1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 #include "lfsampling.h"
22 * Function to do a modulation and then get samples.
28 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
31 int divisor_used
= 95; // 125 KHz
32 // see if 'h' was specified
34 if (command
[strlen((char *) command
) - 1] == 'h')
35 divisor_used
= 88; // 134.8 KHz
37 sample_config sc
= { 0,0,1, divisor_used
, 0};
38 setSamplingConfig(&sc
);
40 /* Make sure the tag is reset */
41 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
42 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
45 LFSetupFPGAForADC(sc
.divisor
, 1);
47 // And a little more time for the tag to fully power up
50 // now modulate the reader field
51 while(*command
!= '\0' && *command
!= ' ') {
52 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
54 SpinDelayUs(delay_off
);
55 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
57 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
59 if(*(command
++) == '0')
60 SpinDelayUs(period_0
);
62 SpinDelayUs(period_1
);
64 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
66 SpinDelayUs(delay_off
);
67 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
69 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
72 DoAcquisition_config(false);
75 /* blank r/w tag data stream
76 ...0000000000000000 01111111
77 1010101010101010101010101010101010101010101010101010101010101010
80 101010101010101[0]000...
82 [5555fe852c5555555555555555fe0000]
86 // some hardcoded initial params
87 // when we read a TI tag we sample the zerocross line at 2Mhz
88 // TI tags modulate a 1 as 16 cycles of 123.2Khz
89 // TI tags modulate a 0 as 16 cycles of 134.2Khz
90 #define FSAMPLE 2000000
94 signed char *dest
= (signed char *)BigBuf_get_addr();
95 uint16_t n
= BigBuf_max_traceLen();
96 // 128 bit shift register [shift3:shift2:shift1:shift0]
97 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
99 int i
, cycles
=0, samples
=0;
100 // how many sample points fit in 16 cycles of each frequency
101 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
102 // when to tell if we're close enough to one freq or another
103 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
105 // TI tags charge at 134.2Khz
106 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
107 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
109 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
110 // connects to SSP_DIN and the SSP_DOUT logic level controls
111 // whether we're modulating the antenna (high)
112 // or listening to the antenna (low)
113 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
115 // get TI tag data into the buffer
118 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
120 for (i
=0; i
<n
-1; i
++) {
121 // count cycles by looking for lo to hi zero crossings
122 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
124 // after 16 cycles, measure the frequency
127 samples
=i
-samples
; // number of samples in these 16 cycles
129 // TI bits are coming to us lsb first so shift them
130 // right through our 128 bit right shift register
131 shift0
= (shift0
>>1) | (shift1
<< 31);
132 shift1
= (shift1
>>1) | (shift2
<< 31);
133 shift2
= (shift2
>>1) | (shift3
<< 31);
136 // check if the cycles fall close to the number
137 // expected for either the low or high frequency
138 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
139 // low frequency represents a 1
141 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
142 // high frequency represents a 0
144 // probably detected a gay waveform or noise
145 // use this as gaydar or discard shift register and start again
146 shift3
= shift2
= shift1
= shift0
= 0;
150 // for each bit we receive, test if we've detected a valid tag
152 // if we see 17 zeroes followed by 6 ones, we might have a tag
153 // remember the bits are backwards
154 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
155 // if start and end bytes match, we have a tag so break out of the loop
156 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
157 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
165 // if flag is set we have a tag
167 DbpString("Info: No valid tag detected.");
169 // put 64 bit data into shift1 and shift0
170 shift0
= (shift0
>>24) | (shift1
<< 8);
171 shift1
= (shift1
>>24) | (shift2
<< 8);
173 // align 16 bit crc into lower half of shift2
174 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
176 // if r/w tag, check ident match
177 if (shift3
& (1<<15) ) {
178 DbpString("Info: TI tag is rewriteable");
179 // only 15 bits compare, last bit of ident is not valid
180 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
181 DbpString("Error: Ident mismatch!");
183 DbpString("Info: TI tag ident is valid");
186 DbpString("Info: TI tag is readonly");
189 // WARNING the order of the bytes in which we calc crc below needs checking
190 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
191 // bytes in reverse or something
195 crc
= update_crc16(crc
, (shift0
)&0xff);
196 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
197 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
198 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
199 crc
= update_crc16(crc
, (shift1
)&0xff);
200 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
201 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
202 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
204 Dbprintf("Info: Tag data: %x%08x, crc=%x",
205 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
206 if (crc
!= (shift2
&0xffff)) {
207 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
209 DbpString("Info: CRC is good");
214 void WriteTIbyte(uint8_t b
)
218 // modulate 8 bits out to the antenna
222 // stop modulating antenna
229 // stop modulating antenna
239 void AcquireTiType(void)
242 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
243 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
244 #define TIBUFLEN 1250
247 uint32_t *BigBuf
= (uint32_t *)BigBuf_get_addr();
248 memset(BigBuf
,0,BigBuf_max_traceLen()/sizeof(uint32_t));
250 // Set up the synchronous serial port
251 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
252 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
254 // steal this pin from the SSP and use it to control the modulation
255 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
256 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
258 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
259 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
261 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
262 // 48/2 = 24 MHz clock must be divided by 12
263 AT91C_BASE_SSC
->SSC_CMR
= 12;
265 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
266 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
267 AT91C_BASE_SSC
->SSC_TCMR
= 0;
268 AT91C_BASE_SSC
->SSC_TFMR
= 0;
275 // Charge TI tag for 50ms.
