1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
26 #include "lfsampling.h"
28 #include "mifareutil.h"
34 // Craig Young - 14a stand-alone code
35 #ifdef WITH_ISO14443a_StandAlone
36 #include "iso14443a.h"
39 #define abs(x) ( ((x)<0) ? -(x) : (x) )
41 //=============================================================================
42 // A buffer where we can queue things up to be sent through the FPGA, for
43 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
44 // is the order in which they go out on the wire.
45 //=============================================================================
47 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
48 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
51 struct common_area common_area
__attribute__((section(".commonarea")));
53 void ToSendReset(void)
59 void ToSendStuffBit(int b
)
63 ToSend
[ToSendMax
] = 0;
68 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
73 if(ToSendMax
>= sizeof(ToSend
)) {
75 DbpString("ToSendStuffBit overflowed!");
79 //=============================================================================
80 // Debug print functions, to go out over USB, to the usual PC-side client.
81 //=============================================================================
83 void DbpString(char *str
)
85 byte_t len
= strlen(str
);
86 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
90 void DbpIntegers(int x1
, int x2
, int x3
)
92 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
96 void Dbprintf(const char *fmt
, ...) {
97 // should probably limit size here; oh well, let's just use a big buffer
98 char output_string
[128];
102 kvsprintf(fmt
, output_string
, 10, ap
);
105 DbpString(output_string
);
108 // prints HEX & ASCII
109 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
122 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
125 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
127 Dbprintf("%*D",l
,d
," ");
135 //-----------------------------------------------------------------------------
136 // Read an ADC channel and block till it completes, then return the result
137 // in ADC units (0 to 1023). Also a routine to average 32 samples and
139 //-----------------------------------------------------------------------------
140 static int ReadAdc(int ch
)
144 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
145 AT91C_BASE_ADC
->ADC_MR
=
146 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
147 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
148 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
150 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
151 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
152 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
155 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
157 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
159 // Note: with the "historic" values in the comments above, the error was 34% !!!
161 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
163 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
165 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
167 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
172 int AvgAdc(int ch
) // was static - merlok
177 for(i
= 0; i
< 32; i
++) {
181 return (a
+ 15) >> 5;
184 void MeasureAntennaTuning(void)
186 uint8_t LF_Results
[256];
187 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
188 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
193 * Sweeps the useful LF range of the proxmark from
194 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
195 * read the voltage in the antenna, the result left
196 * in the buffer is a graph which should clearly show
197 * the resonating frequency of your LF antenna
198 * ( hopefully around 95 if it is tuned to 125kHz!)
201 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
202 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
203 for (i
=255; i
>=19; i
--) {
205 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
207 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
208 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
209 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
211 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
212 if(LF_Results
[i
] > peak
) {
214 peak
= LF_Results
[i
];
220 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
223 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
224 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
225 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
227 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
229 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<<16), vHf
, peakf
| (peakv
<<16), LF_Results
, 256);
230 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
236 void MeasureAntennaTuningHf(void)
238 int vHf
= 0; // in mV
240 DbpString("Measuring HF antenna, press button to exit");
242 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
243 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
244 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
248 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
250 Dbprintf("%d mV",vHf
);
251 if (BUTTON_PRESS()) break;
253 DbpString("cancelled");
255 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
260 void ReadMem(int addr
)
262 const uint8_t *data
= ((uint8_t *)addr
);
264 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
265 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
268 /* osimage version information is linked in */
269 extern struct version_information version_information
;
270 /* bootrom version information is pointed to from _bootphase1_version_pointer */
271 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
272 void SendVersion(void)
274 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
275 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
277 /* Try to find the bootrom version information. Expect to find a pointer at
278 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
279 * pointer, then use it.
281 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
282 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
283 strcat(VersionString
, "bootrom version information appears invalid\n");
285 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
286 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
289 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
290 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
292 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
293 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
294 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
295 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
297 // Send Chip ID and used flash memory
298 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
299 uint32_t compressed_data_section_size
= common_area
.arg1
;
300 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
303 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
304 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
305 void printUSBSpeed(void)
307 Dbprintf("USB Speed:");
308 Dbprintf(" Sending USB packets to client...");
310 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
311 uint8_t *test_data
= BigBuf_get_addr();
314 uint32_t start_time
= end_time
= GetTickCount();
315 uint32_t bytes_transferred
= 0;
318 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
319 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
320 end_time
= GetTickCount();
321 bytes_transferred
+= USB_CMD_DATA_SIZE
;
325 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
326 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
327 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
328 1000 * bytes_transferred
/ (end_time
- start_time
));
333 * Prints runtime information about the PM3.
