831 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1835 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1837 uint8_t fwd_bit_count
;
1839 //If password mode do login
1840 if (PwdMode
== 1) EM4xLogin(Pwd
);
1842 forward_ptr
= forwardLink_data
;
1843 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1844 fwd_bit_count
+= Prepare_Addr( Address
);
1845 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1847 SendForward(fwd_bit_count
);
1849 //Wait for write to complete
1851 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off