278 // stop modulating antenna and listen
285 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
286 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
287 i
++; if(i
>= TIBUFLEN
) break;
292 // return stolen pin to SSP
293 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
294 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
296 char *dest
= (char *)BigBuf_get_addr();
299 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
300 for (j
=0; j
<32; j
++) {
301 if(BigBuf
[i
] & (1 << j
)) {
310 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
311 // if crc provided, it will be written with the data verbatim (even if bogus)
312 // if not provided a valid crc will be computed from the data and written.
313 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
315 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
317 crc
= update_crc16(crc
, (idlo
)&0xff);
318 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
319 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
320 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
321 crc
= update_crc16(crc
, (idhi
)&0xff);
322 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
323 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
324 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
326 Dbprintf("Writing to tag: %x%08x, crc=%x",
327 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
329 // TI tags charge at 134.2Khz
330 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
331 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
332 // connects to SSP_DIN and the SSP_DOUT logic level controls
333 // whether we're modulating the antenna (high)
334 // or listening to the antenna (low)
335 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
338 // steal this pin from the SSP and use it to control the modulation
339 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
340 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
342 // writing algorithm:
343 // a high bit consists of a field off for 1ms and field on for 1ms
344 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
345 // initiate a charge time of 50ms (field on) then immediately start writing bits
346 // start by writing 0xBB (keyword) and 0xEB (password)
347 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
348 // finally end with 0x0300 (write frame)
349 // all data is sent lsb firts
350 // finish with 15ms programming time
354 SpinDelay(50); // charge time
356 WriteTIbyte(0xbb); // keyword
357 WriteTIbyte(0xeb); // password
358 WriteTIbyte( (idlo
)&0xff );
359 WriteTIbyte( (idlo
>>8 )&0xff );
360 WriteTIbyte( (idlo
>>16)&0xff );
361 WriteTIbyte( (idlo
>>24)&0xff );
362 WriteTIbyte( (idhi
)&0xff );
363 WriteTIbyte( (idhi
>>8 )&0xff );
364 WriteTIbyte( (idhi
>>16)&0xff );
365 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
366 WriteTIbyte( (crc
)&0xff ); // crc lo
367 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
368 WriteTIbyte(0x00); // write frame lo
369 WriteTIbyte(0x03); // write frame hi
371 SpinDelay(50); // programming time
375 // get TI tag data into the buffer
378 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
379 DbpString("Now use tiread to check");
382 void SimulateTagLowFrequency(uint16_t period
, uint32_t gap
, uint8_t ledcontrol
)
385 uint8_t *tab
= BigBuf_get_addr();
387 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
388 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
390 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
392 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
393 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
395 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
396 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
400 //wait until SSC_CLK goes HIGH
401 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
403 DbpString("Stopped");
418 //wait until SSC_CLK goes LOW
419 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
421 DbpString("Stopped");
439 #define DEBUG_FRAME_CONTENTS 1
440 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
444 // compose fc/8 fc/10 waveform (FSK2)
445 static void fc(int c
, int *n
)
447 uint8_t *dest
= BigBuf_get_addr();
450 // for when we want an fc8 pattern every 4 logical bits
462 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
464 for (idx
=0; idx
<6; idx
++) {
476 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
478 for (idx
=0; idx
<5; idx
++) {
492 // compose fc/X fc/Y waveform (FSKx)
493 static void fcAll(uint8_t fc
, int *n
, uint8_t clock
, uint16_t *modCnt
)
495 uint8_t *dest
= BigBuf_get_addr();
496 uint8_t halfFC
= fc
/2;
497 uint8_t wavesPerClock
= clock
/fc
;
498 uint8_t mod
= clock
% fc
; //modifier
499 uint8_t modAdj
= fc
/mod
; //how often to apply modifier
500 bool modAdjOk
= !(fc
% mod
); //if (fc % mod==0) modAdjOk=TRUE;
501 // loop through clock - step field clock
502 for (uint8_t idx
=0; idx
< wavesPerClock
; idx
++){
503 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
504 memset(dest
+(*n
), 0, fc
-halfFC
); //in case of odd number use extra here
505 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
508 if (mod
>0) (*modCnt
)++;
509 if ((mod
>0) && modAdjOk
){ //fsk2
510 if ((*modCnt
% modAdj
) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
511 memset(dest