335 void SendStatus(void)
337 BigBuf_print_status();
339 printConfig(); //LF Sampling config
342 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
343 Dbprintf(" ToSendMax..........%d", ToSendMax
);
344 Dbprintf(" ToSendBit..........%d", ToSendBit
);
345 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE
);
347 cmd_send(CMD_ACK
,1,0,0,0,0);
350 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
354 void StandAloneMode()
356 DbpString("Stand-alone mode! No PC necessary.");
357 // Oooh pretty -- notify user we're in elite samy mode now
359 LED(LED_ORANGE
, 200);
361 LED(LED_ORANGE
, 200);
363 LED(LED_ORANGE
, 200);
365 LED(LED_ORANGE
, 200);
374 #ifdef WITH_ISO14443a_StandAlone
375 void StandAloneMode14a()
378 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
381 int playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
382 int cardRead
[OPTS
] = {0};
383 uint8_t readUID
[10] = {0};
384 uint32_t uid_1st
[OPTS
]={0};
385 uint32_t uid_2nd
[OPTS
]={0};
386 uint32_t uid_tmp1
= 0;
387 uint32_t uid_tmp2
= 0;
388 iso14a_card_select_t hi14a_card
[OPTS
];
390 LED(selected
+ 1, 0);
398 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
402 LED(selected
+ 1, 0);
406 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
407 /* need this delay to prevent catching some weird data */
409 /* Code for reading from 14a tag */
410 uint8_t uid
[10] ={0};
412 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
417 if (BUTTON_PRESS()) {
418 if (cardRead
[selected
]) {
419 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
422 else if (cardRead
[(selected
+1)%OPTS
]) {
423 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
424 selected
= (selected
+1)%OPTS
;
425 break; // playing = 1;
428 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
432 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
))
436 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
437 memcpy(readUID
,uid
,10*sizeof(uint8_t));
438 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
439 // Set UID byte order
440 for (int i
=0; i
<4; i
++)
442 dst
= (uint8_t *)&uid_tmp2
;
443 for (int i
=0; i
<4; i
++)
445 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
446 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
450 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
451 uid_1st
[selected
] = (uid_tmp1
)>>8;
452 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
455 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
456 uid_1st
[selected
] = uid_tmp1
;
457 uid_2nd
[selected
] = uid_tmp2
;
463 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
464 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
467 LED(LED_ORANGE
, 200);
469 LED(LED_ORANGE
, 200);
472 LED(selected
+ 1, 0);
474 // Next state is replay:
477 cardRead
[selected
] = 1;
479 /* MF Classic UID clone */
480 else if (iGotoClone
==1)
484 LED(selected
+ 1, 0);
485 LED(LED_ORANGE
, 250);
489 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
491 // wait for button to be released
492 while(BUTTON_PRESS())
494 // Delay cloning until card is in place
497 Dbprintf("Starting clone. [Bank: %u]", selected
);
498 // need this delay to prevent catching some weird data
500 // Begin clone function here:
501 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
502 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
503 memcpy(c.d.asBytes, data, 16);