+(*n
), 0, fc
-halfFC
);
512 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
516 if (mod
>0 && !modAdjOk
){ //fsk1
517 memset(dest
+(*n
), 0, mod
-(mod
/2));
518 memset(dest
+(*n
)+(mod
-(mod
/2)), 1, mod
/2);
523 // prepare a waveform pattern in the buffer based on the ID given then
524 // simulate a HID tag until the button is pressed
525 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
529 HID tag bitstream format
530 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
531 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
532 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
533 A fc8 is inserted before every 4 bits
534 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
535 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
539 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
543 // special start of frame marker containing invalid bit sequences
544 fc(8, &n
); fc(8, &n
); // invalid
545 fc(8, &n
); fc(10, &n
); // logical 0
546 fc(10, &n
); fc(10, &n
); // invalid
547 fc(8, &n
); fc(10, &n
); // logical 0
550 // manchester encode bits 43 to 32
551 for (i
=11; i
>=0; i
--) {
552 if ((i
%4)==3) fc(0,&n
);
554 fc(10, &n
); fc(8, &n
); // low-high transition
556 fc(8, &n
); fc(10, &n
); // high-low transition
561 // manchester encode bits 31 to 0
562 for (i
=31; i
>=0; i
--) {
563 if ((i
%4)==3) fc(0,&n
);
565 fc(10, &n
); fc(8, &n
); // low-high transition
567 fc(8, &n
); fc(10, &n
); // high-low transition
573 SimulateTagLowFrequency(n
, 0, ledcontrol
);
579 // prepare a waveform pattern in the buffer based on the ID given then
580 // simulate a FSK tag until the button is pressed
581 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
582 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
586 uint8_t fcHigh
= arg1
>> 8;
587 uint8_t fcLow
= arg1
& 0xFF;
589 uint8_t clk
= arg2
& 0xFF;
590 uint8_t invert
= (arg2
>> 8) & 1;
592 for (i
=0; i
<size
; i
++){
593 if (BitStream
[i
] == invert
){
594 fcAll(fcLow
, &n
, clk
, &modCnt
);
596 fcAll(fcHigh
, &n
, clk
, &modCnt
);
599 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh
, fcLow
, clk
, invert
, n
);
600 /*Dbprintf("DEBUG: First 32:");
601 uint8_t *dest = BigBuf_get_addr();
603 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
605 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
610 SimulateTagLowFrequency(n
, 0, ledcontrol
);
616 // compose ask waveform for one bit(ASK)
617 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
)
619 uint8_t *dest
= BigBuf_get_addr();
620 uint8_t halfClk
= clock
/2;
621 // c = current bit 1 or 0
623 memset(dest
+(*n
), c
, halfClk
);
624 memset(dest
+(*n
) + halfClk
, c
^1, halfClk
);
626 memset(dest
+(*n
), c
, clock
);
631 // args clock, ask/man or askraw, invert, transmission separator
632 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
636 uint8_t clk
= (arg1
>> 8) & 0xFF;
637 uint8_t manchester
= arg1
& 1;
638 uint8_t separator
= arg2
& 1;
639 uint8_t invert
= (arg2
>> 8) & 1;
640 for (i
=0; i
<size
; i
++){
641 askSimBit(BitStream
[i
]^invert
, &n
, clk
, manchester
);
643 if (manchester
==0 && BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted (for biphase phase)
644 for (i
=0; i
<size
; i
++){
645 askSimBit(BitStream
[i
]^invert
^1, &n
, clk
, manchester
);
648 if (separator
==1) Dbprintf("sorry but separator option not yet available");
650 Dbprintf("Simulating with clk: %d, invert: %d, manchester: %d, separator: %d, n: %d",clk
, invert
, manchester
, separator
, n
);
652 //Dbprintf("First 32:");
653 //uint8_t *dest = BigBuf_get_addr();
655 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
657 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
662 SimulateTagLowFrequency(n
, 0, ledcontrol
);
668 //carrier can be 2,4 or 8
669 static void pskSimBit(uint8_t waveLen
, int *n
, uint8_t clk
, uint8_t *curPhase
, bool phaseChg
)
671 uint8_t *dest
= BigBuf_get_addr();
672 uint8_t halfWave
= waveLen
/2;
676 // write phase change
677 memset(dest
+(*n
), *curPhase
^1, halfWave
);
678 memset(dest
+(*n
) + halfWave
, *curPhase
, halfWave
);
683 //write each normal clock wave for the clock duration
684 for (; i
< clk
; i
+=waveLen
){
685 memset(dest
+(*n
), *curPhase
, halfWave
);
686 memset(dest
+(*n
) + halfWave
, *curPhase
^1, halfWave
);
691 // args clock, carrier, invert,
692 void CmdPSKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
696 uint8_t clk
= arg1
>> 8;
697 uint8_t carrier
= arg1
& 0xFF;
698 uint8_t invert
= arg2
& 0xFF;
699 uint8_t curPhase
= 0;
700 for (i
=0; i
<size
; i
++){
701 if (BitStream
[i
] == curPhase
){
702 pskSimBit(carrier
, &n
, clk
, &curPhase
, FALSE
);
704 pskSimBit(carrier
, &n
, clk
, &curPhase
, TRUE
);
707 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier
, clk
, invert
, n
);
708 //Dbprintf("DEBUG: First 32:");
709 //uint8_t *dest = BigBuf_get_addr();
711 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
713 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
717 SimulateTagLowFrequency(n
, 0, ledcontrol
);
723 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
724 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
726 uint8_t *dest
= BigBuf_get_addr();
727 const size_t sizeOfBigBuff
= BigBuf_max_traceLen();
729 uint32_t hi2
=0, hi
=0, lo
=0;
731 // Configure to go in 125Khz listen mode