506 Block read is similar:
507 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
508 We need to imitate that call with blockNo 0 to set a uid.
510 The get and set commands are handled in this file:
511 // Work with "magic Chinese" card
512 case CMD_MIFARE_CSETBLOCK:
513 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
515 case CMD_MIFARE_CGETBLOCK:
516 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
519 mfCSetUID provides example logic for UID set workflow:
520 -Read block0 from card in field with MifareCGetBlock()
521 -Configure new values without replacing reserved bytes
522 memcpy(block0, uid, 4); // Copy UID bytes from byte array
524 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
525 Bytes 5-7 are reserved SAK and ATQA for mifare classic
526 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
528 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
529 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
530 MifareCGetBlock(0x3F, 1, 0, oldBlock0
);
531 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
532 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
536 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
537 memcpy(newBlock0
,oldBlock0
,16);
538 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
540 newBlock0
[0] = uid_1st
[selected
]>>24;
541 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
542 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
543 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
544 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
545 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
546 MifareCSetBlock(0, 0xFF,0, newBlock0
);
547 MifareCGetBlock(0x3F, 1, 0, testBlock0
);
548 if (memcmp(testBlock0
,newBlock0
,16)==0)
550 DbpString("Cloned successfull!");
551 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
554 selected
= (selected
+ 1) % OPTS
;
557 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
562 LED(selected
+ 1, 0);
565 // Change where to record (or begin playing)
566 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
569 LED(selected
+ 1, 0);
571 // Begin transmitting
575 DbpString("Playing");
578 int button_action
= BUTTON_HELD(1000);
579 if (button_action
== 0) { // No button action, proceed with sim
580 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
581 uint8_t flags
= ( uid_2nd
[selected
] > 0x00 ) ? FLAG_7B_UID_IN_DATA
: FLAG_4B_UID_IN_DATA
;
582 num_to_bytes(uid_1st
[selected
], 3, data
);
583 num_to_bytes(uid_2nd
[selected
], 4, data
);
585 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
586 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
587 DbpString("Mifare Classic");
588 SimulateIso14443aTag(1, flags
, data
); // Mifare Classic
590 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
591 DbpString("Mifare Ultralight");
592 SimulateIso14443aTag(2, flags
, data
); // Mifare Ultralight
594 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
595 DbpString("Mifare DESFire");
596 SimulateIso14443aTag(3, flags
, data
); // Mifare DESFire
599 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
600 SimulateIso14443aTag(1, flags
, data
);
603 else if (button_action
== BUTTON_SINGLE_CLICK
) {
604 selected
= (selected
+ 1) % OPTS
;
605 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
609 else if (button_action
== BUTTON_HOLD
) {
610 Dbprintf("Playtime over. Begin cloning...");
617 /* We pressed a button so ignore it here with a delay */
620 LED(selected
+ 1, 0);
623 while(BUTTON_PRESS())
629 // samy's sniff and repeat routine
633 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
635 int high
[OPTS
], low
[OPTS
];
640 // Turn on selected LED
641 LED(selected
+ 1, 0);
648 // Was our button held down or pressed?
649 int button_pressed
= BUTTON_HELD(1000);
652 // Button was held for a second, begin recording
653 if (button_pressed
> 0 && cardRead
== 0)
656 LED(selected
+ 1, 0);
660 DbpString("Starting recording");
662 // wait for button to be released
663 while(BUTTON_PRESS())
666 /* need this delay to prevent catching some weird data */
669 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
670 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
673 LED(selected
+ 1, 0);
674 // Finished recording
676 // If we were previously playing, set playing off
677 // so next button push begins playing what we recorded
684 else if (button_pressed
> 0 && cardRead
== 1)
687 LED(selected
+ 1, 0);
691 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
693 // wait for button to be released
694 while(BUTTON_PRESS())
697 /* need this delay to prevent catching some weird data */
700 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
701 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
704 LED(selected
+ 1, 0);
705 // Finished recording
707 // If we were previously playing, set playing off
708 // so next button push begins playing what we recorded
715 // Change where to record (or begin playing)
716 else if (button_pressed
)
718 // Next option if we were previously playing
720 selected
= (selected
+ 1) % OPTS
;
724 LED(selected
+ 1, 0);
726 // Begin transmitting
730 DbpString("Playing");
731 // wait for button to be released
732 while(BUTTON_PRESS())
734 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
735 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
736 DbpString("Done playing");
737 if (BUTTON_HELD(1000) > 0)
739 DbpString("Exiting");
744 /* We pressed a button so ignore it here with a delay */
747 // when done, we're done playing, move to next option
748 selected
= (selected
+ 1) % OPTS
;
751 LED(selected
+ 1, 0);
754 while(BUTTON_PRESS())
763 Listen and detect an external reader. Determine the best location
767 Inside the ListenReaderField() function, there is two mode.
768 By default, when you call the function, you will enter mode 1.
769 If you press the PM3 button one time, you will enter mode 2.
770 If you press the PM3 button a second time, you will exit the function.
772 DESCRIPTION OF MODE 1:
773 This mode just listens for an external reader field and lights up green
774 for HF and/or red for LF. This is the original mode of the detectreader
777 DESCRIPTION OF MODE 2:
778 This mode will visually represent, using the LEDs, the actual strength of the
779 current compared to the maximum current detected. Basically, once you know
780 what kind of external reader is present, it will help you spot the best location to place
781 your antenna. You will probably not get some good results if there is a LF and a HF reader
782 at the same place! :-)
786 static const char LIGHT_SCHEME
[] = {
787 0x0, /* ---- | No field detected */
788 0x1, /* X--- | 14% of maximum current detected */
789 0x2, /* -X-- | 29% of maximum current detected */
790 0x4, /* --X- | 43% of maximum current detected */
791 0x8, /* ---X | 57% of maximum current detected */
792 0xC, /* --XX | 71% of maximum current detected */
793 0xE, /* -XXX | 86% of maximum current detected */
794 0xF, /* XXXX | 100% of maximum current detected */
796 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
798 void ListenReaderField(int limit
)
800 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
801 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
802 int mode
=1, display_val
, display_max
, i
;
806 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
809 // switch off FPGA - we don't want to measure our own signal
810 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
811 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
815 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
817 if(limit
!= HF_ONLY
) {
818 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
822 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
824 if (limit
!= LF_ONLY
) {
825 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
830 if (BUTTON_PRESS()) {
835 DbpString("Signal Strength Mode");
839 DbpString("Stopped");
847 if (limit
!= HF_ONLY
) {
849 if (abs(lf_av
- lf_baseline
) > REPORT_CHANGE
)
855 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
856 // see if there's a significant change
857 if(abs(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
858 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
865 if (limit
!= LF_ONLY
) {
867 if (abs(hf_av
- hf_baseline
) > REPORT_CHANGE
)
873 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
874 // see if there's a significant change
875 if(abs(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
876 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
884 if (limit
== LF_ONLY
) {
886 display_max
= lf_max
;
887 } else if (limit
== HF_ONLY
) {
889 display_max
= hf_max
;
890 } else { /* Pick one at random */
891 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
893 display_max
= hf_max
;
896 display_max
= lf_max
;
899 for (i
=0; i
<LIGHT_LEN
; i
++) {
900 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
901 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
902 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
903 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
904 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
912 void UsbPacketReceived(uint8_t *packet
, int len
)
914 UsbCommand
*c
= (UsbCommand
*)packet
;
916 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
920 case CMD_SET_LF_SAMPLING_CONFIG
:
921 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
923 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
924 cmd_send(CMD_ACK
, SampleLF(c
->arg
[0]),0,0,0,0);
926 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
927 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
929 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
930 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
932 case CMD_HID_DEMOD_FSK
:
933 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
935 case CMD_HID_SIM_TAG
:
936 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
938 case CMD_FSK_SIM_TAG
:
939 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
941 case CMD_ASK_SIM_TAG
:
942 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
944 case CMD_PSK_SIM_TAG
:
945 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
947 case CMD_HID_CLONE_TAG
:
948 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
950 case CMD_IO_DEMOD_FSK
:
951 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
953 case CMD_IO_CLONE_TAG
:
954 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
956 case CMD_EM410X_DEMOD
:
957 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
959 case CMD_EM410X_WRITE_TAG
:
960 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
962 case CMD_READ_TI_TYPE
:
965 case CMD_WRITE_TI_TYPE
:
966 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