732 LFSetupFPGAForADC(95, true);
734 while(!BUTTON_PRESS()) {
737 if (ledcontrol
) LED_A_ON();
739 DoAcquisition_default(-1,true);
741 size
= sizeOfBigBuff
; //variable size will change after demod so re initialize it before use
742 idx
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
);
745 // final loop, go over previously decoded manchester data and decode into usable tag ID
746 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
747 if (hi2
!= 0){ //extra large HID tags
748 Dbprintf("TAG ID: %x%08x%08x (%d)",
749 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
750 }else { //standard HID tags <38 bits
751 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
754 uint32_t cardnum
= 0;
755 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
757 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
759 while(lo2
> 1){ //find last bit set to 1 (format len bit)
767 cardnum
= (lo
>>1)&0xFFFF;
771 cardnum
= (lo
>>1)&0x7FFFF;
772 fc
= ((hi
&0xF)<<12)|(lo
>>20);
775 cardnum
= (lo
>>1)&0xFFFF;
776 fc
= ((hi
&1)<<15)|(lo
>>17);
779 cardnum
= (lo
>>1)&0xFFFFF;
780 fc
= ((hi
&1)<<11)|(lo
>>21);
783 else { //if bit 38 is not set then 37 bit format is used
788 cardnum
= (lo
>>1)&0x7FFFF;
789 fc
= ((hi
&0xF)<<12)|(lo
>>20);
792 //Dbprintf("TAG ID: %x%08x (%d)",
793 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
794 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
795 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF,
796 (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
);
799 if (ledcontrol
) LED_A_OFF();
809 DbpString("Stopped");
810 if (ledcontrol
) LED_A_OFF();
813 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
815 uint8_t *dest
= BigBuf_get_addr();
817 size_t size
=0, idx
=0;
818 int clk
=0, invert
=0, errCnt
=0, maxErr
=20;
820 // Configure to go in 125Khz listen mode
821 LFSetupFPGAForADC(95, true);
823 while(!BUTTON_PRESS()) {
826 if (ledcontrol
) LED_A_ON();
828 DoAcquisition_default(-1,true);
829 size
= BigBuf_max_traceLen();
830 //Dbprintf("DEBUG: Buffer got");
831 //askdemod and manchester decode
832 errCnt
= askmandemod(dest
, &size
, &clk
, &invert
, maxErr
);
833 //Dbprintf("DEBUG: ASK Got");
837 lo
= Em410xDecode(dest
, &size
, &idx
);
838 //Dbprintf("DEBUG: EM GOT");
840 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
843 (uint32_t)(lo
&0xFFFF),
844 (uint32_t)((lo
>>16LL) & 0xFF),
845 (uint32_t)(lo
& 0xFFFFFF));
848 if (ledcontrol
) LED_A_OFF();
850 *low
=lo
& 0xFFFFFFFF;
854 //Dbprintf("DEBUG: No Tag");
863 DbpString("Stopped");
864 if (ledcontrol
) LED_A_OFF();
867 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
869 uint8_t *dest
= BigBuf_get_addr();
871 uint32_t code
=0, code2
=0;
873 uint8_t facilitycode
=0;
875 // Configure to go in 125Khz listen mode
876 LFSetupFPGAForADC(95, true);
878 while(!BUTTON_PRESS()) {
880 if (ledcontrol
) LED_A_ON();
881 DoAcquisition_default(-1,true);
882 //fskdemod and get start index
884 idx
= IOdemodFSK(dest
, BigBuf_max_traceLen());
889 //0 10 20 30 40 50 60
891 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
892 //-----------------------------------------------------------------------------
893 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
895 //XSF(version)facility:codeone+codetwo
897 if(findone
){ //only print binary if we are doing one
898 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
899 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
900 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
901 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
902 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
903 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
904 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
906 code
= bytebits_to_byte(dest
+idx
,32);
907 code2
= bytebits_to_byte(dest
+idx
+32,32);
908 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
909 facilitycode
= bytebits_to_byte(dest
+idx
+18,8) ;
910 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
912 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version
,facilitycode
,number
,code
,code2
);
913 // if we're only looking for one tag
915 if (ledcontrol
) LED_A_OFF();
922 version
=facilitycode
=0;
928 DbpString("Stopped");
929 if (ledcontrol
) LED_A_OFF();
932 /*------------------------------
933 * T5555/T5557/T5567 routines
934 *------------------------------
937 /* T55x7 configuration register definitions */
938 #define T55x7_POR_DELAY 0x00000001
939 #define T55x7_ST_TERMINATOR 0x00000008
940 #define T55x7_PWD 0x00000010
941 #define T55x7_MAXBLOCK_SHIFT 5
942 #define T55x7_AOR 0x00000200
943 #define T55x7_PSKCF_RF_2 0
944 #define T55x7_PSKCF_RF_4 0x00000400
945 #define T55x7_PSKCF_RF_8 0x00000800
946 #define T55x7_MODULATION_DIRECT 0
947 #define T55x7_MODULATION_PSK1 0x00001000
948 #define T55x7_MODULATION_PSK2 0x00002000
949 #define T55x7_MODULATION_PSK3 0x00003000
950 #define T55x7_MODULATION_FSK1 0x00004000
951 #define T55x7_MODULATION_FSK2 0x00005000
952 #define T55x7_MODULATION_FSK1a 0x00006000
953 #define T55x7_MODULATION_FSK2a 0x00007000
954 #define T55x7_MODULATION_MANCHESTER 0x00008000
955 #define T55x7_MODULATION_BIPHASE 0x00010000
956 #define T55x7_BITRATE_RF_8 0
957 #define T55x7_BITRATE_RF_16 0x00040000
958 #define T55x7_BITRATE_RF_32 0x00080000
959 #define T55x7_BITRATE_RF_40 0x000C0000
960 #define T55x7_BITRATE_RF_50 0x00100000
961 #define T55x7_BITRATE_RF_64 0x00140000
962 #define T55x7_BITRATE_RF_100 0x00180000
963 #define T55x7_BITRATE_RF_128 0x001C0000
965 /* T5555 (Q5) configuration register definitions */
966 #define T5555_ST_TERMINATOR 0x00000001
967 #define T5555_MAXBLOCK_SHIFT 0x00000001
968 #define T5555_MODULATION_MANCHESTER 0
969 #define T5555_MODULATION_PSK1 0x00000010
970 #define T5555_MODULATION_PSK2 0x00000020
971 #define T5555_MODULATION_PSK3 0x00000030
972 #define T5555_MODULATION_FSK1 0x00000040
973 #define T5555_MODULATION_FSK2 0x00000050
974 #define T5555_MODULATION_BIPHASE 0x00000060
975 #define T5555_MODULATION_DIRECT 0x00000070
976 #define T5555_INVERT_OUTPUT 0x00000080
977 #define T5555_PSK_RF_2 0
978 #define T5555_PSK_RF_4 0x00000100
979 #define T5555_PSK_RF_8 0x00000200
980 #define T5555_USE_PWD 0x00000400
981 #define T5555_USE_AOR 0x00000800
982 #define T5555_BITRATE_SHIFT 12
983 #define T5555_FAST_WRITE 0x00004000
984 #define T5555_PAGE_SELECT 0x00008000
987 * Relevant times in microsecond
988 * To compensate antenna falling times shorten the write times
989 * and enlarge the gap ones.
991 #define START_GAP 30*8 // 10 - 50fc 250
992 #define WRITE_GAP 20*8 // 8 - 30fc
993 #define WRITE_0 24*8 // 16 - 31fc 24fc 192
994 #define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550
996 // VALUES TAKEN FROM EM4x function: SendForward
997 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
998 // WRITE_GAP = 128; (16*8)
999 // WRITE_1 = 256 32*8; (32*8)
1001 // These timings work for 4469/4269/4305 (with the 55*8 above)
1002 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1004 #define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
1006 // Write one bit to card
1007 void T55xxWriteBit(int bit
)
1009 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1010 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1011 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1013 SpinDelayUs(WRITE_0
);
1015 SpinDelayUs(WRITE_1
);
1016 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1017 SpinDelayUs(WRITE_GAP
);
1020 // Write one card block in page 0, no lock
1021 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1025 // Set up FPGA, 125kHz
1026 // Wait for config.. (192+8190xPOW)x8 == 67ms
1027 LFSetupFPGAForADC(0, true);
1029 // Now start writting
1030 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1031 SpinDelayUs(START_GAP
);
1035 T55xxWriteBit(0); //Page 0
1038 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1039 T55xxWriteBit(Pwd
& i
);
1045 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1046 T55xxWriteBit(Data
& i
);
1049 for (i
= 0x04; i
!= 0; i
>>= 1)
1050 T55xxWriteBit(Block
& i
);
1052 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1053 // so wait a little more)
1054 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1055 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1057 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1060 // Read one card block in page 0
1061 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1064 uint8_t *dest
= BigBuf_get_addr();
1065 uint16_t bufferlength
= BigBuf_max_traceLen();
1066 if ( bufferlength
> T55xx_SAMPLES_SIZE
)
1067 bufferlength
= T55xx_SAMPLES_SIZE
;
1069 memset(dest
, 0x80, bufferlength
);
1071 // Set up FPGA, 125kHz
1072 // Wait for config.. (192+8190xPOW)x8 == 67ms
1073 LFSetupFPGAForADC(0, true);
1074 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1075 SpinDelayUs(START_GAP
);
1079 T55xxWriteBit(0); //Page 0
1082 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1083 T55xxWriteBit(Pwd
& i
);
1088 for (i
= 0x04; i
!= 0; i
>>= 1)
1089 T55xxWriteBit(Block
& i
);
1091 // Turn field on to read the response
1094 // Now do the acquisition
1097 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1098 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1101 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1102 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1105 if (i
>= bufferlength
) break;
1109 cmd_send(CMD_ACK
,0,0,0,0,0);
1110 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1114 // Read card traceability data (page 1)
1115 void T55xxReadTrace(void){
1118 uint8_t *dest
= BigBuf_get_addr();
1119 uint16_t bufferlength
= BigBuf_max_traceLen();
1120 if ( bufferlength
> T55xx_SAMPLES_SIZE
)
1121 bufferlength
= T55xx_SAMPLES_SIZE
;
1123 memset(dest
, 0x80, bufferlength
);
1125 LFSetupFPGAForADC(0, true);
1126 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1127 SpinDelayUs(START_GAP
);
1131 T55xxWriteBit(1); //Page 1
1133 // Turn field on to read the response
1136 // Now do the acquisition
1138 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1139 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1142 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1143 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1147 if (i
>= bufferlength
) break;
1151 cmd_send(CMD_ACK
,0,0,0,0,0);
1152 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1156 void TurnReadLFOn(){
1157 //FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1158 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1159 // Give it a bit of time for the resonant antenna to settle.