968 case CMD_SIMULATE_TAG_125K
:
970 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
973 case CMD_LF_SIMULATE_BIDIR
:
974 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
976 case CMD_INDALA_CLONE_TAG
:
977 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
979 case CMD_INDALA_CLONE_TAG_L
:
980 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
982 case CMD_T55XX_READ_BLOCK
:
983 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
985 case CMD_T55XX_WRITE_BLOCK
:
986 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
988 case CMD_T55XX_WAKEUP
:
989 T55xxWakeUp(c
->arg
[0]);
991 case CMD_T55XX_RESET_READ
:
994 case CMD_PCF7931_READ
:
997 case CMD_PCF7931_WRITE
:
998 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1000 case CMD_EM4X_READ_WORD
:
1001 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
1003 case CMD_EM4X_WRITE_WORD
:
1004 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
1006 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1007 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1009 case CMD_VIKING_CLONE_TAG
:
1010 CopyViKingtoT55x7(c
->arg
[0],c
->arg
[1]);
1017 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1018 SnoopHitag(c
->arg
[0]);
1020 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1021 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1023 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1024 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1028 #ifdef WITH_ISO15693
1029 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1030 AcquireRawAdcSamplesIso15693();
1032 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1033 RecordRawAdcSamplesIso15693();
1036 case CMD_ISO_15693_COMMAND
:
1037 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1040 case CMD_ISO_15693_FIND_AFI
:
1041 BruteforceIso15693Afi(c
->arg
[0]);
1044 case CMD_ISO_15693_DEBUG
:
1045 SetDebugIso15693(c
->arg
[0]);
1048 case CMD_READER_ISO_15693
:
1049 ReaderIso15693(c
->arg
[0]);
1051 case CMD_SIMTAG_ISO_15693
:
1052 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1057 case CMD_SIMULATE_TAG_LEGIC_RF
:
1058 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1061 case CMD_WRITER_LEGIC_RF
:
1062 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1065 case CMD_READER_LEGIC_RF
:
1066 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1070 #ifdef WITH_ISO14443b
1071 case CMD_READ_SRI512_TAG
:
1072 ReadSTMemoryIso14443b(0x0F);
1074 case CMD_READ_SRIX4K_TAG
:
1075 ReadSTMemoryIso14443b(0x7F);
1077 case CMD_SNOOP_ISO_14443B
:
1080 case CMD_SIMULATE_TAG_ISO_14443B
:
1081 SimulateIso14443bTag();
1083 case CMD_ISO_14443B_COMMAND
:
1084 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1088 #ifdef WITH_ISO14443a
1089 case CMD_SNOOP_ISO_14443a
:
1090 SniffIso14443a(c
->arg
[0]);
1092 case CMD_READER_ISO_14443a
:
1095 case CMD_SIMULATE_TAG_ISO_14443a
:
1096 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1099 case CMD_EPA_PACE_COLLECT_NONCE
:
1100 EPA_PACE_Collect_Nonce(c
);
1102 case CMD_EPA_PACE_REPLAY
:
1106 case CMD_READER_MIFARE
:
1107 ReaderMifare(c
->arg
[0]);
1109 case CMD_MIFARE_READBL
:
1110 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1112 case CMD_MIFAREU_READBL
:
1113 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1115 case CMD_MIFAREUC_AUTH
:
1116 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1118 case CMD_MIFAREU_READCARD
:
1119 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1121 case CMD_MIFAREUC_SETPWD
:
1122 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1124 case CMD_MIFARE_READSC
:
1125 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1127 case CMD_MIFARE_WRITEBL
:
1128 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1130 //case CMD_MIFAREU_WRITEBL_COMPAT:
1131 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1133 case CMD_MIFAREU_WRITEBL
:
1134 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1136 case CMD_MIFARE_NESTED
:
1137 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1139 case CMD_MIFARE_CHKKEYS
:
1140 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1142 case CMD_SIMULATE_MIFARE_CARD
:
1143 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1147 case CMD_MIFARE_SET_DBGMODE
:
1148 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1150 case CMD_MIFARE_EML_MEMCLR
:
1151 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1153 case CMD_MIFARE_EML_MEMSET
:
1154 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1156 case CMD_MIFARE_EML_MEMGET
:
1157 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1159 case CMD_MIFARE_EML_CARDLOAD
:
1160 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1163 // Work with "magic Chinese" card
1164 case CMD_MIFARE_CSETBLOCK
:
1165 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1167 case CMD_MIFARE_CGETBLOCK
:
1168 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1170 case CMD_MIFARE_CIDENT
:
1175 case CMD_MIFARE_SNIFFER
:
1176 SniffMifare(c
->arg
[0]);
1180 case CMD_MIFARE_DESFIRE_READBL
: break;
1181 case CMD_MIFARE_DESFIRE_WRITEBL
: break;