1164 /*-------------- Cloning routines -----------*/
1165 // Copy HID id to card and setup block 0 config
1166 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1168 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1172 // Ensure no more than 84 bits supplied
1174 DbpString("Tags can only have 84 bits.");
1177 // Build the 6 data blocks for supplied 84bit ID
1179 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1180 for (int i
=0;i
<4;i
++) {
1181 if (hi2
& (1<<(19-i
)))
1182 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1184 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1188 for (int i
=0;i
<16;i
++) {
1189 if (hi2
& (1<<(15-i
)))
1190 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1192 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1196 for (int i
=0;i
<16;i
++) {
1197 if (hi
& (1<<(31-i
)))
1198 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1200 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1204 for (int i
=0;i
<16;i
++) {
1205 if (hi
& (1<<(15-i
)))
1206 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1208 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1212 for (int i
=0;i
<16;i
++) {
1213 if (lo
& (1<<(31-i
)))
1214 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1216 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1220 for (int i
=0;i
<16;i
++) {
1221 if (lo
& (1<<(15-i
)))
1222 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1224 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1228 // Ensure no more than 44 bits supplied
1230 DbpString("Tags can only have 44 bits.");
1234 // Build the 3 data blocks for supplied 44bit ID
1237 data1
= 0x1D000000; // load preamble
1239 for (int i
=0;i
<12;i
++) {
1240 if (hi
& (1<<(11-i
)))
1241 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1243 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1247 for (int i
=0;i
<16;i
++) {
1248 if (lo
& (1<<(31-i
)))
1249 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1251 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1255 for (int i
=0;i
<16;i
++) {
1256 if (lo
& (1<<(15-i
)))
1257 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1259 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1264 // Program the data blocks for supplied ID
1265 // and the block 0 for HID format
1266 T55xxWriteBlock(data1
,1,0,0);
1267 T55xxWriteBlock(data2
,2,0,0);
1268 T55xxWriteBlock(data3
,3,0,0);
1270 if (longFMT
) { // if long format there are 6 blocks
1271 T55xxWriteBlock(data4
,4,0,0);
1272 T55xxWriteBlock(data5
,5,0,0);
1273 T55xxWriteBlock(data6
,6,0,0);
1276 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1277 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1278 T55x7_MODULATION_FSK2a
|
1279 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1287 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1289 int data1
=0, data2
=0; //up to six blocks for long format
1291 data1
= hi
; // load preamble
1295 // Program the data blocks for supplied ID
1296 // and the block 0 for HID format
1297 T55xxWriteBlock(data1
,1,0,0);
1298 T55xxWriteBlock(data2
,2,0,0);
1301 T55xxWriteBlock(0x00147040,0,0,0);
1307 // Define 9bit header for EM410x tags
1308 #define EM410X_HEADER 0x1FF
1309 #define EM410X_ID_LENGTH 40
1311 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1314 uint64_t id
= EM410X_HEADER
;
1315 uint64_t rev_id
= 0; // reversed ID
1316 int c_parity
[4]; // column parity
1317 int r_parity
= 0; // row parity
1320 // Reverse ID bits given as parameter (for simpler operations)
1321 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1323 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1326 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1331 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1332 id_bit
= rev_id
& 1;
1335 // Don't write row parity bit at start of parsing
1337 id
= (id
<< 1) | r_parity
;
1338 // Start counting parity for new row
1345 // First elements in column?
1347 // Fill out first elements
1348 c_parity
[i
] = id_bit
;
1350 // Count column parity
1351 c_parity
[i
% 4] ^= id_bit
;
1354 id
= (id
<< 1) | id_bit
;
1358 // Insert parity bit of last row
1359 id
= (id
<< 1) | r_parity
;
1361 // Fill out column parity at the end of tag
1362 for (i
= 0; i
< 4; ++i
)
1363 id
= (id
<< 1) | c_parity
[i
];
1368 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1372 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1373 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1375 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1377 // Clock rate is stored in bits 8-15 of the card value
1378 clock
= (card
& 0xFF00) >> 8;
1379 Dbprintf("Clock rate: %d", clock
);
1383 clock
= T55x7_BITRATE_RF_32
;
1386 clock
= T55x7_BITRATE_RF_16
;
1389 // A value of 0 is assumed to be 64 for backwards-compatibility
1392 clock
= T55x7_BITRATE_RF_64
;
1395 Dbprintf("Invalid clock rate: %d", clock
);
1399 // Writing configuration for T55x7 tag
1400 T55xxWriteBlock(clock
|
1401 T55x7_MODULATION_MANCHESTER
|
1402 2 << T55x7_MAXBLOCK_SHIFT
,
1406 // Writing configuration for T5555(Q5) tag
1407 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1408 T5555_MODULATION_MANCHESTER
|
1409 2 << T5555_MAXBLOCK_SHIFT
,
1413 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1414 (uint32_t)(id
>> 32), (uint32_t)id
);
1417 // Clone Indala 64-bit tag by UID to T55x7
1418 void CopyIndala64toT55x7(int hi
, int lo
)
1421 //Program the 2 data blocks for supplied 64bit UID
1422 // and the block 0 for Indala64 format
1423 T55xxWriteBlock(hi
,1,0,0);
1424 T55xxWriteBlock(lo
,2,0,0);
1425 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1426 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1427 T55x7_MODULATION_PSK1
|
1428 2 << T55x7_MAXBLOCK_SHIFT
,
1430 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1431 // T5567WriteBlock(0x603E1042,0);
1437 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1440 //Program the 7 data blocks for supplied 224bit UID
1441 // and the block 0 for Indala224 format
1442 T55xxWriteBlock(uid1
,1,0,0);
1443 T55xxWriteBlock(uid2
,2,0,0);
1444 T55xxWriteBlock(uid3
,3,0,0);
1445 T55xxWriteBlock(uid4
,4,0,0);
1446 T55xxWriteBlock(uid5
,5,0,0);
1447 T55xxWriteBlock(uid6
,6,0,0);
1448 T55xxWriteBlock(uid7
,7,0,0);
1449 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1450 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1451 T55x7_MODULATION_PSK1
|
1452 7 << T55x7_MAXBLOCK_SHIFT
,
1454 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1455 // T5567WriteBlock(0x603E10E2,0);
1462 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1463 #define max(x,y) ( x<y ? y:x)
1465 int DemodPCF7931(uint8_t **outBlocks
) {
1467 uint8_t BitStream
[256] = {0x00};
1468 uint8_t Blocks
[8][16] = [0x00};
1469 uint8_t *dest
= BigBuf_get_addr();
1470 int GraphTraceLen
= BigBuf_max_traceLen();
1471 int i
, j
, lastval
, bitidx
, half_switch
;
1473 int tolerance
= clock
/ 8;
1474 int pmc
, block_done
;
1475 int lc
, warnings
= 0;
1477 int lmin
=128, lmax
=128;
1480 LFSetupFPGAForADC(95, true);
1481 DoAcquisition_default(0, true);
1488 /* Find first local max/min */
1489 if(dest
[1] > dest
[0]) {
1490 while(i
< GraphTraceLen
) {
1491 if( !(dest
[i
] > dest
[i
-1]) && dest
[i
] > lmax
)
1498 while(i
< GraphTraceLen
) {
1499 if( !(dest
[i
] < dest
[i
-1]) && v
[i
] < lmin
)
1511 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1513 if ( (dest
[i
-1] > dest
[i
] && dir
== 1 && dest
[i
] > lmax
) || (dest
[i
-1] < dest
[i
] && dir
== 0 && dest
[i
] < lmin
))
1518 // Switch depending on lc length:
1519 // Tolerance is 1/8 of clock rate (arbitrary)
1520 if (abs(lc
-clock
/4) < tolerance
) {
1522 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1524 i
+= (128+127+16+32+33+16)-1;
1532 } else if (abs(lc
-clock
/2) < tolerance
) {
1534 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1536 i
+= (128+127+16+32+33)-1;
1541 else if(half_switch
== 1) {
1542 BitStream
[bitidx
++] = 0;
1547 } else if (abs(lc
-clock
) < tolerance
) {
1549 BitStream
[bitidx
++] = 1;
1555 Dbprintf("Error: too many detection errors, aborting.");
1560 if(block_done
== 1) {
1562 for(j
=0; j
<16; j
++) {
1563 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1564 64*BitStream
[j
*8+6]+
1565 32*BitStream
[j
*8+5]+
1566 16*BitStream
[j
*8+4]+
1578 if(i
< GraphTraceLen
)
1580 if (dest
[i
-1] > dest
[i
]) dir
=0;
1587 if(num_blocks
== 4) break;
1589 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1593 int IsBlock0PCF7931(uint8_t *Block
) {
1594 // Assume RFU means 0 :)
1595 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1597 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1602 int IsBlock1PCF7931(uint8_t *Block
) {
1603 // Assume RFU means 0 :)
1604 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1605 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1613 void ReadPCF7931() {
1614 uint8_t Blocks
[8][17];
1615 uint8_t tmpBlocks
[4][16];
1616 int i
, j
, ind
, ind2
, n
;
1623 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1626 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1627 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1630 if(error
==10 && num_blocks
== 0) {
1631 Dbprintf("Error, no tag or bad tag");
1634 else if (tries
==20 || error
==10) {
1635 Dbprintf("Error reading the tag");
1636 Dbprintf("Here is the partial content");
1641 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1642 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1643 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1645 for(i
=0; i
<n
; i
++) {
1646 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1648 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1652 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1653 Blocks
[0][ALLOC
] = 1;
1654 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1655 Blocks
[1][ALLOC
] = 1;
1656 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1658 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1660 // Handle following blocks
1661 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1664 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1665 Blocks
[ind2
][ALLOC
] = 1;
1673 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1674 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1675 for(j
=0; j
<max_blocks
; j
++) {
1676 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1677 // Found an identical block
1678 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1681 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1682 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1683 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1684 Blocks
[ind2
][ALLOC
] = 1;
1686 if(num_blocks
== max_blocks
) goto end
;
1689 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1690 if(ind2
> max_blocks
)
1692 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1693 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1694 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1695 Blocks
[ind2
][ALLOC
] = 1;
1697 if(num_blocks
== max_blocks
) goto end
;
1706 if (BUTTON_PRESS()) return;
1707 } while (num_blocks
!= max_blocks
);
1709 Dbprintf("-----------------------------------------");
1710 Dbprintf("Memory content:");
1711 Dbprintf("-----------------------------------------");
1712 for(i
=0; i
<max_blocks
; i
++) {
1713 if(Blocks
[i
][ALLOC
]==1)
1714 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1715 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1716 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1718 Dbprintf("<missing block %d>", i
);
1720 Dbprintf("-----------------------------------------");
1726 //-----------------------------------
1727 // EM4469 / EM4305 routines
1728 //-----------------------------------
1729 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1730 #define FWD_CMD_WRITE 0xA
1731 #define FWD_CMD_READ 0x9