1182 case CMD_MIFARE_DESFIRE_AUTH1
:
1183 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1185 case CMD_MIFARE_DESFIRE_AUTH2
:
1186 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1188 case CMD_MIFARE_DES_READER
:
1189 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1191 case CMD_MIFARE_DESFIRE_INFO
:
1192 MifareDesfireGetInformation();
1194 case CMD_MIFARE_DESFIRE
:
1195 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1198 case CMD_MIFARE_COLLECT_NONCES
:
1199 MifareCollectNonces(c
->arg
[0], c
->arg
[1]);
1204 // Makes use of ISO14443a FPGA Firmware
1205 case CMD_SNOOP_ICLASS
:
1208 case CMD_SIMULATE_TAG_ICLASS
:
1209 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1211 case CMD_READER_ICLASS
:
1212 ReaderIClass(c
->arg
[0]);
1214 case CMD_READER_ICLASS_REPLAY
:
1215 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1217 case CMD_ICLASS_EML_MEMSET
:
1218 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1220 case CMD_ICLASS_WRITEBLOCK
:
1221 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1223 case CMD_ICLASS_READCHECK
: // auth step 1
1224 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1226 case CMD_ICLASS_READBLOCK
:
1227 iClass_ReadBlk(c
->arg
[0]);
1229 case CMD_ICLASS_AUTHENTICATION
: //check
1230 iClass_Authentication(c
->d
.asBytes
);
1232 case CMD_ICLASS_DUMP
:
1233 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1235 case CMD_ICLASS_CLONE
:
1236 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1240 case CMD_HF_SNIFFER
:
1241 HfSnoop(c
->arg
[0], c
->arg
[1]);
1245 case CMD_BUFF_CLEAR
:
1249 case CMD_MEASURE_ANTENNA_TUNING
:
1250 MeasureAntennaTuning();
1253 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1254 MeasureAntennaTuningHf();
1257 case CMD_LISTEN_READER_FIELD
:
1258 ListenReaderField(c
->arg
[0]);
1261 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1262 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1264 LED_D_OFF(); // LED D indicates field ON or OFF
1267 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1270 uint8_t *BigBuf
= BigBuf_get_addr();
1272 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1273 len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1274 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1276 // Trigger a finish downloading signal with an ACK frame
1277 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1281 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1282 uint8_t *b
= BigBuf_get_addr();
1283 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1284 cmd_send(CMD_ACK
,0,0,0,0,0);
1291 case CMD_SET_LF_DIVISOR
:
1292 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1293 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1296 case CMD_SET_ADC_MUX
:
1298 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1299 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1300 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1301 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1312 cmd_send(CMD_ACK
,0,0,0,0,0);
1322 case CMD_SETUP_WRITE
:
1323 case CMD_FINISH_WRITE
:
1324 case CMD_HARDWARE_RESET
:
1327 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1329 // We're going to reset, and the bootrom will take control.
1333 case CMD_START_FLASH
:
1334 if(common_area
.flags
.bootrom_present
) {
1335 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1338 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1342 case CMD_DEVICE_INFO
: {
1343 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1344 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1345 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1349 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1354 void __attribute__((noreturn
)) AppMain(void)
1358 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1359 /* Initialize common area */
1360 memset(&common_area
, 0, sizeof(common_area
));
1361 common_area
.magic
= COMMON_AREA_MAGIC
;
1362 common_area
.version
= 1;
1364 common_area
.flags
.osimage_present
= 1;
1374 // The FPGA gets its clock from us from PCK0 output, so set that up.
1375 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1376 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1377 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1378 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1379 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1380 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1381 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1384 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1386 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1388 // Load the FPGA image, which we have stored in our flash.
1389 // (the HF version by default)
1390 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1398 byte_t rx
[sizeof(UsbCommand
)];
1403 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1405 UsbPacketReceived(rx
,rx_len
);
1411 #ifndef WITH_ISO14443a_StandAlone
1412 if (BUTTON_HELD(1000) > 0)
1416 #ifdef WITH_ISO14443a
1417 #ifdef WITH_ISO14443a_StandAlone
1418 if (BUTTON_HELD(1000) > 0)
1419 StandAloneMode14a();