1732 #define FWD_CMD_DISABLE 0x5
1735 uint8_t forwardLink_data
[64]; //array of forwarded bits
1736 uint8_t * forward_ptr
; //ptr for forward message preparation
1737 uint8_t fwd_bit_sz
; //forwardlink bit counter
1738 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1740 //====================================================================
1741 // prepares command bits
1743 //====================================================================
1744 //--------------------------------------------------------------------
1745 uint8_t Prepare_Cmd( uint8_t cmd
) {
1746 //--------------------------------------------------------------------
1748 *forward_ptr
++ = 0; //start bit
1749 *forward_ptr
++ = 0; //second pause for 4050 code
1751 *forward_ptr
++ = cmd
;
1753 *forward_ptr
++ = cmd
;
1755 *forward_ptr
++ = cmd
;
1757 *forward_ptr
++ = cmd
;
1759 return 6; //return number of emited bits
1762 //====================================================================
1763 // prepares address bits
1765 //====================================================================
1767 //--------------------------------------------------------------------
1768 uint8_t Prepare_Addr( uint8_t addr
) {
1769 //--------------------------------------------------------------------
1771 register uint8_t line_parity
;
1776 *forward_ptr
++ = addr
;
1777 line_parity
^= addr
;
1781 *forward_ptr
++ = (line_parity
& 1);
1783 return 7; //return number of emited bits
1786 //====================================================================
1787 // prepares data bits intreleaved with parity bits
1789 //====================================================================
1791 //--------------------------------------------------------------------
1792 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1793 //--------------------------------------------------------------------
1795 register uint8_t line_parity
;
1796 register uint8_t column_parity
;
1797 register uint8_t i
, j
;
1798 register uint16_t data
;
1803 for(i
=0; i
<4; i
++) {
1805 for(j
=0; j
<8; j
++) {
1806 line_parity
^= data
;
1807 column_parity
^= (data
& 1) << j
;
1808 *forward_ptr
++ = data
;
1811 *forward_ptr
++ = line_parity
;
1816 for(j
=0; j
<8; j
++) {
1817 *forward_ptr
++ = column_parity
;
1818 column_parity
>>= 1;
1822 return 45; //return number of emited bits
1825 //====================================================================
1826 // Forward Link send function
1827 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1828 // fwd_bit_count set with number of bits to be sent
1829 //====================================================================
1830 void SendForward(uint8_t fwd_bit_count
) {
1832 fwd_write_ptr
= forwardLink_data
;
1833 fwd_bit_sz
= fwd_bit_count
;
1838 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1839 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1840 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1842 // Give it a bit of time for the resonant antenna to settle.
1843 // And for the tag to fully power up
1846 // force 1st mod pulse (start gap must be longer for 4305)
1847 fwd_bit_sz
--; //prepare next bit modulation
1849 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1850 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1851 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1852 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1853 SpinDelayUs(16*8); //16 cycles on (8us each)
1855 // now start writting
1856 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1857 if(((*fwd_write_ptr
++) & 1) == 1)
1858 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1860 //These timings work for 4469/4269/4305 (with the 55*8 above)
1861 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1862 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1863 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1864 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1865 SpinDelayUs(9*8); //16 cycles on (8us each)
1870 void EM4xLogin(uint32_t Password
) {
1872 uint8_t fwd_bit_count
;
1874 forward_ptr
= forwardLink_data
;
1875 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1876 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1878 SendForward(fwd_bit_count
);
1880 //Wait for command to complete
1885 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1887 uint8_t *dest
= BigBuf_get_addr();
1888 uint16_t bufferlength
= BigBuf_max_traceLen();
1891 // Clear destination buffer before sending the command 0x80 = average.
1892 memset(dest
, 0x80, bufferlength
);
1894 uint8_t fwd_bit_count
;
1896 //If password mode do login
1897 if (PwdMode
== 1) EM4xLogin(Pwd
);
1899 forward_ptr
= forwardLink_data
;
1900 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1901 fwd_bit_count
+= Prepare_Addr( Address
);
1903 // Connect the A/D to the peak-detected low-frequency path.
1904 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1905 // Now set up the SSC to get the ADC samples that are now streaming at us.
1908 SendForward(fwd_bit_count
);
1910 // Now do the acquisition
1913 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1914 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1916 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1917 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1919 if (i
>= bufferlength
) break;
1923 cmd_send(CMD_ACK
,0,0,0,0,0);
1924 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1928 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1930 uint8_t fwd_bit_count
;
1932 //If password mode do login
1933 if (PwdMode
== 1) EM4xLogin(Pwd
);
1935 forward_ptr
= forwardLink_data
;
1936 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1937 fwd_bit_count
+= Prepare_Addr( Address
);
1938 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1940 SendForward(fwd_bit_count
);
1942 //Wait for write to complete
1944 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off